ОТЗЫВ

на бакалаврскую работу студента 4 курса направления «Приборостроение» профиль «Компьютерные, информационно-измерительные и управляющие приборы и системы» Коршунова М. А. на тему: «Разработка блока питания испытательного комплекса для светодиодных светильников»

Проблемы внедрения светодиодной техники в нашей стране во многом связаны с отсутствием нормативной базы полупроводниковой светотехники, что позволяет производителям создавать некачественную продукцию и обманывать потребителя, заявляя срок службы подобных устройств на уровне 70–100 тыс. часов.

Одним из нормируемых колориметрических параметров осветительного прибора является коррелированная цветовая температура, которая рассчитывается на основе известного спектра излучения.

Однако, на данный момент у производителей светодиодных светильников не хватает информации о характере зависимости величины коррелированной цветовой температуры от электрических и тепловых режимов их работы.

Поэтому перед Коршуновым М. А. была поставлена задача: разработать испытательный стенд для светодиодных светильников, формирующий режимы для определения характера зависимости спектра излучения от электрического и теплового режимов его работы в процессе эксплуатации.

С поставленной задачей Коршунов М. А. справился. Им разработана структурная схема устройства, электрические принципиальные схемы, функциональная схема, проведен анализ современного состояния исследований в области испытания светодиодных светильников.

Представленная бакалаврская работа выполнена технически грамотно и на высоком уровне.

Результаты проверки бакалаврской работы на наличие заимствований показали оригинальность работы 83,9 %.

Учитывая вышеизложенное, считаю, что бакалаврская работа заслуживает оценки «хорошо».

Руководитель
к.т.н., доцент каф. электроники и наноэлектроники

Ю.В. Горячкин
ОТЧЕТ
о результатах проверки бакалаврской работы обучающегося
на наличие заимствований

Автор работы __________ Коршунов Максим Александрович
Тема работы __________ Разработка блока питания испытательного комплекса для светодиодных светильников
Руководитель __________ Горячкин Юрий Викторович

Представленная работа прошла проверку на наличие заимствований в системе «Антиплагиат. ВУЗ»

Результаты автоматической проверки: оригинальность 83,96 %
цитирования 0 %
заимствования 16,04 %

Результаты анализа полного отчета на наличие заимствований:
правомерные заимствования: 16,04 %
корректные цитирования: 0 %
nеправомерные заимствования: нет
признаки обхода системы: нет

Общее заключение об итоговой оригинальности работы и возможности ее допуска к защите:
оригинальность 83,96 %;
студент допускается к предварительной защите и защите ВКР в ГЭК.

Руководитель
доцент __________

Горячкин Ю. В.
Заявление о самостоятельном характере выполнения работы

Я, Коршунов Максим Александрович, обучающийся 4 курса, направления подготовки 12.03.01 «Приборостроение» заявляю, что в моей выпускной квалификационной работе на тему «Разработка блока питания испытательного комплекса для светодиодных светильников», представленной в Государственную экзаменационную комиссию для публичной защиты, не содержится элементов неправомерных заимствований.

Все прямые заимствования из печатных и электронных источников, а также ранее защищенных письменных работ, кандидатских и докторских диссертаций имеют соответствующие ссылки.

Я ознакомлен с действующим в Университете Положением о проверке работ обучающихся ФГБОУ ВО «МГУ им. Н. П. Огарева» на наличие заимствований, в соответствии с которым обнаружение неправомерных заимствований является основанием для отрицательного отзыва руководителя работы.

Подпись студента Коршунов
Дата 11.06.18

Работа представлена для проверки в Системе
Дата представления 11.06.18

Подпись работодателя
БАКАЛАВРСКАЯ РАБОТА
РАЗРАБОТКА БЛОКА ПИТАНИЯ ИСПЫТАТЕЛЬНОГО КОМПЛЕКСА СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ

Автор бакалаврской работы Коршунов 20.06.2018 М. А. Коршунов
Обозначение бакалаврской работы БР – 02069964 – 12.03.01 – 6 – 18
Направление подготовки 12.03.01 «Приборостроение »
Руководитель работы Ю. В. Горячкин
к.т.н., доцент 20.06.2018
Нормоконтролер А. А. Шестёркина 20.06.2018
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Н. П. ОГАРЁВА»
ИНСТИТУТ ЭЛЕКТРОНИКИ И СВЕТОТЕХНИКИ
КАФЕДРА ЭЛЕКТРОНИКИ И НАНОЭЛЕКТРОНИКИ

УТВЕРЖДАЮ
Заведующий кафедрой, к.т.н.

Н. Н. Беспалов
«12» 10 2017 г.

ЗАДАНИЕ НА ВЫПУСКНУЮ КВАЛИФИКАЦИОННУЮ РАБОТУ

Студент Коршунов Максим Александрович

1 Тема: Разработка блока питания испытательного комплекса для светодиодных светильников.

Утверждена приказом по МордГу № 8292-с от 12.10.2017 г.

2 Срок представления работы к защите: 15 июня 2018 г.

3 Исходные данные для выпускной квалификационной работы:

Разработать блок питания испытательного комплекса для светодиодных светильников.

Испытательный комплекс для светодиодных светильников должен формировать режимы для определения характера зависимости спектра излучения от электрического и теплового режимов со следующими параметрами:

- однофазная сеть 220 В, частота 50 Гц;
- потребляемая системой освещения мощность нагрузки до 60 Вт;
- коэффициент пульсаций светового потока 1, 5, 15 %;
- возможность плавного регулирования выходного тока от 0 до 1,5 А.

4 Содержание выпускной квалификационной работы:

4.1 Введение.
4.2 Обзор оборудования для испытания светодиодных светодиодов.
4.3 Разработка блока питания испытательного комплекса для светодиодных светодиодов.
4.4 Анализ современного состояния исследований в области испытания светодиодных светодиодов.
4.5 Разработка блока питания испытательного комплекса для светодиодных светодиодов.
4.6 Разработка блока драйверов.
4.7 Разработка управляемого источника тока.
4.8 Разработка общей схемы источника тока.
4.9 Разработка источника питания напряжения.
4.10 Расчёт блока управления и источника опорного напряжения.

Заключение.
Список использованных источников

5 Приложения.
5.1 Приложение А (обязательное) Структурная схема испытательного комплекса для светодиодов.
5.2 Приложение Б (обязательное) Электрическая принципиальная схема управляемого источника тока.

Руководитель работы Ю. В. Горячкин
Задание принял к исполнению М. А. Коршунов
РЕФЕРАТ

Бакалаврская работа содержит 48 страниц, 14 рисунков, 51 формулу, 2 таблицы, 11 литературных источников.

ИСПЫТАНИЯ, ИЗМЕРЕНИЯ, СВЕТОДИОДНЫЙ СВЕТИЛЬНИК, СПЕКТР ИЗЛУЧЕНИЯ, МОЩНОСТЬ, ПУЛЬСАЦИИ, РЕГУЛИРОВАНИЕ, АВТОМАТИЗАЦИЯ.

Объект исследования: светодиодные светодиоды.

Цель исследования: разработка блока питания испытательного комплекса для светодиодных светодиодных.

Полученные результаты: разработан блок питания испытательного комплекса для светодиодных светодиодов.

БР – 02069964 – 12.03.01 – 6 – 18
СОДЕРЖАНИЕ

<table>
<thead>
<tr>
<th>СТР.</th>
<th>ГЛАВА</th>
<th>НАЗВАНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>ВВЕДЕНИЕ</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Обзор оборудования для испытания светодиодных светильников</td>
</tr>
<tr>
<td>9</td>
<td>1.1</td>
<td>Анализ современного состояния исследований в области испытания светодиодных светильников</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>Существующие технические средства для испытания и диагностики светодиодов и светильников на их основе</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>Разработка блока питания испытательного комплекса для светодиодных светильников</td>
</tr>
<tr>
<td>22</td>
<td>2.1</td>
<td>Предлагаемые подходы и методы, применяемые для разработки испытательного стенда</td>
</tr>
<tr>
<td>28</td>
<td>2.2</td>
<td>Разработка блока драйверов</td>
</tr>
<tr>
<td>31</td>
<td>2.3</td>
<td>Разработка управляемого источника тока</td>
</tr>
<tr>
<td>31</td>
<td>2.3.1</td>
<td>Разработка общей схемы источника тока</td>
</tr>
<tr>
<td>32</td>
<td>2.3.2</td>
<td>Разработка источника питающего напряжения</td>
</tr>
<tr>
<td>43</td>
<td>2.3.3</td>
<td>Расчёт блока управления и источника опорного напряжения</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>ЗАКЛЮЧЕНИЕ</td>
</tr>
<tr>
<td>48</td>
<td>СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ</td>
<td></td>
</tr>
</tbody>
</table>

Приложение А (обязательное) Структурная схема испытательного комплекса для светодиодов.

