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ABSTRACT

Order picking is one of the most costly and labor-extensive operations in a typical warehouse.

It entails 50% of operational expenses, thus being a high priority area for automation and cost

reduction. Several attempts have been made towards an automation of order picking by companies

and research groups around the Globe. However, there is still no solution suitable for order picking

in a warehouse not specifically equipped for this purpose.

The main bottleneck of applications where robots have to work in environment built for humans

is a perception ability. An appearance of low-cost depth sensors started with Microsoft Kinect,

has opened a new research field in robotics that tries to provide better perception abilities to robots

using a combination of depth and RGB data. Many methods have been proposed over last 5 years.

These algorithms mostly use RANSAC-based techniques or one of the 3D point descriptors in order

to fit a model into image. Many methods for deriving primitive shapes and mapping surrounding

environments using RGB-D images originate in Photogrammetry and require a human input on

processing stage for choosing potential candidates for detection. There are also methods built upon

collected databases of CAD-models of objects to be detected.

The goal of this work is to develop a computer vision algorithm for reliable registration and pose

estimation of boxes on a pallet. We propose a novel approach to object detection and pose estimation

of cuboid-like objects. It is based on a combination of several approaches (edge-based, descriptors-

based and region growing clustering-based). Such combination allows for more robust object

detection in a highly cluttered environment where objects are occluded by each other. Proposed

approach requires neither manual input nor a preloaded database of models to be detected.
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NOMENCLATURE

2D. Two-dimensional space is a geometric model of the planar projection of the physical world.

3D. In physics and mathematics, a sequence of n numbers can be understood as a position in
n-dimensional space. When n = 3, the set of all possible such locations is called three-
dimensional Euclidean space.

API. In computer programming, an application programming interface (API) is a set of defini-
tions, protocols, and tools for simplifying the process of building application software.

CAD. Computer-aided design is the use of computer systems to aid in the creation, modification,
analysis, or optimization of a design.

IR. Infrared radiation, or simply infrared is electromagnetic radiation with longer wavelengths
than those of visible light, and is therefore invisible.

NI. In computing, a natural interface is a user interface that is effectively invisible, and remains
invisible as the user continuously learns complex interactions.

PCL. The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image
and point cloud processing.

RANSAC. Random sample consensus. An iterative method to estimate parameters of a mathe-
matical model from a set of observed data that contains outliers.

RGB. Additive color model in which red, green and blue light are added together in various ways
to reproduce a broad variety of colors.

RGB − D. RGB-Depth. Image containing depth information about each pictured point as well as
associated RGB values.

ROS. Robot Operating System provides libraries and tools for robot applications development.

TOF. Time-Of-Flight denotes a variety of methods that measure the time that it takes for an object,
particle or wave to travel a distance through space.

URDF. Unified Robot Description Format. An specific version of XML format for representing a
robot model.

W MS. A warehouse management system (WMS) is a software application that supports the day-
to-day operations in a warehouse. WMS programs enable centralized management of tasks
typical for a warehouse.
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C h a p t e r 1

INTRODUCTION

1.1 Warehouse automation

According to the “Warehouses review in Moscow and Moscow Region” [1], warehouses occupy an

area of more than 13 000 000 square meters only in Moscow region and this number grows rapidly.

The Zebra Technologies Warehouse Vision Study [2] finds that 7 out of 10 key decision makers in

logistics plan to accelerate their use of technology to create a smart warehouse system by 2020.

Nearly half of responders indicated a concern about human labor performance in the order, pick,

and fulfillment processes. This opens up an opportunity for new companies in these areas. No

surprises, the worldwide industrial logistics robots market grows rapidly: Consideration of Robot

Market Forecasts indicates that market at $16 billion will reach $31.3 billion by 2020 [3].

Order picking is the most labor-intensive and costly activity for typical warehouse. Different

researches show that the cost of this activity is estimated to be as much as 50% of total warehouse

operating expenses [4]. Hence, a lack of performance or failures in order picking results in an

increase of operational cost not only for a warehouse but also for the whole supply chain. Based

on this evidence, order picking is being considered as a highest-priority area for productivity

improvements and automation. Currently, there is a big emphasis on warehouse automation in

research papers. Moreover, there are several successful robotics solutions on the market aimed

at solving this issue. Amazon robotics [5], Locus robotics [6], Fetch Robotics [7], just to name

few, are currently developing their solutions. These companies focus on automation of different

warehouse processes, in particular, Kiva Systems robots (the company was acquired by Amazon

for $775 million [8]) are capable of moving the big shelves of goods, while picking process is

performed by a human. Meanwhile, robots from Fetch Robotics, (the company received $20

million investment from SoftBank in 2015 [9]) are able to pick small separate goods from the

shelves, therefore being useful for small warehouses storing separate goods (Figure 1.1a), but not

for relatively big warehouses with goods packed into boxes (Figure 1.1b).

