«Скептикам хорошо бы самим пожить в Африке»

0   4   0

Медицина и здравоохранение
10 июня 13:00


593b030b5f1be77299773d4e

На вопрос о том, что дала наука биология человечеству, можно отвечать очень долго, а можно обойтись всего двумя словами. Например такими: антибиотики и оспа. Слава антибиотиков (по-прежнему вполне реальная) постепенно тускнеет в связи с развитием резистентности (о чем мы регулярно пишем). С оспой же ситуация лучше — о ее возвращении, к счастью, можно не беспокоиться.

Однако повторить уникальный опыт тотального уничтожения болезни на всей планете до сих пор, к сожалению, не удавалось. Сейчас, благодаря развитию молекулярной биологии и, в том числе, открытию системы редактирования генома CRISPR/Cas9, у человечества есть надежда добавить к оспе еще одно заболевание. И не абы какое, а одно из самых серьезных с точки зрения числа страдающих им людей — малярию.

Речь идет о появлении технологии так называемого генного драйва, которая потенциально позволяет полностью остановить на планете распространение малярии. Идея заключается в том, чтобы создать и затем выпустить в окружающую среду специальных, стерильных генно-модифицированных комаров рода Anopheles. О том, как работает эта технология, какие риски она с собой несет и когда может начаться «комариный геноцид», мы поговорили с одним из признанных лидеров в этой области, сотрудником Имперского Колледжа в Лондоне профессором Андреа Крисанти (Andrea Crisanti). Материал подготовлен в рамках Года науки и образования Великобритании и России — 2017, организованного Британским Советом и Посольством Великобритании в Москве.

В декабре прошлого года, на заседании комиссии ООН в мексиканском Канкуне обсуждалось предложение ввести мораторий на испытания и исследования технологии генного драйва. То есть, фактически, о запрещении вашей работы. По результатам обсуждения мораторий был отвергнут. Надо полагать, что вы довольны таким решением, но все-таки, что это было: победа или лишь кратковременная пауза? Что можно сказать про прошествии нескольких месяцев?

Конечно, это только пауза. Не думаю, что здесь можно говорить о какой-то окончательной победе. Полагаю, мы еще услышим призывы запретить генный драйв или ввести какие-то иные формы регулирования. И мы на самом деле приветствуем введение каких-то международных правил. Но только не запретов. Поймите, институты, которые занимаются этими исследованиями, — а это не только Имперский колледж, это и Гарвард, и Массачусетский госпиталь — имеют заслуженную репутацию ответственных и прозрачных организаций. Если будет принят мораторий, это не значит, что исследования прекратятся, это значит, что они будут проводиться в других, менее прозрачных местах. Не думаю, чтобы это кому-то было нужно.

Мне кажется, требование наложить мораторий было вызвано просто недостатком понимания того, что это вообще за исследования. И, возможно, недостатком коммуникации с нашей стороны. Ведь никакого содержательного общения не получилось: мы не знали о том, что смущает экоактивистов, но и они нас ни о чем не спрашивали. В результате у противников генного драйва сложилось неправильное представление о том, как эта технология работает, на что она способна, а на что нет. Я думаю, что в основном опасения вызываются просто словами о «генетической модификации, которая способна распространяться в популяции». Многие, когда слышат такие слова, сразу же хотят пресечь подобные поползновения в зародыше.

Хорошо, давайте тогда сделаем шаг назад и разберемся с тем, как на самом деле работает генный драйв, чтобы нашему читателю все это стало понятно.

Думаю, ваш читатель прекрасно знает что такое ДНК. И что ДНК, как всякая молекула в живом организме, может ломаться. В ней могут появляться разрывы. Хорошие новости состоят в том, что подобные разрывы клетка умеет исправлять. Есть два основных пути починки таких поломок. Первый путь — просто соединение разорванных концов друг с другом (путь NHEJприм. ред.). Но этот путь, на самом деле, совсем не такой хороший, как кажется на первый взгляд. Ведь соединяя друг с другом два близлежащих конца порванной ДНК, клетка не знает, сохранили ли эти концы свою исходную последовательность. Пока они «болтались», от них могли отваливаться отдельные нуклеотиды. И если просто соединить два таких испорченных конца молекулы, можно легко внести в важный ген ошибку или даже полностью его выключить.

Есть и гораздо более продвинутый путь исправления (репарации) разрывов. Он основан на том факте, что любой организм, способный размножаться половым путем, имеет два набора генов, находящихся на гомологичных хромосомах — тех самых, что получены им от мамы и от папы. И если повреждение происходит в одной из хромосом, то для его исправления можно использовать нетронутую копию того же гена в парной хромосоме. При этом концы ДНК на месте разрыва обрезаются, одна из нитей спаривается с парной хромосомой и поврежденный промежуток восстанавливается на основе гомологичной копии. Получается такой принцип копирования и вставки. Это очень надежный и эффективный механизм исправления разрывов. В клетках так называемой половой линии, из которых потом получаются яйцеклетки и сперматозоиды, работает только он. И понятно почему: ведь повреждения в этих клетках гораздо опаснее, чем в любых других.