Приложение Б (обязательное) Электрическая принципиальная схема управляемого источника тока.
ВВЕДЕНИЕ

Согласно результатам последних исследований в мире на освещение приходится 20% от общего объёма вырабатываемой электроэнергии. Применение в системах освещения энергоэффективных светодиодных источников света позволит экономить огромное количество энергии и, соответственно, ресурсов. В настоящее время в нашей стране реализуется стратегическая цель Правительства РФ по переходу к нетопливной энергетике до 2030 года. Одно из направлений повышения энергоэффективности предполагает замену ламп накаливания на энергоэффективные лампы и развитие производства энергоэффективного светового оборудования в России. Однако, с переходом на энергоэффективные светодиодные источники света производители и потребители данной продукции столкнулись со значительными проблемами, которые требуют скорейшего решения. Подобной проблемой является качество света, одной из главных характеристик которого является спектр излучения источника света. Известно, что электромагнитные волны определённой длины видимого диапазона оказывают различное влияние на здоровье и психофизическое состояние человека, поэтому спектр излучения светодиодного светильника должен зависеть от области его применения. В процессе эксплуатации спектр излучения подобных источников света может изменяться по причине деградации люминофора и кристалла светодиодов, либо из-за их электрических и тепловых перегрузок. Как правило, происходит смещение спектра в область высоких частот. Таким образом, светодиодный светильник, полностью исправный по значениям всех электрических и фотометрических параметров, может стать непригодным для использования вследствие существенного отклонения спектра его излучения от номинального.

Проблемы внедрения светодиодной техники в нашей стране во многом связаны с отсутствием нормативной базы полупроводниковой светотехники, что позволяет производителям создавать некачественную про-
дукцию и обманывать потребителя, заявляя срок службы подобных устройств на уровне 70–100 тыс. часов. С 1 сентября 2017 года вступил в действие стандарт Ассоциации производителей светодиодов и систем на их основе СТО.69159079-01-2017 «Светильники светодиодные. Требования к техническим и эксплуатационным параметрам». В данном стандарте разработчикам удалось объединить общие требования к осветительным приборам, фотометрические и колориметрические параметры, электрические параметры, требования к электромагнитной совместимости, эксплуатационным параметрам и безопасности, требования надежности и гарантийные обязательства. Согласно стандарту одним из нормируемых колориметрических параметров осветительного прибора является коррелированная цветовая температура, которая рассчитывается на основе известного спектра излучения. Допуск на величину коррелированной цветовой температуры должен составлять не более ± 300 К от номинального значения, заявляемого производителем. Однако, на данный момент у производителей светодиодных светильников не хватает информации о характере зависимости величины коррелированной цветовой температуры от электрических и тепловых режимов их работы. Кроме того, отсутствуют глубокие исследования процессов изменения значения данного параметра в процессе эксплуатации светильника в связи с деградацией светодиодов. Таким образом, сейчас невозможно оценить точно реальный срок службы светодиодного светильника, поскольку производители не могут сказать, через какой интервал времени величина его коррелированной цветовой температуры изменится на 300 К даже при номинальном режиме работы. Однако, зачастую светодиоды в светильнике работают в электрических и тепловых режимах, отличных от номинального, поэтому исследование спектра излучения и его изменения с течением времени при данных режимах работы является актуальной задачей. Результаты исследования будут интересны как производителям светодиодных светильников, так и их потребителям, поскольку позволяют оценить состояние данной отрасли и пер-
спектры её дальнейшего развития. На основе полученной информации производители светодиодов и светильников на их основе смогут понять причины изменения спектра излучения и величины коррелированной цветовой температуры в процессе эксплуатации и предпринять соответствующие меры для устранения данного недостатка.

Целью работы является разработка испытательного стенда для светодиодных светильников, формирующего режимы для определения характера зависимости спектра излучения от электрического и теплового режимов его работы в процессе эксплуатации. Применение испытательного комплекса для исследования позволит более точно оценить реальный срок службы светодиодных светильников и предотвратить вредное влияние на здоровье человека источников света с изменявшемся в процессе эксплуатации спектром излучения.
1 Обзор оборудования для испытания светодиодных светодиодных светильников

1.1 Анализ современного состояния исследований в области испытания светодиодных светодиодных светильников

В настоящее время вопрос надёжности светодиодов в составе светильника в первую очередь заботит производителей светодиодов. Специалисты компании «Cree» провели масштабное исследование данной проблемы, результаты которого опубликовали в статье «Отказы светодиодных светильников: причины и способы предупреждения» [1]. Результаты исследования показали, что основной причиной отказов светодиодов являются электрические перегрузки, а на третьем месте стоят тепловые перегрузки (рисунок 1).

Рисунок 1 – Классификация отказов светодиодов и статистика компании Cree

Подобная статистика показывает, что основной причиной низкой надёжности светодиодных светильников является отклонение их электрического и теплового режимов работы от номинального. Таким образом, наибольший интерес представляет исследование изменения значений параметров и характеристик светильника и его светодиодов в различных ре-
жимах работы. Подобный подход позволит более точно оценить реальный срок службы светодиодных светильников.

Одним из наиболее значимых исследователей в области измерения и контроля параметров светодиодов является руководитель Аккредитованного центра по сертификационным испытаниям устройств светотехники и источников излучения ООО «АРХИЛАЙТ», главный редактор журнала «Полупроводниковая светодиотехника», д. т. н. Никифоров Сергей Григорьевич. Наиболее полно результаты его научных исследований отражены в диссертации на соискание ученой степени доктора технических наук на тему «Разработка средств измерений и методов контроля параметров полупроводниковых излучателей на основе соединений AlPbS, используемых в высоконадёжных приборах», которая была представлена к защите в 2015 г. [2]. В работе проведено исследование отклонения величин электрических, фотометрических и колориметрических параметров светодиодов от номинальных значений и характера изменения этих параметров в результате деградации светодиодов в процессе их эксплуатации. Проведённые исследования, несомненно, имеют глубокий фундаментальный характер и несут огромное значение для полупроводниковой светодиотехники, однако, данная область техники сейчас развивается настолько быстро, что в одной работе невозможно затронуть все проблемы. В диссертационной работе исследования проводились при номинальных электрических режимах работы светодиодов, что, необходимо для сравнения светодиодов разных производителей, но в реальных светильниках зачастую электрический и тепловой режим работы отличается от номинального. Более того, многие производители светодиодных светильников сознательно перегружают или, наоборот, недогружают светодиоды, чтобы добиться от светильника определённых значений параметров и характеристик. Подобные вопросы в работах С. Г. Никифорова не поднимались. Кроме того, отсутствуют исследования тепловых режимов работы светодиодов и их влияния на спектр излучения [3, 4]. Измерения проводились лишь при различных значениях
температуры окружающей среды (рисунок 2). Установлено, что при повышении значения температуры окружающей среды в спектре излучения начинают преобладать высокочастотные составляющие и цветовая температура светодиода увеличивается. Полученные результаты, конечно же, важны, однако для более глубокого понимания процессов, протекающих в светодiode, необходимо исследовать тепловые процессы, протекающие в его конструкции и кристалле.

Рисунок 2 – Относительное спектральное распределение излучения синих светодиодов при различных температурах окружающей среды от –60 до +55 ºC

Количественную оценку сокращения срока службы светодиода при повышении значения температуры его кристалла даёт Алексей Васильев в статье «Светодиоды-долгожители: правда или мистификация?» [5]. Автором представлена зависимость срока службы от температуры кристалла для различных светодиодов. Стоит отметить, что данная зависимость получена теоретически путём математических вычислений с помощью модели Аррениуса. Полученные результаты представляют интерес для оценки характера зависимости срока службы светодиода от величины температуры его кристалла. Однако, практического подтверждения результатов рас-
чёта в статье не представлено, поэтому ориентироваться на них при проектировании реальных светодиодных светильников не следует.

Подтверждают актуальность выбранного направления исследований результаты анализа бюллетеней Департамента Энергетики США (Подбор-ка и перевод — Ланской А. О., ноябрь 2011) [6], где рассмотрены вопросы влияния температурного режима работы светодиодов на значения их световых параметров. В работе представлена зависимость относительного светового выхода светодиода от наработки при различных значениях температуры его кристалла. Показано, что с ростом величины температуры кристалла значение относительного светового выхода светодиода уменьшается. Сделаны выводы о том, что обеспечение благоприятного температурного режима работы светодиода является залогом его продолжительного срока службы. Исследования зависимости спектра излучения от величины температуры кристалла светодиода не представлено.