Despite the recent success of several research groups working on robotics intelligence [10, 11,

12], robotic systems are still not able to operate successfully in environments not built specifically

for them. Due to this reason, the main drawback of warehouse solutions mentioned above is a

requirement of serious changes, if not to say complete reorganization of a warehouse infrastructure.

This brings additional costs which are not always comparable with profits obtained by introduction
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(a) Warehouse storing separate goods. (b)Warehousewith goods packed into cardboard
boxes.

Figure 1.1: Different types of warehouses.

of these systems. There are millions of square meters of warehouses already exist and need to be

automatized as well.

(a) Kiva robots. (b) Fetch robots.

Figure 1.2: Existing warehouse automation robots.

1.2 Proposed solution for warehouse automation

We propose «Plug&Play» solution for automation of order picking process. It consist of several

core components:

– Mobile platform able to autonomously navigate through warehouse.

– Industrial manipulator with adaptive gripper able to pick and manipulate objects (i.e. card-

board boxes) of different sizes.

– Computer vision system able to identify boxes lying on pallets and estimate there position in

3D space.



12

More detailed system decomposition is presented on Figure 1.3. Some parts are omitted for the

simplicity.

Figure 1.3: Order picking automation robot. System decomposition.

The 3D model and hardware prototype of the robot are presented on Figure 1.4a and Figure 1.4b

respectively.

(a) SolidWorks 3D model. (b) Hardware prototype.

Figure 1.4: Warehouse automation robot.

Our solution focuses on order picking in warehouses where goods are represented by typical

cardboard boxes or boxes with bottles. Figure 1.5a describes the typical order-picking process.

First, the information on new order arrives from the customer to the server. An employee takes an

empty pallet and walks through a warehouse collecting requested goods to form the pallet to be
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shipped. A reconsidered with an introduction of warehouse automation robot work-flow sequence

is presented on Figure 1.5b. It consists of the following steps:

1. Information about new order arrives to the server;

2. Task is scheduled in order to be performed by vacant picking robot;

3. The optimal route is planned by the robot. In case of obstacles appearance, the robot will

recalculate its path dynamically;

4. Robot followed by human with an empty pallet (or another robot, carrying a pallet) performs

picking of required goods and fills the pallet;

5. The full pallet is sent to a customer.

(a) Typical work-flow.

(b) Reconsidered work-flow.

Figure 1.5: Order picking process.

1.3 Computer vision algorithm

The core component of the system is a computer vision algorithm performing recognition and 3D

pose estimation of boxes containing goods. In order to be used in a real-world application such

algorithm has to be reliable enough, because, as it was mentioned above, any failure in the order

picking process would have a significant impact on the whole supply chain. Another important

requirement for the pose estimation system is that it needs to be fast enough in order to outperform

or at least be comparable with human performance.

There are many existing algorithms for object recognition and pose estimation. However, none of

them satisfy previously mentioned requirements, thus can not be used directly. One possible way of

overcoming this hurdle is to combine existing approaches in order to improve recognition and pose
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estimation quality. In this work we propose a novel approach to object recognition and 3D pose

estimation of rectangular objects. The method is a combination of edge-based, descriptors-based

and region growing clustering-based approaches. Such combination allows for more robust object

detection in a highly cluttered environment where objects are occluded by each other. Importantly,

proposed approach doesn’t require manual input or a preloaded database of models to be detected.

In following sections we discuss in details each individual algorithm and evaluate it on a dataset of

RGB-D images, collected on a real warehouse. The combination of algorithms then described and

evaluated against each individual algorithm. We also discuss an overall architecture of warehouse

automation robot and show how developed algorithm is integrated with the rest of the system (in

particular with UR-10 industrial manipulator) using Robot Operating System (ROS).

The rest of the work is structured as follows: (1) chapter two discusses related work. (2) chapter

three elaborates on variety of depth sensors and discusses their principles of work. (3) chapter four

contains a detailed description of all individual algorithms discussed in a scope of this work and

shows an approach to their combination. (4) chapter five reveals implementation details. (5) chapter

six evaluates obtained result and draws a conclusion about efficiency of a proposed approach. (6)

chapter seven contains conclusion and brief overview of the work done.
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C h a p t e r 2

RELATED WORK

2.1 Object recognition and 3d pose estimation

Object recognition and pose estimation is awell-studied problem in a computer vision due to itswide

applications in robotics, virtual reality, mapping, etc. Many methods have been proposed over the

last years. These algorithms mostly one of the point descriptors in order to find correspondences

between model and scene. There are two main approaches to the object recognition based on

descriptors: local (e.g. [13, 14, 15]) and global ones (e.g. [16, 17]). Global feature-based methods

are based on the whole visual appearance of the object. In other words, they are able to describe the

object with the single vector. The drawback of this group of methods is that they can not capture

shape details and require prior segmentation of the potential candidate from the scene. Therefore,

global-based methods can not be used for recognition of partially occluded objects in cluttered

scenes. In contrast, local descriptors-based methods are based on interpretation of local geometric

features extracted from the points. They are more suitable for cluttered scenes and occlusions. In

[18] authors performed a deep analysis of all descriptors currently implemented in PCL library

[19]. PCL library on its own is a powerful tool, containing various algorithms for point cloud

processing. The framework contains all individual algorithm required for designing an efficient 3D

recognition system.