Теперь, чтобы из этих природных механизмов получить генный драйв, нужно сделать всего один шаг. Драйв — это явление, при котором все потомство организма, имеющего в своем геноме два варианта (аллеля) какого-либо гена, передает своему потомству только один из них. Когда драйва не происходит, работают классические законы Менделя: потомству передаются оба варианта генов случайным образом. Но стоит нам научиться вносить в один из вариантов гена целенаправленные разрывы, что произойдет? Мы фактически активируем механизм гомологичной рекомбинации. И это приведет к тому, что один из вариантов гена («запасной») заменит собой другой (тот, в котором произошел разрыв) и эти изменения передадутся потомству. Все потомство по этому аллелю будет совершенно одинаковым, вопреки законам расщепления Менделя. Вот и все: генетический драйв это всего лишь способ активировать природную систему репарации путем введения точечного разрыва в ДНК.

Первую экспериментальную модель комаров, в которой демонстрируется этот принцип, мы разработали пять лет назад. Для внесения разрывов в ДНК там использовался особый класс ферментов-нуклеаз, которые имеют дрожжевое происхождение (их называют хоуминг эндонуклеазы). Проблема с этими нуклеазами в том, что они «заточены» на распознавание своей, дрожжевой ДНК, и перепрограммировать их для работы ДНК комаров довольно сложно. Не невозможно, но сложно. А потом появилась система CRISPR/Cas9, с помощью которой разрывы можно вносить в любое нужное место нуклеиновой кислоты, в зависимости от того, какой направляющей РНК вы снабдите нуклеазу Cas9. Механизм совершенно точно такой же, разница здесь чисто техническая.

Как видите, ничего особо сложного в генном драйве нет. Значит ли это, что кто угодно может сделать такой эксперимент? Конечно, нет. Здесь много чего нужно знать, помимо самой механики внесения изменений в ДНК. Нужно понимать, как работает геном, знать, какие гены подходят в качестве целей для внесения изменений, как и когда работают их промоторы, как устроена популяция и так далее. Это не студенческий проект, который можно выполнить в гараже. В СМИ было много странного шума о том, что эта технология очень опасна из-за того, что якобы очень легко осуществима. Нет, простая она только на бумаге. На практике все, конечно, гораздо сложнее.

И все-таки, как вы считаете, какая часть опасений, всей этой шумихи, объясняется только лишь непониманием природы технологии, а какая часть реально обоснованна и имеет право на существование?

Мне кажется, что во многом общее недопонимание генного драйва объясняется всей этой шумихой вокруг технологии CRISPR. Редактирование человеческого генома, иммунотерапия рака — все это придает нездоровой сенсационности самой технологии CRISPR, и, как следствие, она переносится на все те исследования, где эта технология хоть как-то задействована. Это во-первых. А, во-вторых, некоторые специалисты по CRISPR сами по себе допускали публичные высказывания, которые, скажем так, не способствуют конструктивному диалогу. Это, знаете, такой не самый удачный способ подчеркнуть важность и новизну своего изобретения (которую в случае с CRISPR было бы глупо оспаривать).

Но штука в том, что еще четыре года назад мы уже работали над точно такой же системой генного драйва, которая отличалась лишь тем, что вместо системы CRISPR использовала специально подобранные (хоуминг) эндонуклеазы. И ничего! Ну то есть как ничего: мы, конечно, опубликовали статью в Nature, о нашей работе написало огромное количество СМИ, но вот всего этого безумия с обсуждением в ООН, с призывами к запрету и так далее — ничего подобного не было. Так что вся эта шумиха скорее не про реальное обсуждение рисков, а, боюсь, просто про публичное восприятие, про имидж той или иной технологии.

Вернемся к генному драйву. Если отталкиваться от такой конечной цели как полное уничтожение малярийных комаров, то где мы находится сейчас? Что еще нужно сделать, чтобы попасть в мир без малярии?

Я бы сказал, нам потребуется сделать три ключевых шага. Во-первых, нужно будет создать надежную систему борьбы с возможным возникновением устойчивости. Во-вторых, нужно будет собрать данные о том, как генный драйв работает в реальных популяциях, в реальных условиях вне стен лаборатории. И над этим мы уже активно работаем, это так называемое «полузакрытое полевое исследование» (large semi-confined field reliese).

Читать далее.


Автор: Александр Ершов

Источник: nplus1.ru


0



Для лиц старше 18 лет