Основной проблемой в данной научной области является отсутствие достаточного объёма исследований светодиодных светильников. Проведённый анализ показал, что все исследования проводятся только на дискретных светодиодах, что правильно с точки зрения производителей светодиодов, но не изготовителей светильников, которые также ориентируются на подобную информацию. Светодиодный светильник представляет собой достаточно сложную электромеханическую систему. Каждый отдельный светодиод является лишь частью данной системы и функционирует он совсем иначе, чем работал бы в одиночку. Когда светодиоды образуют матрицу, питаются от одного источника и охлаждаются одним радиатором, то в них протекают достаточно сложные электрические и тепловые процессы, которые требуют глубокого исследования и анализа.
1.2 Существующие технические средства для испытания и диагностики светодиодов и светильников на их основе

Светодиодные драйверы являются одной из составных частей современной системы управления освещением. Из-за несовершенства технологического процесса производства в рамках одной ценовой категории существуют драйверы, различающиеся по качеству выходного сигнала, функциональным возможностям и величинам своих параметров. За счет использования качественных светодиодных драйверов можно существенно понизить расход электроэнергии на освещение, одновременно обеспечивая соблюдение требований российских и международных стандартов по качеству освещения.

Поскольку создание энергоэффективной системы освещения является одной из наиболее актуальных задач современной светотехники и электроники, то для построение подобной системы особое внимание следует уделять выбору светодиодного драйвера.

Существуют множество светодиодных драйверов различных производителей с различными выходными сигналами, значениями параметров и функциональными возможностями. Цены их рознятся от нескольких сотен до нескольких тысяч рублей. Оптическая мощность и комфортность свечения светодиодов определяются величиной и формой тока, протекающего через светоизлучающую систему. Большинство выпускаемых в настоящее время драйверов освещения не учитывают нелинейность ватт-амперных и вольт-амперных характеристик (BAX) полупроводниковых излучателей, что снижает КПД излучения и сокращает срок службы. Для оптимального выбора нужного драйвера требуется провести аналитический обзор драйверов ведущих производителей, проанализировать значения их основных параметров и характеристики и сделать выводы о возможности применения данных устройств в энергоэффективных системах освещения на основе светодиодных ламп и светильников.
Существуют драйверы со стабилизацией по току и по напряжению. Использовать драйверы со стабилизацией по напряжению не следует, поскольку при изменении температуры окружающей среды ВАХ светодиода смещается относительно номинального режима, и через прибор протекает ток, отличающийся от номинального значения. Это приводит к тому, что яркость свечения светодиода зависит от внешних факторов. Поэтому для питания светодиодов необходимо использовать драйверы со стабилизацией по току. При стабилизации по току проходящий через светодиод ток постоянен и яркость свечения так же постоянна, по этой причине далее речь пойдёт именно о таких драйверах.

Существуют драйверы, которые поддерживают постоянный сигнал на выходе, и формируемый светильником поток света постоянен. Так же существуют драйверы с различными возможностями управления выходным сигналом, которые обеспечивают возможность управлять формируемым светильником потоком света. Управление может осуществляться как в автоматическом режиме — от датчиков света, движения, присутствия, от контроллеров, так и в ручном – самостоятельно человеком. Регулировка может быть цифровой или аналоговой.

Драйверы с возможностью аналогового регулирования, в зависимости от величины входного сигнала в форме постоянного напряжения 1-10В, выдают различную величину выходного сигнала, что приводит к определенному изменению потока света и уровня освещенности.

На регулировочные входы драйвера с возможностью цифрового регулирования поступает ШИМ-сигнал, в зависимости от скважности которого и происходит регулировка яркости светового потока светильника.

Число светодиодов, одновременно подключаемых к одному блоку питания, зависит от его мощности и значении параметров питания светодиодов. Для обеспечения необходимого тока питания светодиоды могут подключаться параллельно или последовательно, напряжение регулируется автоматически в зависимости от мощности подключенной нагрузки.
Существует множество компаний, выпускающих различные виды драйверов. Рассмотрим компании, имеющие наибольшую номенклатуру изделий и занимающие лидирующие позиции на рынке России.

Компания «MeanWell» выпускает драйверы, предназначенные для обеспечения оптимального режима работы светодиодов. В планах компании — расширение существующих серий новыми современными моделями по мощности как в сторону увеличения, так и в сторону уменьшения; замена преобразователей первого поколения на новые с применением современных схемных решений, которые позволяют улучшить технико-эксплуатационные параметры. В ближайшее время ожидается выпуск драйверов с цифровым адресным интерфейсом освещения (Digital Addressable Lighting Interface, DALI) для одновременного управления десятью приборами.

На рисунке 3 представлен внешний вид светодиодных драйверов компании «MeanWell».

Рисунок 3 – Внешний вид драйверов компании «MeanWell»

Значения основных параметров наиболее распространённых драйве-
Таблица 1 – Значения основных параметров светодиодных драйверов компании «MeanWell»

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Выходное напряжение, В</td>
<td>70…108</td>
<td>45…80</td>
<td>34…57</td>
<td>22…38</td>
<td>17…29</td>
<td>13…23</td>
</tr>
<tr>
<td>Выходной ток, мА</td>
<td>350</td>
<td>500</td>
<td>700</td>
<td>1050</td>
<td>1400</td>
<td>1750</td>
</tr>
<tr>
<td>Мощность, Вт</td>
<td>37,8</td>
<td>40</td>
<td>39,9</td>
<td>39,9</td>
<td>40,6</td>
<td>40,3</td>
</tr>
<tr>
<td>КПД, %</td>
<td>87</td>
<td>87</td>
<td>86</td>
<td>86</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Пульсации и шумы, В, размах</td>
<td>9,5</td>
<td>5</td>
<td>3,1</td>
<td>2,6</td>
<td>2,5</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Из таблицы 1 видно, что светодиодные драйверы компании «MeanWell» имеют достаточно широкий диапазон выходных токов от 350 до 1750 А, что позволяет создавать системы освещения с параллельным включением ламп и светильников на их основе. Значения коэффициента полезного действия (КПД) драйверов изменяется от 85 до 87 %, что обусловлено схемой стабилизации выходного тока. Для подобных схем подобные значения КПД являются приемлемыми. Пульсации данных драйверов имеют значения от 2,4 до 9,5 В, что составляет 18,5 % и 13,5 % соответственно от минимального значения выходного напряжения. Подобный уровень пульсаций является достаточно высоким для драйверов, используемых в системах освещения. Это негативно сказывается на качестве света, поступающего от светодиодных ламп или светильников, что затрудняет использование данных драйверов в помещениях, где предъявляются серьезные требования к уровню пульсаций и качеству освещения в целом.
Рассмотрим светодиодные драйверы компании «АРГОС-ТРЕЙД», которые используются в светодиодных светильниках совместного российско-корейского предприятия ООО «НЭПЕС-РУС», динамично развивающего и внедряющего светодиодные технологии в нашей стране.

На рисунке 2 изображён драйвер компании «АРГОС-ТРЕЙД».

Рисунок 4 – Внешний вид драйвера компании «АРГОС-ТРЕЙД»

Значения основных параметров драйверов, выпускаемых компанией «АРГОС-ТРЕЙД», показаны в табл. 2 [8].

Таблица 2 – Значения основных параметров светодиодных драйверов компании «АРГОС-ТРЕЙД»

<table>
<thead>
<tr>
<th>Драйвер</th>
<th>Мощность, Вт</th>
<th>Выходной ток, мА</th>
<th>Мин. выходное напряжение, В</th>
<th>Макс. выходное напряжение, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИПС30-350Т</td>
<td>30</td>
<td>350</td>
<td>22</td>
<td>85</td>
</tr>
<tr>
<td>ИПС30-390Т</td>
<td>33</td>
<td>390</td>
<td>22</td>
<td>85</td>
</tr>
<tr>
<td>ИПС30-350ТР(300-390)</td>
<td>30</td>
<td>300</td>
<td>390</td>
<td>22</td>
</tr>
<tr>
<td>ИПС30-900Т</td>
<td>30</td>
<td>900</td>
<td>20</td>
<td>37</td>
</tr>
</tbody>
</table>
Отличительные особенности данных драйверов [8]:

1) возможно использования любого драйвера с функцией двухрежимного принципа работы: режим 100% мощности и 20% мощности;

2) пульсации светового потока светодиодного светильника составляют менее 0,2 % (независимо от светодиодов и схемы их подключения);

3) КПД составляет 90–91%;

4) коэффициент мощности равен 0,98–0,99;

5) имеется активный корректор мощности;

6) возможность работы при значениях температуры от −40 С до +50 С.