Many methods for deriving primitive shapes and mapping surrounding environments using RGB-D

images, such as one presented in [20], originate in Photogrammetry. The majority of these methods

can be classified as semi-automatic methods since they require a human input on processing stage

for choosing potential candidates for detection. Moreover, these methods are usually not fast

enough to be used in robotics, where near real time is required in most applications

There are also methods built upon collected databases of CAD-models of objects to be detected

[21]. They show good performance, however, require preliminarily collected database of objects,

thus being not flexible if a new object is introduced to the system and needs to be recognized as

well.

2.2 Depth sensors

The appearance of cheap depth-cameras on themarket has boosted the development of 3D computer

vision area and its applications in real-life problems. There are several ways to get the depth

information and consequently types of depth-sensors:
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– Time-Of-Flight cameras [22].

– Stereo-pair-based cameras [23].

– IR based cameras [24].

The Microsoft Kinect sensor which became the first low-cast depth-sensor and accelerated tremen-

dously 3D vision systems development in robotics is studied in depth in [25], while comparison of

market-available sensors is presented in [26, 27].
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C h a p t e r 3

RGB-D SENSORS

Available on the market RGB-D cameras, their principals of work and accuracy are discussed in

this chapter. Calibration process of used for this project camera is described in details. Calibration

is done via ROS, which significantly simplifies the process.

3.1 Market available RGB-D cameras

In November 2010, Kinect RGB-D sensor (Figure 3.1) was released by Microsoft as a new User

Interface for XBOX 360 gaming platform. The Kinect provides color information as well as the

estimated distance for each pixel. The unprecedented low cost of the sensor has dramatically raised

interest to RGB-D sensors and their applications in such areas as Robotics, Natural User Interfaces,

3D mapping and others.

The Kinect sensor is based on a technology developed by PrimeSense company [28]. The core

principle of depth estimation is emitting of known infrared (IR) speckle pattern (Figure 3.2). The

IR sensor then captures light reflected from a scene and estimates per-pixel depth of the surface

based on the disparity between the known IR pattern and received image. In other words, so called

pseudo-stereo pair is formed. The depth data provided by the infrared sensor is then correlated to

a RGB camera. This produces an RGB image with a depth associated with each pixel.

Figure 3.1: Microsoft Kinect sensor [29].

Since the appearance of Kinect, many more depth-cameras were introduced. One of them is Asus

Xtion PRO LIVE [31] which was chosen for the purpose of this work. This sensor exploits the

same principle of depth estimation. Comparison of technical parameters of Microsoft Kinect, Asus

Xtion PRO LIVE, and several more market available cameras are presented in Table 3.1.

Although the resolution of AsusXtion PROLIVE IR sensor is 1280x1024 pixels at 30Hz, the image

is being downsampled to 640x480 in order to fit in the USB throughput. The nominal operation

range of the camera lies between 0.8 m and 3.5 m which suit the purpose of our application.

The are other types of depth-cameras such as stereo cameras and Time-Of-Flight (TOF) sensors.
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Figure 3.2: IR pattern emitted by Microsoft Kinect [30].

Table 3.1: Comparison of popular RGB-D cameras

Asus Xtion
PRO LIVE Microsoft Kinect Orbbec Persee [32] RealSense

SR300 [33]
Released July 2011 June 2011 December 2016 March 2016
Price $300 $100 $240 $150
Tracking method IR IR IR IR
Range 0.8m – 3.5m 0.5m – 4.5m 0.4m – 8m 0.2m – 1.2m
RGB image 1280x1024 640×480, 30 FPS 1280×720, 30 FPS 1920×1080,

30 FPS
Depth image 640×480, 30 FPS 320×240, 30 FPS 640×480, 30 FPS 640×480, 60

FPS
Interface USB 2.0 USB 2.0 Ethernet USB 3.0

We will not discuss them here since the principal of their work is out of the scope of this research.

For more information about these cameras, a reader can refer to [22].

3.2 Camera calibration

The calibration of RGB-D camera consists of two stages. Firstly, RGB camera is calibrated. Then

depth camera calibration can be performed.

RGB camera calibration

Camera parameters include extrinsic, intrinsic and distortion coefficients. Extrinsic camera pa-

rameters map a point from 3D world coordinates to camera’s 3D coordinate system while Intrinsic

parameters map 3D coordinates in camera frame to the 2D image plane via projection. To estimate

the camera parameters, we will need to have 3D world points and their corresponding 2D image
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points. We can obtain these correspondences through the use of multiple images of a calibration

pattern. Usually, a checkerboard pattern is used. Using the correspondences, we will solve for

the camera parameters. Luckily, as a part of image_pipeline ROS has a package called cam-

era_calibration which uses the camera model proposed by Jean-Yves Bouguet [34] and allows for

easy camera calibration. The model proposed by Jean-Yves Bouguet consist of:

– The pinhole camera model.

– Lens distortion.

Pinhole camera model is a model without any lens and with tiny aperture. Light rays pass through

the aperture and form an inverted image on the opposite side of the camera Figure 3.3.

Figure 3.3: Pinhole camera model [35].

The pinhole model can be represented by 4-by-3 matrix called camera matrix, P, which maps the

3D world scene to the image plane:

w


x

y

1


= P


xw

yw

zw


, (3.1)

where w is a scale factor,
[
x y 1

]T
- coordinates of a point on the image plane,

[
xw yw zw

]T
-

coordinates of a point in the world frame. As it was already mentioned camera parameters include

intrinsic and extrinsic ones:

P =
[
R T

]
K, (3.2)
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where R is rotation, T is translation, their combination
[
R T

]
is extrinsic and K is extrinsic camera

parameters.

K =


fx s cx

0 fy cy

0 0 1


, (3.3)

where fx and fy represent focal length in terms of pixels, fx =
F
px
. F is focal length is world units

(typically mm) and px is the size of a pixel in world units. cx and cy represent the principal point,

which in ideal case would be at the center of the image. s is a skew coefficient, which is non-zero

if the image axes are not perpendicular.

The pinhole camera model does not account for lens distortion due to the absence of a lens in an

ideal pinhole camera. To precisely represent a real camera, the full camera model used by the

algorithm includes two types of distortion: the radial and tangential lens distortion.

Radial distortion occurs when light rays bend more close to the edges of a lens than they do near

its optical center. The smaller the lens, the greater the distortion. The radial distortion takes place

when light rays bends more on the edges than at the center of the lens. Several types of radial

distortion are distinguished (Figure 3.4).

Figure 3.4: Radial distortion.

Radial distortion can be modeled with several coefficients:

xdist = x(1 + k1r2 + k2r4 + k3r6),

ydist = y(1 + k1r2 + k2r4 + k3r6),
(3.4)

where (xdist, ydist) - distorted coordinates, (x, y) - undistorted pixel location, k1, k2, k3 - radial

distortion coefficients of the lens and r2 = x2 + y2. Usually, two coefficients are sufficient for

calibration. Tangential distortion occurs when the lens and the image plane are not parallel.

Tangential distortion can be modeled with several coefficients:

xdist = x + [2p1xy + p2(r2 + 2x2)],

ydist = y + [p1(r2 + 2y2) + 2p2xy],
(3.5)
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where p1 and p2 — tangential distortion coefficients of the lens.

Figure 3.5: Tangential distortion [35].

Examples of camera calibration process using ROS camera_calibration package are presented on

Figure 3.6.

As an output package provides derived values of all parameters discussed above (see Listing 3.1).

1 ( ’D = ’ , [ 0 . 0754133 , −0.174507 , −0.004616 , 0 . 007702 , 0 . 0 ] )
2 ( ’K = ’ , [ 5 5 2 . 0 2 , 0 . 0 , 318 .753939 , 0 . 0 , 554 .605594 , 228 .936335 , 0 . 0 , 0 . 0 , 1 . 0 ] )
3 ( ’R = ’ , [ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ] )
4 ( ’P = ’ , [ 554 . 479492 , 0 . 0 , 322 .607826 , 0 . 0 , 0 . 0 , 559 .896606 , 226 .712239 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ,

0 . 0 ] )
5 Width
6 640
7 He igh t
8 480
9 Camera ma t r i x
10 552 .020080 0 .000000 318 .753940
11 0 .000000 554 .605595 228 .936336
12 0 .000000 0 .000000 1 .000000
13 D i s t o r t i o n
14 0 .075413 −0.174508 −0.004617 0 .007703 0 .000000
15 R e c t i f i c a t i o n
16 1 .000000 0 .000000 0 .000000
17 0 .000000 1 .000000 0 .000000
18 0 .000000 0 .000000 1 .000000
19 P r o j e c t i o n
20 554 .479492 0 .000000 322 .607826 0 .000000
21 0 .000000 559 .896606 226 .712239 0 .000000
22 0 .000000 0 .000000 1 .000000 0 .000000

Listing 3.1: Camera calibration coefficients derived by camera_calibration package.
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Figure 3.6: Camera calibration examples with ROS camera_calibration package.

Depth camera calibration

Once Intrinsic calibration has been performed we can start calibrating depth sensor. Depth camera

process is based on the comparison of Pose (estimated by RGB camera while looking at checker-

board pattern) and uncalibrated Point Cloud. Then logistic regression is used to estimate an error.

Calibration process is presented on Figure 3.7.

Figure 3.7: The process of depth camera calibration [36].
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C h a p t e r 4

PROPOSED APPROACH

4.1 Problem formulation

Let us first define the problem in a more formal way and introduce terms which will be frequently

exploited throughout the further chapters.