При сопоставлении светодиодных драйверов компаний «MeanWell» и «АРГОС-ТРЕЙД» становится очевидным, что устройства, выпускаемые последней из вышеперечисленных фирм, обладают рядом существенных преимуществ. Среди них основными являются очень низкие пульсации светового потока драйверов «АРГОС-ТРЕЙД», составляющие 0,2 %, в то время как минимальный уровень пульсаций драйверов «MeanWell» равен 13,5 %. Кроме того, драйверы компании «АРГОС-ТРЕЙД» имеют в своём составе активный корректор мощности, что позволяет добиться коэффициента мощности 0,98–0,99 и КПД 90–91%. Среди преимуществ драйверов компании «MeanWell» следует выделить большие значения выходного тока, составляющие 1750 мА, что позволяет на базе одного драйвера созда-
вать более мощные системы освещения.

Появление новых нормативных документов для осветительных приборов привело к пересмотру требований к источникам питания. Наиболее актуальным требованием является обеспечение минимально допустимого значения коэффициента мощности для систем светодиодного освещения мощностью от 25 Вт (не менее 0,85) и 5–25 Вт (не менее 0,7). Ранее широко применялись преобразователи без коррекции коэффициента мощности, он при этом составлял 0,4–0,6. Минимально допустимые значения световой отдачи (энергоэффективности) варьируются в зависимости от условий эксплуатации светильника в пределах 50–70 лм/Вт. Кроме того, максимальная величина пульсаций в соответствии с данными документами может составлять 5% для мест с высокими требованиями к качеству освещения и не ограничиваться для ряда других.

Вышеописанным требованиям удовлетворяют драйверы компании «АРГОС-ТРЕЙД», а драйверы «MeanWell» следует использовать для создания систем освещения помещений, в которых не предъявляется высоких требований к качеству освещения.

В настоящее время на рынке существует достаточно большое количество оборудования, предназначенного для испытания и диагностики светодиодов. Рассмотрим некоторые подобные устройства.

Тестер светодиодов FT-17LED, выпускаемый ООО «Совтест АТЕ» (г. Курск) представляет собой комплекс средств измерений как электрических, так и оптических параметров светодиодов. Внешний вид составных блоков тестера представлен на рисунке 5. В качестве измерителей электрических параметров используется серийно выпускаемый ООО «Совтест АТЕ» комплекс измерительный FT-17, для контроля фото- и радиометрических параметров — оборудование компании INSTRUMENTS SYSTEM, Германия. Применяемое оборудование для контроля характеристики светодиодов полностью соответствует требованиям комитета CIE (Commission Internationale de l’Eclairage) и позволяет прове-
сти тщательный анализ и калибровку оптоэлектронных компонентов и устройств.

Рисунок 5 – Внешний вид составных блоков тестера FT-17LED

Тестер светодиодов FT-17LED имеет следующее назначение:
– контроль параметров светодиодов на производстве;
– контроль параметров светодиодных модулей, панелей и дисплеев на производстве;
– сертификационные испытания;
– исследование физических характеристик оптоэлектронных приборов и модулей.

Отличительные особенности тестера:
– универсальность и гибкость системы, позволяющее осуществлять поставку заказчику решения «под ключ»;
– быстрая перенастройка в условиях производства;
– полный соответствие требованиям международных стандартов по тестированию оптоэлектронных приборов;
– возможность интеграции системы с сортировщиками светодиодов и зондовыми установками для тестирования на кристале;
– компактное исполнение (настольное) по запросу.
Основными недостатками данного тестера является отсутствие возможности измерения значений тепловых параметров светодиодов. Кроме того, комплекс не предназначен для биновки светодиодов.

Основные преимущества комплекса LED Tester на аналогах:
– высокая точность измерения и время непрерывной работы;
– короткое время измерения;
– высокая надежность;
– позволяет определять значения всех оптических и электрических параметров светодиодов;
– простое подключение к сортировочной машине.

Однако, наряду с перечисленными достоинствами, комплекс имеет ряд недостатков, аналогичных недостаткам тестера FT-17LED:
– не представлена возможность измерения тепловых параметров светодиодов;
– комплекс не предназначен для биновки светодиодов.

Рисунок 6 – Внешний вид аппаратно-программного комплекса LED Tester
Крупные компании-производители светодиодов, такие как Philips и Osram, имеют в своём распоряжении аппаратно-программные средства, позволяющие проводить диагностику светодиодов и на её основе формировать светильник. Однако, приобрести данные технические средства в свободное пользование практически невозможно, поскольку крупные компании создают их для внутреннего использования. Кроме того, суть предлагаемых методик также сводится к выравниванию тепловых режимов отдельных приборов, но добиваются этого не биновкой светодиодов по комплексу значений параметров, а путём управления температурой с помощью дополнительных электрических схем, что не эффективно и затратно.

2 Разработка блока питания испытательного комплекса для светодиодных светильников
2.1 Предлагаемые подходы и методы, применяемые для разработки испытательного стенда

При проведении исследований с помощью разрабатываемого планируется использовать светодиодные светильники различных производителей и конструкций. Предположительно будут проводиться испытания светильников следующих компаний: Международная группа компаний «Световые Технологии» (г. Москва), ЗАО «Светлана-Оптоэлектроника» (г. Санкт-Петербург), ООО "НЕПЕС РУС" (г. Саранск), ООО "ЭКОЛАЙТ" (г. Москва), ОАО "Ардатовский светотехнический завод" (г. Саранск). Данные компании выпускают светодиодные светильники различных конструкций, рассчитанные на самых разнообразных потребителей, поэтому исследование позволит сформировать полную картину ситуации в светотехнической отрасли.

Целью разработки стенда является проведение исследования зависимости спектра излучения светодиодного светильника от электрических и тепловых режимов его работы. Электрический режим светильника в процессе испытания будет формироваться с помощью стенда, а тепловой режим при этом будет определяться в результате моделирования. Таким образом, испытательный стенд будет задавать определённый электрический режим работы светильника. Планируется обеспечить следующие электрические режимы.

1. Номинальный режим работы, указанный производителем в паспорте светильника. Испытание в данном режиме позволит оценить соответствие реального срока службы светильника заявленному изготовителем и станет неким ориентиром для оценки результатов других опытов.

2. Режим электрической перегрузки по мощности. Согласно результатам исследований, проводимых многими компаниями-производителями светодиодов, основной причиной выхода светодиодов из строя в светильниках являются электрические перегрузки. Многие производители све-
тальников специально увеличивают ток, протекающий через светодиоды, чтобы добиться повышения светового потока. Кроме того, электрические перегрузки могут возникнуть вследствие нестабильности напряжения сети. Планируется проводить исследование при повышении мощности, потребляемой светильником, на 10 % от номинального значения. Повышение мощности будет достигаться путём увеличения тока, протекающего через светодиоды.

3. Режим пониженного питающего тока. Некоторые производители с целью повышения срока службы светильников сознательно снижают величину тока, протекающего через светодиоды. Представляет интерес рассмотреть данный режим работы для того, чтобы дать оценку рациональности подобного подхода. Предполагается уменьшить величину тока на 10 % от номинального значения.

4. Исследование режимов с различным уровнем пульсаций питающего тока. Согласно стандарту СТО.69159079-01-2017 «Светильники светодиодные. Требования к техническим и эксплуатационным параметрам» в различных по назначению помещениях допускается коэффициент пульсаций светового потока на уровне 5 и 15 %, который определяется, главным образом, пульсациями питающего тока. Представляет интерес рассмотреть изменение спектра излучения светильника в процессе эксплуатации при различных значениях коэффициента пульсации питающего тока, поскольку допустимая величина отклонения значения коррелированной цветовой температуры, согласно стандарту, одинакова для всех областей применения светильников и составляет 300 К. Предполагается проведение исследований при значениях коэффициента пульсаций питающего тока, составляющих 1, 5 и 15 %.

Рассмотрим структуру комплекса, который будет разработан и создан для формирования испытательных электрических режимов. На рисунке 7 представлена структура данного комплекса.

Принцип работы комплекса заключается в следующем. Светодиод-
ная матрица светильника с помощью переключателей K1 и K2 подключается либо к одному из драйверов соответствующего блока, либо к управляемому источнику тока. К блоку драйверов матрица подключается при испытании светильника в номинальном режиме работы и при различных значениях коэффициента пульсации питающего тока.

Рисунок 7 – Функциональная схема испытательного комплекса

Каждое значение коэффициента пульсаций питающего задаётся отдельным драйвером. К управляемому источнику тока светодиодная матрица подключается при испытании светильника в режиме перегрузки по мощности и режиме пониженного питающего тока. В процессе испытания величина и форма питающего тока, а также мощность, потребляемая светильником, измеряются с помощью датчика тока и ваттметра, соответственно.