In this work we will refer to a set of 3D points as a point cloud P. Point cloud represents a core

data structure in 3D perception systems. It consist of individual points pi ∈ P. Each individual

point pi contains coordinates {xi, yi, zi} measured from the fixed coordinate system, having its

origin at the sensing device, used to acquire data. An example of point cloud dataset acquired

with Asus Xtion PRO LIVE is presented on Figure 4.1. An important feature of a point cloud data

representation is that each point pi can contain additional information about point such as normal

vector {n_xi, n_yi, n_zi}, principal curvatures {pc_xi, pc_yi, pc_zi}, RGB values {ri, gi, bi} and so

on.

Figure 4.1: An example of point cloud acquired with Asus Xtion PRO LIVE.

The problem of identification of a specific object on an input image and finding its position and

orientation relative to some coordinate system is known as pose estimation. The combination of

position and orientation of the object on the image is refereed as pose.

In described above context, the aim of this work is to develop computer vision algorithm, receiving

as an input a point cloud, containing a pallet with boxes in it, from measuring device and producing

as an output estimated poses of all boxes lying on the pallet. We also assume that pose of the depth

camera is known. In the real system sensor is mounted on an industrial manipulator. Using tf ROS

package we can easily calculate transformations between all local coordinate systems of the robot

and therefore derive camera pose [37]. Another input of the system, box dimensions, is coming
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Table 4.1: Euro-pallet dimensions

Length 1200 mm
Width 800 mm
Hight 144 mm

from warehouse management system (WMS). The warehouse management system - software

application that supports operations in a warehouse. WMS performs centralized management of

tasks typical for a warehouse and contains different sorts of information including position of goods

in a warehouse, their dimensions and so on.

As well as input data we use several assumptions in order to simplify the algorithm. First of

all, we assume that the pallets are standard European pallets as specified by the European Pallet

Association (EPAL). They have dimensions presented in the Table 4.1.

Figure 4.2: Depth camera mounted on industrial manipulator.

Secondly, we assume that thanks to a localization and navigation subsystems of the robot the

preliminary layout of the scene is known. By saying that we mean that we expect the robot to arrive

to the required pallet and maneuver in a way that the front side of the robot is parallel to the front

side of boxes staying on the pallet (see Figure 4.3).

The additional constrain here is a camera field of view. In order to be able to capture the whole

pallet full with boxes in one shot, the camera has to be not closer than a particular distance from

a pallet. According to the specification (see Table 3.1) Asus Xtion field of view in the horizontal

plane α is equal 58° while in the vertical plane β it is 45°. According to a standard (EUR-pallet)
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Figure 4.3: .

the maximum height of the pallet filled with boxes, h, is 1800 mm. Then:

l = a cos 61,

a =
l

cos 61
= 1277.6mm,

dhorizontal =
2√
a2 − l2 = 1128mm,

(4.1)

where l is a length of the pallet, dhorizontal is a minimum distance from a camera origin to the pallet

in order to capture the whole pallet on the single image, a is a hypotenuse of a triangle formed with

l and dhorizontal (see Figure 4.4a).

h = a cos 67.6,

a =
h

cos 67.6
= 2351.8mm,

dvertical =
2√
a2 − h2 = 2172.8mm,

(4.2)

where dvertical is a minimum distance from a camera origin to the pallet in order to capture the

whole pallet on the single image, a is a hypotenuse of a triangle formed with h and dvertical (see

Figure 4.4b). Thereby, the minimum distance can be found as max{dhorizontal, dvertical} and equals

to 2172.8 mm.

4.2 Pose estimation pipeline

The pose estimation pipeline used in this work is presented on a Figure 4.5. Following sections

describe all individual steps in details.

4.3 Affine transformation

Many of described further algorithms and processing steps exploit the geometric properties of

the scene. Using information about camera position in 3D space, which can be derived from the

manipulator position, we can align camera in a way, that (X ‖F,Y ‖F, Z⊥F), where F denote a plane,
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(a) Horizontal plane.

(b) Vertical plane.

Figure 4.4: Camera field of view and the size of the pallet.

aligned with a front side of boxes on a pallet. Such an alignment simplifies further steps and makes

an analysis of the scene more intuitive. It is performed through the use of affine transformation (the
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Figure 4.5: Pose estimation pipeline proposed in this work.

matrix shown bellow corresponds to the rotation around X axis):

T =



1 0 0 x

0 cos θ − sin θ y

0 sin θ cos θ z

0 0 0 1


, (4.3)

where θ is the angle of rotation, x, y, z - translation along the basis axes of the coordinate system.

Point cloud Library uses Eigen C++ library for the linear algebra operations including Affine

transformation.

4.4 Point cloud filtration

One of the most important parameters of any sensor is the level and type of noise it introduces.

There are several widely used filtration techniques developed for point clouds. Some of them are

aimed at reducing the amount of points in order to speed up computations. Others are used to

discard outliers and obtain geometric layout better describing the real world. In this work, we

exploit a simple and commonly used filtration pipeline (see Figure 4.6) which has been proven to be

an effective combination of methods in several works [38]. It consists of three parts: Pass-through

filtering, Statistical Outliers Removal, and Voxel Grid downsampling. Let us describe these three

techniques in more details.
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Figure 4.6: Filtration pipeline used in this work to filter out the noise and downsample an input
point cloud.

PassThrough filter

PassThrough PCL class allows filtering along a specified dimension – that is, cuts off values that

are either inside or outside of a given user range. The example of usage is presented in Listing 4.1

[19].

1 p c l : : PassThrough <Poin tType > p t f i l t e r ( t r u e ) ; / / I n i t i a l i z i n g wi th t r u e w i l l a l l ow us t o e x t r a c t
t h e removed i n d i c e s

2 p t f i l t e r . s e t I n p u tC l o u d ( c l o ud_ i n ) ;
3 p t f i l t e r . s e t F i l t e r F i e l dN ame ( " x " ) ;
4 p t f i l t e r . s e t F i l t e r L i m i t s ( 0 . 0 , 1 000 . 0 ) ;
5 p t f i l t e r . f i l t e r (∗ i n d i c e s _ x ) ;
6 / / The i n d i c e s _ x a r r a y i n d ex e s a l l p o i n t s o f c l o u d_ i n t h a t have x between 0 . 0 and 1000 .0
7 i n d i c e s _ r em = p t f i l t e r . ge tRemoved Ind i ce s ( ) ;
8 / / The i n d i c e s _ r em a r r a y i n d ex e s a l l p o i n t s o f c l o u d_ i n t h a t have x sma l l e r t h an 0 . 0 o r l a r g e r

t h an 1000 .0
9 / / and a l s o i n d ex e s a l l non− f i n i t e p o i n t s o f c l o u d_ i n

Listing 4.1: Example of PCL PassThrough class usage.

Due to our assumption about the position of the pallet on the image, we can cut-off the big part

of the image (keeping some margin) and thereby drastically speed up further computations. The

example of application of PassThrough filter is shown on Figure 4.7. Left image presents an initial

image, while the right one shows the point cloud after filtration.

Figure 4.7: Example of PassThrough filter application.
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Statistical Outlier Removal

The majority of the depth sensors generate point cloud datasets of with variations in density of

points. Additionally, they introducemeasurement errors that lead to the appearance of outliers. This

complicates the estimation of local point cloud characteristics such as surface normals or curvature.

This type of noise can be filtered by performing a statistical analysis on each point’s neighborhood

and discarding those points which do not meet certain criteria. StatisticalOutlierRemoval PCL

class is based on the computation of the distribution of point to neighbors distances in the input

dataset. For each point, it computes the mean distance from it to all its neighbors. By assuming

that the resulted distribution is Gaussian with a mean and a standard deviation, all points whose

mean distances are outside an interval defined by the global distances mean and standard deviation

can be considered as outliers and filtered-out from the dataset [19].

The listing demonstrating the usage of StatisticalOutlierRemoval PCL class is presented in Listing

4.2 [19].

1 p c l : : S t a t i s t i c a l O u t l i e r R em o v a l <Poin tType > s o r f i l t e r ( t r u e ) ; / / I n i t i a l i z i n g wi th t r u e w i l l a l l ow
us t o e x t r a c t t h e removed i n d i c e s

2 s o r f i l t e r . s e t I n p u tC l o u d ( c l o ud_ i n ) ;
3 s o r f i l t e r . setMeanK ( 8 ) ;
4 s o r f i l t e r . s e tS t ddevMulTh r e sh ( 1 . 0 ) ;
5 s o r f i l t e r . f i l t e r (∗ c l o ud_ou t ) ;
6 / / The r e s u l t i n g c l o ud_ou t c o n t a i n s a l l p o i n t s o f c l o u d_ i n t h a t have an ave r ag e d i s t a n c e t o t h e i r

8 n e a r e s t n e i g h bo r s t h a t i s below t h e computed t h r e s h o l d
7 / / Using a s t a n d a r d d e v i a t i o n m u l t i p l i e r o f 1 . 0 and assuming t h e ave r ag e d i s t a n c e s a r e no rma l l y

d i s t r i b u t e d t h e r e i s a 84.1% chance t h a t a p o i n t w i l l be an i n l i e r
8 i n d i c e s _ r em = s o r f i l t e r . ge tRemoved Ind i ce s ( ) ;
9 / / The i n d i c e s _ r em a r r a y i n d ex e s a l l p o i n t s o f c l o u d_ i n t h a t a r e o u t l i e r s

Listing 4.2: Example of PCL StatisticalOutlierRemoval class usage.