Для того, чтобы описать тепловые процессы, протекающие в светильнике и его светодиодах в различных электрических режимах работы, будут разработаны соответствующие математические модели. Принципы
создания данных моделей заключаются в следующем. Тепловые процессы, протекающие в светодiode, рассчитываются согласно теории теплообмена. На основе данной теории созданы методики определения температурных полей в конструкции светодиода, которые выражаются системой дифференциальных уравнений теплопроводности. Количество элементов в конструкции корпуса светодиода определяет порядок системы. Существует три основных способа решения системы дифференциальных уравнений теплопроводности:

1) аналитический метод;
2) приближенные численные методы;
3) метод электротепловой аналогии.

Первый метод применяется в том случае, когда речь идёт о телах с простой геометрией и структурой, с неизменными значениями теплофизических параметров, простым аналитическим выражением граничных условий и источника тепловой энергии. Однако, при использовании представленного метода для реальных светодиодов, приходиться значительно упрощать математическое описание тепловых процессов, что оказывает влияние на конечный результат, который даёт возможность только оценить характер протекания процесса теплопередачи.

Для того, чтобы повысить точность расчётов, используют численные или аналоговые методы решения, которые являются математическим и физическим моделированием.

Результат численных методов является лишь приближенным решением. Температурное поле рассчитывается для конкретных точек элемента и представляется в виде табличного значения. Примером такого подхода является метод сеток.

Метод электротепловой аналогии (ЭТА) основан на аналогии дифференциальных уравнений электрического и температурного поля. Метод ЭТА предусматривает, что теплоёмкость элемента конструкции замещается пропорциональной ей электрической ёмкостью, а тепловое сопротивле-
нение — электрическим сопротивлением. Аналогом мощности, выделяющейся при протекании электрического тока через кристалл светодиода, в методе ЭТА принят электрический ток. Потенциалы узлов схемы соответствуют температуре перегрева соответствующего элемента конструкции. Каждый элемент конструкции прибора в модели замещается T-образной RC-цепью. Совокупность данных RC-цепей и образует тепловую модель конструкции светодиода, а все электрические процессы, протекающие в данной схеме, отражают тепловые процессы в светодiode.

При разработке тепловой модели приняты следующие допущения:

1) температурное поле в конструкции и электрическое в модели одномерны;

2) материал кристалла и остальных элементов конструкции светодиода однороден и изотропен в отношении теплофизических свойств, и эти свойства не зависят от температуры;

3) вся тепловая энергия рассеивается в слое кристалла бесконечно малой толщины, проходящем через её центр параллельно торцам;

4) в начальный момент температура всех элементов конструкции установившаяся и одинаковая.

Определённому элементу конструкции светодиода в модели соответствует эквивалентная T-образная RC-цепь, которая состоит из двух последовательных резисторов R_i и конденсатора C_i. Ёмкость конденсатора C_i соответствует теплоёмкости i-го элемента конструкции. Сопротивление R_i соответствует тепловому сопротивлению данного элемента. Значения сопротивления R_i и ёмкости C_i для элемента площадью S и длинной l рассчитывались следующим образом:

\[R_i = \frac{l_i}{k_i \cdot S_i}, \] \hspace{1cm} (1)

\[c_i = \rho_i \cdot c_0 \cdot S_i \cdot l_i, \] \hspace{1cm} (2)
где \(\rho \) — плотность; \(c_0 \) — удельная теплоёмкость; \(k \) — коэффициент тепло-проводности.

Полученная модель светодиода по методу ЭТА представляет собой электрическую схему (рисунок 8), состоящую из последовательно соединённых \(T \)-образных \(RC \)-цепей.

\[
\begin{align*}
\text{Рисунок 8 — Обобщенный аналог конструкции светодиода}
\end{align*}
\]

На рисунке 8 введены следующие обозначения: \(P_{tot} \) — мощность потерь; \(R_n \) — эквиваленты теплового сопротивления элемента; \(C_i \) — эквивалент теплоёмкости элемента; \(R_H \) — краевые условия охлаждения со стороны радиатора.

При применении метода ЭТА возможно создание полной электротепловой модели светодиода в определённой среде математического моделирования электрических процессов, поскольку тепловые параметры представлены их электрическими аналогами, что позволяет осуществить обратную тепловую связь между электрической и тепловой моделями с учётом масштабных коэффициентов пересчёта данных величин. Подобная особенность применения метода ЭТА предоставляет возможность исследования электротепловых процессов, протекающих как в отдельных светодиодах, так и в светодиодных лампах и светильниках в целом, что нельзя получить при использовании стандартных библиотек элементов, которые существуют в программах моделирования электрических процессов. Далее на основе моделей дискретных светодиодов будут созданы модели светодиодных
матриц и светильников. Разработанные модели позволяют исследовать тепловые процессы, протекающие в любой точке конструкции светодиодного светильника. Реализацию моделей предполагается осуществлять в среде математического моделирования электрических процессов Multisim и среде виртуального программирования LabVIEW.

2.2 Разработка блока драйверов

Как было сказано выше, к блоку драйверов светодиодная матрица подключается при испытании светильника в номинальном режиме работы и при различных значениях коэффициента пульсации питанияющего тока. Каждое значение коэффициента пульсаций питанияющего задаётся отдельным драйвером.

Рисунок 9 – Внешний вид драйвера ИПС компании ООО «ТК Аргос-Трейд»

Данный драйвер обладает следующими параметрами:
– предназначен для производства светильников для внутреннего освещения; наиболее выгодно его приобретать в составе комплекта: ИПС + 4 светодиодных линейки;
– пульсации светового потока <2%;
– гальваническая изоляция и соответствие стандартам Таможенного Союза по электромагнитной безопасности;
– КПД ~87%; PF ~0,97; соответствие стандартам СТБ по гармоникам сетевого тока;
– ресурс работы 50 000 часов;
– гарантия 3 года.

Рисунок 10 – Внешний вид драйвера ARPV-LV48060-A компании «Арлайт ГРУПП»

Представленный драйвер обладает следующими параметрами:
– напряжение 48 В;
– ток 1,25 А,
– мощность 60 Вт;
– герметичный пластиковый корпус IP67;
– вход 100–240В AC;
– выход 48В DC ±5%;
– размеры 162x42x34мм;
– гарантия 2 года.

Для формирования режима, когда коэффициент пульсаций светового потока составляет 15%, использован драйвер от светильника ДБП "ИНТЕЛЕКТ-ЖКХ" (ООО «ТК Аргос-Трейд», г. Санкт-Петербург), применяемые для освещения подъездов. Фотография данного светильника представлена на рисунке 11.

![Внешний вид светильника ДБП "ИНТЕЛЕКТ-ЖКХ" компании ООО «ТК Аргос-Трейд»](attachment:image.jpg)

Рисунок 11 – Внешний вид светильника ДБП "ИНТЕЛЕКТ-ЖКХ" компании ООО «ТК Аргос-Трейд»

ДБП "ИНТЕЛЕКТ-ЖКХ" обладает следующими характеристиками:
– LED светильники домовые предназначены для использования как внутри помещения, так и на улице при входе в подъезд под козырьком (IP54, -40°С +40°С);
– антивандальное исполнение;
– устойчивы к перепадам сетевого напряжения 150–280 В;
– не создают радиопомехи и электромагнитные помехи;
– не создают стробоскопический эффект;
– пульсации светового потока ~ 15%;
– имеет дежурный режим и оснащен датчиком присутствия;
– уровень освещенности на расстоянии 2 м 12 Вт ~ 96 люкс 9 Вт.
~67 люкс;
– световой поток светильника 12 Вт ~ 1400 люмен 9 Вт ~1020 люмен.

Поскольку максимальная мощность данных драйверов составляет 12 Вт, то в разрабатываемом стенде будут применяться несколько таких устройств для достижения необходимой мощности.

2.3 Разработка управляемого источника тока
2.3.1 Разработка общей схемы источника тока

Для реализации управляемого источника тока применяется схема на основе полевого транзистора, управляемого с помощью операционного усилителя. Функциональная схема источника тока представлена на рисунке 12.

Рисунок 12 – Функциональная схема управляемого источника тока

На рисунке 12 введены следующие обозначения и сокращения:
ИПН – источник питания напряжения;
ИОН – источник опорного напряжения;
БУ – блок управления ИОН;
ОУ – операционный усилитель;
R1, R2 – резисторы, выравнивающие входные токи ОУ;
VT – полевой транзистор;
RS – токовый шунт;
RH – нагрузка.

Принцип действия предлагаемого генератора заключается в следующем. Схема питается однополупериодным синусоидальным напряжением, которое формируется с помощью ИПН. БУ обеспечивает синфазное выходное напряжение ИОН с напряжением ИПН, а также служит для регулирования амплитуды выходного напряжения ИОН. ОУ совместно с RS, транзистором VT и трансформатором TV являются управляемым от ИОН генератором тока через ИП.

В качестве операционного усилителя выбран LM358A, поскольку ему не применяется жестких требований по величине смещения нуля и быстродействию.