Voxel grid downsampling

The VoxelGrid PCL class creates a 3D voxel grid (voxel grid can be imagined as a set of small 3D

boxes in space) over the input point cloud data. After the grid is created each point of the initial

point cloud is approximated (i.e. downsampled) with the centroid, calculated for the voxel it falls

in. The example of VoxelGrid class usage is presented in Listing 4.3 [19]. Figure 4.8 shows the

result of applying Voxel Grid filtering to the point cloud.

1 / / C r e a t e t h e f i l t e r i n g o b j e c t
2 p c l : : VoxelGrid <Poin tType > s o r ;
3 s o r . s e t I n p u tC l o u d ( c l o ud_ i n ) ;
4 s o r . s e t L e a f S i z e ( 0 . 0 1 f , 0 . 01 f , 0 . 01 f ) ;
5 s o r . f i l t e r (∗ c l o u d _ f i l t e r e d ) ;

Listing 4.3: Example of PCL VoxelGrid class usage.
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Figure 4.8: The result of point cloud voxel grid downsampling.

4.5 Floor plane removal and dominant cluster extraction

After performing all the filtering steps described above we are left with the point cloud containing

mostly a region of our interest - pallet standing on the floor. As a next processing step, we must

identify a floor plane and remove it from the image. The procedure is based on the assumption

that the floor plane is parallel (with some angle tolerance) to the plane formed with camera local

coordinate frame X and Z axes. It is guaranteed by Affine transformation performed previously.

In order to identify all the points within a point cloud that support a plane model the plane SACSeg-

mentation class can be used. In this work, we used the RANSACmethod (pcl :: SAC_RANSAC) as

the robust estimator of choice. The decision was motivated by RANSAC’s simplicity (other robust

estimators use it as a base and add additional, more complicated concepts) [39]. The usage example

of SACSegmetation is presented in Listing 4.4 [19]. In order to segment the floor, we identify all

the vertical planes, compute the average Y coordinates and choose the one whose points have the

biggest one (Y axis of the camera local frame is directed towards the floor). The identification of

all the vertical planes requires some additional time but guarantees the reliable floor detection.

1 p c l : : Mod e lCo e f f i c i e n t s : : P t r c o e f f i c i e n t s ( new pc l : : Mod e lCo e f f i c i e n t s ) ;
2 p c l : : P o i n t I n d i c e s : : P t r i n l i e r s ( new pc l : : P o i n t I n d i c e s ) ;
3 / / C r e a t e t h e s e gmen t a t i o n o b j e c t
4 p c l : : SACSegmentation <Poin tType > seg ;
5 seg . s e t O p t i m i z e C o e f f i c i e n t s ( t r u e ) ; / / Enab l e s model c o e f f i c i e n t r e f i n emen t
6 seg . se tModelType ( p c l : : SACMODEL_PLANE) ; / / Model t yp e
7 seg . se tMethodType ( p c l : : SAC_RANSAC) ; / / Method t ype
8 seg . s e tD i s t a n c e T h r e s h o l d ( 0 . 0 1 ) ; / / S e t s t h e t h r e s h o l d o f t h e d i s t a n c e from query p o i n t t o t h e

e s t im a t e d model i n o r d e r t o be c o n s i d e r e d as an i n l i e r
9
10 seg . s e t I n p u tC l o u d ( c l oud ) ;
11 seg . segment (∗ i n l i e r s , ∗ c o e f f i c i e n t s ) ;

Listing 4.4: Example of PCL SACSegmetation class usage.

Even after all described preprocessing steps there is a possibility, that some unnecessary objects

(e.g. part of the shelves or other pallets) might be still present in a point cloud. Since they can

prevent correct recognition of boxes some additional step needs to be applied in order to remove
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them. Assuming that the pallet is a dominant cluster on the image we apply PCL EuclideanClus-

terExtraction class in order to extract it. Euclidean cluster extraction is implemented by making

use of a 3D grid subdivision of the space using fixed width boxes. This representation is very fast to

build. The algorithm of Euclidean cluster extraction used in PCL library is presented in Algorithm

1.

Algorithm 1 Euclidean clustering
Require: P, pi ∈ P, i ∈ (0, .., n)
1: C (list of clusters)← 0
2: Kd-tree← 0
3: Q (list of points to be checked)← 0
4: for i ← 0 to n do
5: Q← pi
6: for every p in Q do
7: search for the set Pi

k of point neighbors of pi in a sphere with radius r < dth
// dth is a user-defined threshold

8: for every neighbor pi
k ∈ Pi

k , check if the point has already been processed, and if not add
it to Q

9: end for
10: when the list of all points in Q has been processed, add Q to the list of clusters C, and reset

Q to an empty list
11: end for
12: the algorithm terminates when all points pi ∈ P have been processed and are now part of the

list of point clusters C
13: return C

The usage example of EuclideanClusterExtraction is presented in Listing 4.5 [19]. The result of

the floor removal and dominant cluster extraction is shown on the Figure 4.9.