Транзистор VT применён IRF830, обладающий следующими характеристиками: N-канал, 500 В; 4,5 А; Rds = 1,5 Ом.

Проведём расчёт сопротивления шунта:

\[
R_S = \frac{U_S}{I_S} = \frac{10B}{1,5A} = 6,67 \, \Omega;
\]
(3)

Применяем резистор номиналом 6,8 Ом мощностью 15 Вт.

Номиналы резисторов R1 и R2 выбраны равными 1 кОм, поскольку коэффициент усиления равен 1. Мощность резисторов равна 0,125 Вт.

2.3.2 Разработка источника питающего напряжения

К ИПН предъявляются следующие требования:
1) напряжение питающей сети переменного тока (220 В ± 10%);
2) частота (50 Гц±0,5 %) с содержанием гармоник не более 5 %.
ИПН имеет следующие параметры нагрузки: \(U_d = + 310 \text{ В} \), \(I = 6 \text{ А} \).

Электрическая схема источника постоянного напряжения представлена на рисунке 13. Произведем расчет основных элементов источника питания.

Рисунок 13 – Электрическая принципиальная схема источника питания

Рассчитаем сетевой трансформатор (СТ) \(T_1 \).

Мощность первичной обмотки необходимо брать с запасом, учитывая потери трансформатора. Ток на первичной стороне определится по следующей формуле:

\[
I_1 = \frac{P_1 \cdot 1,05}{U_1} = \frac{750 \cdot 1,05}{310/\sqrt{2}} = 3,95 \text{ А} \quad (4)
\]
Ток первичной обмотки трансформатора будет равным току вторичной обмотки СТ, примем его равным $I_R = 3,95$ А.

Номинальная мощность СТ рассчитывается по формуле:

$$ P = U_M \cdot I_M = 310 \cdot 5,6 = 1750 \ (Bm) = 1,75 \ kWm, \quad (5) $$

Исходными данными для расчета трансформатора являются:

1) напряжение первичной обмотки $U_1 = 220$ В;
2) напряжение вторичной обмотки $U_2 = 220$ В;
3) ток вторичной обмотки $I_2 = 5,6$ А;
4) частота передаваемого сигнала $f = 50$ Гц.

1. Амплитудное значение тока первичной обмотки:

$$ I_1 = \frac{P}{U_1} = \frac{1750}{300} = 5,65 \ A. \quad (6) $$

2. Выбираем конструкцию стержневую, с двумя цилиндрическими катушками, намотанными медным проводом. Сечение стержня магнитопровода:

$$ S_c' = C \cdot \sqrt{\frac{P_1 \cdot \alpha \cdot 10^2}{f \cdot B_c \cdot j}} = 0,5 \cdot \sqrt{\frac{1,75 \cdot 2,5 \cdot 10^2}{50 \cdot 1,35 \cdot 2}} = 22,5 \ cm^2. \quad (7) $$

где, P_1 — потребляемая трансформатором мощность;

$$ \alpha = \frac{G_c}{G_m} = 2,5 $$. — отношение массы стали к массе меди обмоток;
\(B_C \) — индукция в стержне магнитопровода, примем для магнитопровода сталь марки 3405, толщиной 0,35 мм. Для нее \(B_C = 1,35 \) Тл;

\(C \) — коэффициент для трансформатора с круглыми катушками из медного провода;

\(j = 2,5 \, A/mm^2 \) — плотность тока в обмотках.

Стержень магнитопровода ступенчатый, чтобы лучше заполнялось сечение круглой катушки. Ширину пластин определим равной 50 мм и 65 мм, а \(S_{GEOM} = 33,4 \, см^2 \). Активное сечение будет равно:

\[
S'_{CA} = S_{GEOM} \cdot 0,96 = 33,4 \cdot 0,96 = 32 \, см^2
\]

(8)

Геометрические размеры стержня представлены на рисунке 2.9.

Для намотки катушек выберем цилиндр ЦС–ЭТФ с внутренним диаметром \(D_{ЦВН} = 80 \, мм, \quad D_{ЦВНМАР} = 88 \, мм \).

3. Число витков первичной и вторичной обмоток будет равным:

\[
W = \frac{U \cdot 10^4}{4,44 \cdot f \cdot B_C \cdot S_{CA}} = \frac{300 \cdot 10^4}{4,44 \cdot 50 \cdot 1,35 \cdot 32} = 324 \, витка
\]

(9)

Первичная обмотка имеет отпайку от средней точки, и ток каждой из полуобмоток в два раза меньше тока вторичной обмотки. Поэтому, чтобы первичная обмотка уместилась в окне магнитопровода, возьмем провод меньшим сечением, чем для вторичной обмотки. Число витков каждой полуобмотки примем равным 324 витка.

Сечение провода для первичной обмотки:

\[
S'_{PP} = \frac{I_2}{2 \cdot j} = \frac{2,8}{2 \cdot 2,5} = 0,56 \, мм^2
\]

(10)
Возьмем провод ПЭВ \(d = 0,93 \text{ мм} \), \(d_{ИЗ} = 1,20 \text{ мм} \), \(S_{ІР} = 0,679 \text{ мм}^2 \)

Сечение провода для вторичной обмотки:

\[
S_{ІР} = \frac{I_2}{2 \cdot j} = \frac{5,65}{2 \cdot 2,5} = 1,13 \text{ мм}^2 .
\] (11)

Возьмем провод ПСДКТ \(d = 1,25 \text{ мм} \), \(d_{ИЗ} = 1,45 \text{ мм} \), \(S_{ІР} = 1,22 \text{ мм}^2 \)

4. Определим высоту намотки как:

\[
H_{НАМ} = 1,5 \cdot D_{ЦНАР} = 132 \text{ мм} .
\] (12)

Принимаем \(H_{НАМ} = 130 \text{ мм} \), при таком значении высоты намотки в слой можно уложить витков:

\[
W_c = \frac{H_{НАМ}}{d_{ИЗ} \cdot K_B} - 1 = \frac{130}{1,45 \cdot 1,10} - 1 = 81 \text{ виток} ,
\] (13)

где \(K_B = 1,10 \) – коэффициент укладки провода по высоте.

5. Число слоев обмотки:

\[
n_{СЛ} = \frac{W}{W_{СЛ}} = \frac{324}{81} = 4 \text{ слоя} .
\] (14)

6. Толщина обмоток:

\[
\delta_1 = n_{СЛ} \cdot d_{ис} \cdot K_T = 4 \cdot 1,45 \cdot 1,2 = 7 \text{ мм} .
\] (15)

\[
\delta_2 = n_{СЛ} \cdot d_{ис} \cdot K_T = 4 \cdot 1,20 \cdot 1,2 = 5,76 \text{ мм} ,
\] (16)

где \(K_T \) – коэффициент укладки по толщине.
7. Толщина намотки первичной и вторичной обмоток:

\[t_{HAM} = n_{CL1} \cdot d_{IZ1} \cdot K_T + n_{CL2} \cdot d_{IZ2} \cdot K_T = 13 \text{ мм}, \] \hspace{1cm} (17)

где \(K_T \) – коэффициент укладки по толщине.

Сначала мотается первичка, а потом с воздушным зазором \(l_{IZ}=5 \text{ мм} \), вторичка.

8. Внутренние диаметры обмоток:

\[D_{BH1} = D_{IZAP} = 88 \text{ мм}. \] \hspace{1cm} (18)

\[D_{BH2} = D_{BH1} + 2 \cdot t_{HAM} + 2 \cdot a_{12} = 88 + 2 \cdot 7 + 2 \cdot 5 = 112 \text{ мм}. \] \hspace{1cm} (19)

9. Длина среднего витка обмоток:

\[l_{CP1} = \pi \cdot (D_{BH1} + t_{HAM}) = 3,14 \cdot (88 + 13) = 298,3 = 0,29 \text{ м}, \] \hspace{1cm} (20)

\[l_{CP2} = \pi \cdot (D_{BH2} + t_{HAM}) = 3,14 \cdot (112 + 13) = 373,66 = 0,37 \text{ м}. \] \hspace{1cm} (21)

10. Длина провода обмоток:

\[l_{OBM1} = l_{CP1} \cdot W_1 = 0,29 \cdot 324 = 96,65 \text{ м}. \] \hspace{1cm} (22)

\[l_{OBM2} = l_{CP2} \cdot W_2 = 0,37 \cdot 324 = 121,07 \text{ м}. \] \hspace{1cm} (23)

11. Масса меди катушек:

\[G_{M1} = l_{OBM1} \cdot S_{PR} \cdot 8,9 \cdot 10^{-3} = 96,65 \cdot 0,679 \cdot 8,9 \cdot 10^{-3} = 1,32 \text{ кг}. \] \hspace{1cm} (24)

\[G_{M2} = l_{OBM2} \cdot S_{PR} \cdot 8,9 \cdot 10^{-3} = 121,07 \cdot 1,22 \cdot 8,9 \cdot 10^{-3} = 1,56 \text{ кг}. \] \hspace{1cm} (25)
12. Общая масса меди:

\[G_M = (G_{M1} + G_{M2}) \cdot 2 = (1,56 + 1,32) \cdot 2 = 5,47 \text{ кг}. \] (26)

13. Потери в меди:

\[P_{M1} = 2,4 \cdot \delta_1 \cdot G_{M1} = 2,4 \cdot 5,76 \cdot 1,32 = 2,2 \text{ Вт}. \] (27)

\[P_{M2} = 2,4 \cdot \delta_2 \cdot G_{M2} = 2,4 \cdot 7 \cdot 1,56 = 2,65 \text{ Вт}. \] (28)

Общие потери в меди обмоток:

\[P_M = P_{M1} + P_{M2} = 2,2 + 2,65 = 5 \text{ Вт}. \] (29)

14. Высота окна магнитопровода с учетом изоляционного расстояния \[l_{ИЗ} = 5 \text{ мм} \]

\[H_{ОК} = H_{КАТ} + l_{ИЗ} = H_{HAM} + 2 \cdot \Delta + l_{ИЗ} = 155 \text{ мм}. \] (30)

15. Расстояние между центрами катушек:

\[A = D_{HAP2} + l_{ИЗ} = 126 + 9 = 155 \text{ мм}. \] (31)

16. Ярмо прямоугольного сечения, примем \[H_я = 65 \text{ мм} \]

\[S_Я = H_я \cdot h_я = 65 \cdot 56 = 36,4 \text{ см}^2. \] (32)

18. Активное сечение ярма:
$$S'_{CA} = S_{ГЕНМ} \cdot 0,96 = 36,4 \cdot 0,96 = 34,9 см^2.$$

(33)

19. Масса меди:

$$G_c = \gamma(2 \cdot A \cdot S_{ЯА} + 2 \cdot H_{OK} \cdot S_{CA} + 2 \cdot S_{CA} \cdot H_{Я}) =$$
$$= 7,65 \cdot (2 \cdot 13,5 \cdot 34,9 + 2 \cdot 15,5 \cdot 32 + 2 \cdot 32 \cdot 6,5) = 16 кг.$$

(34)

где $\gamma = 7,65 г/см^3$ — удельный вес стали

20. Проводим промежуточную проверку результатов расчета.

$$\alpha = \frac{G_c}{G_m} = \frac{16}{5,47} = 2,9.$$

(35)

Отношение массы стали к массе меди удовлетворяет исходным условиям.

21. Находим потери в стали сердечника трансформатора

$$P_c = K_c \cdot B_c^2 \cdot \left(\frac{f}{50}\right)^{1,3} \cdot G_c = 1,12 \cdot 1,35^2 \cdot 16 = 10 Bm.$$

(36)

$K_c = 1,12$ — коэффициент для холоднокатаной стали марки 3405 с толщиной листов 0,35мм.

22. Находим отношение потерь в меди к потерям в стали
\[
\frac{P_M}{P_C} = \frac{5}{10} = 0,2. \tag{37}
\]

23. Определение тока холостого хода трансформатора. Величина его в основном определяется током намагничивания, так как активная составляющая меньша по сравнению с реактивной. Ток намагничивания находим по формуле:

\[
I_{\mu} = \frac{H_C l_C + 0.8 B_C n \delta_3 \cdot 10^4}{\sqrt{2} w_1} = \frac{2 \cdot 1.296 + 0.8 \cdot 1.345 \cdot 2 \cdot 0.004 \cdot 10^4}{\sqrt{2} \cdot 324} = 5.86 \text{ A}, \tag{38}
\]

где \(H_C\) – напряженность поля в стали сердечника,

\(n\) – число зазоров по пути силовой линии,

\(\delta_3 = 0,004 \text{ см}\) – величина эквивалентного воздушного зазора в стыках сердечника трансформатора;

\(l_C\) – средняя длина силовых линий в стержневого трансформатора (для стержневого однофазного \(l_C = 2H\))

24. Определяем активную составляющую падения напряжения в обмотках при номинальной нагрузке:

\[
U_{1a} = \frac{P_{M1}}{U_1 I_1} = \frac{2.2}{300 \cdot 5.6} \cdot 100\% = 0,13 \%, \tag{39}
\]

\[
U_{2a} = \frac{P_{M2}}{U_1 I_1} = \frac{2.65}{300 \cdot 5.6} \cdot 100\% = 0,16 \%. \tag{40}
\]
25. Определяем активное сопротивление обмоток трансформатора:

\[r_1 = \frac{P_{M1}}{I_1^2} = \frac{2,2}{5,6^2} = 0,065 \text{ Ом}. \] \hspace{2cm} (41)

\[r_2 = \frac{P_{M2}}{I_2^2} = \frac{2,65}{5,6^2} = 0,08 \text{ Ом}. \] \hspace{2cm} (42)

26. Изменение напряжения трансформатора при нагрузке:

\[\Delta U_{12} \% = U_{1a} \cos \varphi_1 + U_{2a} \cos \varphi_2 = 0,13 \cdot 1 + 0,16 = 0,29 \% . \] \hspace{2cm} (43)

27. Находим напряжение на вторичных обмотках при номинальной нагрузке:

\[U_2 = U_1 \cdot \frac{w_2}{w_1} \cdot \left(1 - \frac{\Delta U_{12} \%}{100} \right) = 300 \cdot \frac{324}{324} \cdot \left(1 - \frac{0,29}{100} \right) = 299,13 \text{ В}. \] \hspace{2cm} (44)

28. Коэффициент полезного действия трансформатора вычисляем при номинальной нагрузке

\[\eta = \frac{P}{P + P_M + P_C} = \frac{1680}{1680 + 5 + 10} = 0,97, \] \hspace{2cm} (45)

где \(P \) – активная мощность вторичной обмотки.
29. Проверка трансформатора на нагревание. Теплоотдача с единицы поверхности составляет в среднем 13·10^{-4} Вт/см^2ºС, также считается, что между сердечником и обмотками имеется достаточный теплообмен. Исходя из сказанного выше:

\[\Theta = \frac{P_m + P_c}{13 \cdot 10^{-4} \cdot (Q_{обм} + Q_{сер})} + \Delta \Theta = \frac{5+10}{13 \cdot 10^{-4} \cdot 1680} + 13 = 20 \, ^\circ C , \]

где \(\Theta \) – температура перегрева наиболее нагретой части над температурой окружающей среды,

\(Q_{обм} \) – открытая поверхность обмотки,

\(Q_{сер} \) – открытая поверхность сердечника,

\(\Delta \Theta \) – перепад температуры от внутренних слоев обмоток к наружным, для пропитанных лаком обмоток принимается равным 13ºС.

Так как выбранный провод с изоляцией класса F, то по ГОСТ 886570 он выдерживает температуру нагрева обмоток 155 ºС, то есть рассчитанное значение не превышает предельного, регламентированного ГОСТ.

Расчет выпрямителя VD2.1.

Выпрямленное напряжение, с учетом падения напряжения на вентилях выпрямителя (\(U =2\) В), составляет:

\[U_d = 0.9U - 2 = 0.9 \cdot 310 - 2 = 277 \, \text{В} . \]

Обратное напряжение на диодах выпрямителя составляет:
\[U_{ym} = \frac{\pi}{2} U = 1.57 \cdot 300 = 487 \text{ В}. \] (48)

Среднее значение тока через диоды моста четвёртого канала равно:

\[I_{vc} = \frac{I}{2} = \frac{6}{2} = 3 \text{ А}. \] (49)

По справочнику выбираем диодный мост КВРС1006 \((I = 10 \text{ А}; U = 600 \text{ В})\).

Выберем сглаживающий конденсатор \(C2.1\). Для обеспечения условия непрерывности выпрямленного тока, положим, что фильтровой конденсатор обладает сопротивлением:

\[X_{C2.1} = 0.01 \cdot R_H = 0.01 \cdot \frac{U_H}{I_H} = 0.01 \cdot \frac{212}{4} = 1 \text{ Ом} \] (50)

Тогда ёмкость конденсатора должна составлять:

\[C2.1 = \frac{1}{\omega \cdot X_{C5}} = \frac{1}{314 \cdot 1} = 3200 \text{ мкФ}, \] (51)

где \(\omega = 2\pi f = 2\pi \cdot 50 = 314 \text{ рад/с.}\)

Согласно справочнику [10] выбираем конденсатор \(C2.1\) типа К50-35-400В-3300 мкФ.

Ключом, разрывающим силовую цепь, является оптотиристор VS2.1. Оптотиристор TO125-12,5 имеет следующие параметры: \(I_{вых max} = 0.08 \text{ А}, I_{пр} = 12,5 \text{ А}, U_{обр} = 1100 \text{ В}, \ U_{упр} = 2,5 \text{ В} — \text{ напряжение управления,} \ I_{упр} = 200 \text{ мА} — \text{ ток управления.} \)

Для разряда с конденсатора \(C2.1\) после окончания измерения
предусмотрена цепь, состоящая из резисторов \(R_{2.1} = 3.9 \) кОм, \(R_{2.2} = 300 \) Ом, индуктивности \(L_{2.1} = 1 \ldots 10 \) мГн (RLB1314-682KL, индуктивность 6800 мкГн) и оптотиристора \(VS_{2.2} \) (TO125-12,5), который замыкает цепь разряда после окончания измерения.

2.3.3 Расчёт блока управления и источника опорного напряжения

Источник опорного напряжения реализован на основе схемы компенсационного стабилизатора. Компенсационные стабилизаторы напряжения имеют более высокий коэффициент стабилизации и меньшее выходное сопротивление по сравнению с параметрическими. Принцип их работы основан на том, что изменение напряжения на нагрузке (под действием изменения входного напряжения или тока нагрузки) передается на специально вводимый в схему регулирующий элемент, препятствующий изменению напряжения на нагрузке.

Регулирующий элемент (транзистор) может быть включен либо параллельно нагрузке, либо последовательно с ней. В зависимости от этого различают два типа компенсационных стабилизаторов напряжения: параллельные и последовательные. Воздействие на регулирующий элемент в обоих типах стабилизаторов осуществляется управляющей схемой, в которую входят усилитель постоянного тока и источник опорного напряжения. С помощью производят сравнение напряжения на нагрузке с опорным напряжением. Функция усилителя сводится к усилению разности сравниваемых напряжений и подаче усиленного сигнала непосредственно на регулирующий элемент стабилизатора.

Поскольку принцип действия компенсационных стабилизаторов постоянного напряжения основан на изменении сопротивления регулирующего элемента. Наличие регулирующего элемента обусловливает неизбежные потери энергии в стабилизаторе. Это является главным недостатком
подобных схем, ограничивающим в ряде случаев их применение на практике. Схема, которая используется для исследования последовательного компенсационного стабилизатора напряжения на биполярных транзисторах, показана на рисунке 14.

На схеме, изображённой на рисунке 14, используются следующие обозначения элементов схемы: E_1 — источник постоянного напряжения; VT_1, VT_2 — биполярные транзисторы; VD_1 — стабилитрон; C_1–C_3 — электролитические конденсаторы; R_{1s} — токовый шунт, предназначенный для измерения тока нагрузки; R_1–R_5 — резисторы; R_6 — переменный резистор, задающий ток нагрузки.

Поскольку резистивный R_3–R_5 делитель, используемый в схеме последовательного компенсационного стабилизатора, представленной на рисунке 14, позволяет регулировать значение выходного напряжения, то исследование работы схемы осуществляется для диапазона выходных напряжений. Значение напряжения стабилизации изменяется путём враще-
ния ручки подстроочного резистора \(R4 \). Для каждого случая строятся основные зависимости и характеристики компенсационного стабилизатора. Работа схемы анализируется при значениях тока нагрузки, аналогичных величинах тока для схемы однокаскадного стабилизатора напряжения на биполярном транзисторе, которая рассмотрена ранее. Всё результаты измерений также обрабатываются и отображаются на мониторе компьютера в среде LabVIEW.

В качестве мощного транзистора \(VT1 \) используется KT837К, в качестве управляющего KT315А. Источником опорного напряжения является стабилитрон KC133А с напряжением стабилизации 3,3 В. Входное напряжение данного стабилизатора может изменяться в пределах от 6 до 12 В, выходное напряжение в зависимости от величины входного напряжения регулируется резистором \(R4=5 \) кОм от 6 до 10 В. Конденсаторы: \(C1 \) — 1000мкФ, \(C2 \) — 4,7мкФ, \(C3 \) — 470мкФ; резисторы: \(R1 \) — 470Ом, \(R2 \) — 1кОм, \(R4 \) — 5 кОм, \(R5 \) — 2,7кОм; \(R5 \) — 2,7кОм.
ЗАКЛЮЧЕНИЕ

В ходе выполнения бакалаврской работы разработан блок питания испытательного комплекса для светодиодных светильников. Блок питания позволяет формировать следующие режимы испытания:

1) номинальный режим работы, указанный производителем в паспортте светильника;
2) режим электрической перегрузки по мощности;
3) режим пониженного питающего тока;
4) режимы с различным уровнем пульсаций питающего тока.

В результате проведённого с помощью испытательного комплекса исследования будут получены зависимости изменения спектра излучения и коррелированной цветовой температуры светодиодных светильников различных производителей и конструкций в процессе их эксплуатации при различных электрических и тепловых режимах работы. Планируется проводить измерения параметров и характеристик светильника до 10 тыс. часов, далее воспользоваться инструментами математического прогнозирования. Результаты проведённых ранее исследований показывают, что на данный момент производители светодиодных светильников не уделяют должного внимания процессам изменения спектра излучения при эксплуатации. Ожидается, что в процессе эксплуатации светильника его спектр будет непременно смещаться в область высоких частот, а величина коррелированной цветовой температуры будет, соответственно, увеличиваться. Характер изменения спектра излучения и цветовой температуры светильника будет определяться, главным образом, режимом его работы. Для каждого электрического и теплового режима работы будут получены отдельные зависимости. Предполагается, что данные зависимости будут иметь схожий характер изменения, но количественно будут различаться. Анализ результатов проведённых к настоящему исследований также позволяет
сделает вывод о том, что значение коррелированной цветовой температуры большинства испытуемых светильников изменится в процессе эксплуатации более чем на 300 К, что нарушает требования принятого 1 сентября 2017 г. стандарта СТО.69159079-01-2017 «Светильники светодиодные. Требования к техническим и эксплуатационным параметрам». Таким образом, подобные светильники просто не могут быть использованы на протяжении заявленного производителем срока эксплуатации по причине недопустимого отклонения величины коррелированной цветовой температуры от номинального значения.

Проведённое научное исследование позволит как производителям светодиодных светильников, так и их потребителям понять глубину проблемы изменения спектра излучения и коррелированной цветовой температуры в процессе эксплуатации. Предполагается, что результаты исследования будут способствовать появлению на отечественном рынке более качественной светодиодной продукции, паспортные значения параметров и характеристик которой будут соответствовать реальным и отвечать требованиям современных стандартов.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ А
(обязательное)
Структурная схема испытательного комплекса
Испытательный комплекс для светодиодных светильников
Структурная схема
МГУ им. Н. П. Огарёва
ПРИЛОЖЕНИЕ Б

(обязательное)

Электрическая принципиальная схема источника тока
<table>
<thead>
<tr>
<th>Поз. обозн</th>
<th>Наименование</th>
<th>Кол.</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Операционные усилители</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA1</td>
<td>LM358</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Транзисторы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT1</td>
<td>KT837K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VT2</td>
<td>KT315</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VT3</td>
<td>IRF830</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Конденсаторы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>К73-17 имп, 1000 мкФ, 250 В</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>K50-35 имп, 4,7 мкФ, 200 В</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>K73-17 имп, 470 мкФ, 250 В</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Диоды</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD1</td>
<td>КС133А</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VD2</td>
<td>D8146</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Резисторы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1-R2</td>
<td>CF-25 (C1-4) 0,25 Вт, 1 кОм, 5%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R3-R7-R8</td>
<td>CF-25 (C1-4) 0,25 Вт, 470 Ом, 5%</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>CF-25 (C1-4) 0,25 Вт, 2 кОм, 5%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>MF-25 (C2-23) 0,25 Вт, 4 кОм, 1%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>MF-25 (C2-23) 0,25 Вт, 2,7 кОм, 1%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>CF-25 (C1-4) 0,25 Вт, 470 кОм, 5%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>CF-25 (C1-4) 0,25 Вт, 6,7 кОм, 5%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>№ п/п</td>
<td>Формат</td>
<td>Обозначение</td>
<td>Наименование</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Документация текстовая</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>А4</td>
<td>БР-02069964-12.03.01-06.18</td>
<td>Пояснительная записка</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Документация графическая</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>А4</td>
<td>БР-02069964-12.03.01-06.18</td>
<td>Схема структурная</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>испытательного комплекса</td>
</tr>
<tr>
<td>10</td>
<td>А3</td>
<td>БР-02069964-12.03.01-06.18</td>
<td>Схема электрическая</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>принципиальная</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>регулируемого источника тока</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

БР-02069964-12.03.01-06-18

Разработка испытательного комплекса для светодиодных светильников

МГУ им. Н. П. Огарева
ИЭС ЗинНЭ 451 ер.