1 p c l : : E u c l i d e a nC l u s t e r E x t r a c t i o n <Poin tType > ec ;
2 ec . s e t C l u s t e r T o l e r a n c e ( 0 . 0 2 ) ; / / 2cm
3 ec . s e tM i nC l u s t e r S i z e ( 100 ) ;
4 ec . s e tMaxC l u s t e r S i z e (25000 ) ;
5 ec . s e tSea r chMe thod ( t r e e ) ;
6 ec . s e t I n p u tC l o u d ( c l oud ) ;
7 ec . e x t r a c t ( c l u s t e r _ i n d i c e s ) ;

Listing 4.5: Example of PCL EuclideanClusterExtraction class usage.

4.6 3D pose estimation

The following sections contain a detailed description of all approaches to 3D pose estimation which

were studied in the scope of this work:

– Region growing based.

– Graph-based.
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Figure 4.9: The result of floor plane removal and dominant cluster extraction.

– Local point descriptors-based.

Region growing-based approach

The high level of occlusion is typical for the images used as a data set for this work since boxes

usually stand side by side and hardly can be distinguished from each other. Due to this reason, there

are images where we partially or fully miss any geometric information about layout and basically

have only a front plane of aligned boxes (see Figure 4.10) available for analysis.

Taken described above problem into consideration we have developed an approach which can work

with such input data. The pseudocode algorithm is described in Algorithm 2.

Algorithm 2 Region growing-based pose estimation algorithm
Require: P, pi ∈ P, i ∈ (0, .., n)
1: R (list of estimated poses)← 0
2: C (list of clusters)← 0
3: V (list of vertical planes)← 0
4: Extract all vertical planes,V ← SACSegmentation
5: for each vertical plane in V do
6: Extract clusters, C ← RegionGrowingRGB
7: for each cluster in C do
8: Apply StatisticalOutlierRemoval
9: Compute ConcaveHull

10: Fit bounding rectangle
11: Estimate pose, R
12: end for
13: end for
14: return R

As a first step of the described above algorithm, we find all vertical planes in the scene parallel with

some tolerance to the plane formed by X and Y axis of the camera frame, assuming that this gives

us front planes of the visible boxes on the pallet. The need to detect all vertical planes arises from
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Figure 4.10: The result of floor plane removal and dominant cluster extraction.

the fact, that boxes might be not aligned to the side we are imaging from and therefore there might

be multiple planes with front sides of the boxes.

Then, RegionGrowingRGB PCL class is used in order to extract separate clusters. RegionGrow-

ingRGB class implements the Region Growing algorithm used for segmentation based on color of

points [40]. The RGB data allows us to reliably distinguish clusters in the absence of the geometric

information. The usage of the RegionGrowingRGB with the exact parameters used in this work is

shown in Listing 4.6 [19].

1 p c l : : RegionGrowingRGB<pc l : : PointXYZRGB> reg ;
2 r eg . s e t I n p u tC l o u d ( c l o ud_p l a n e ) ;
3 r eg . s e tSea r chMe thod ( t r e e ) ;
4 r eg . s e tD i s t a n c e T h r e s h o l d ( 0 . 1 ) ; / / D i s t a n c e between two p o i n t s t o c o n s i d e r them to be n e i g hbou r s
5 r eg . s e t P o i n t C o l o r T h r e s h o l d ( 3 ) ; / / Th r e sho l d t o d e c i d e t h a t two p o i n t s b e l ong s t o one c l u s t e r
6 r eg . s e tR eg i o nCo l o rTh r e s h o l d ( 5 ) ; / / Th r e sho l d t o d e c i d e t h a t two c l u s t e r s a r e d i f f e r e n t
7 r eg . s e tM i nC l u s t e r S i z e ( 600 ) ;

Listing 4.6: Example of PCL RegionGrowingRGB class usage.

As a next step Statistical Outlier removal is applied again in order to filter errors related to cluster

segmentation. After that, a 2D Concave Hull is calculated for each cluster. It is important to note

here, that the Concave Hull has shown better results in approximation boxes in comparison with

Convex Hull and therefore was chosen for the purpose of this work.

Knowing the Concave Hull for each cluster we fit a bounding rectangle into it and compare with the

known size of the box to be recognized (see Figure 4.11). It allows us to discard clusters which do

not correspond to the known dimensions and relaunch Region Growing algorithms with less strict

RegionColorThreshold which specifies the threshold value for the color test between the regions.

If the difference between segments color is less than the threshold value, then they are merged

together.
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Some results of box detection using the described approach are shown on Figure 4.12. Green dots

show the found center of the front plane of each box.

Figure 4.11: Results of RegionGrowingRGB clustering and bounding box estimation. Clusters
assigned to recognized boxes are shown in different colors. Bounding boxes are shown in red.

Figure 4.12: Region growing-based pose estimation result. Red lines show the estimated edges of
boxes’ front surfaces. Green dots denote the estimated centers of the front surfaces.

Although described in this section approach is very simple and intuitive it is very fast, provides

good recognition quality and relatively easy to implement. But obviously, it has serious pitfalls.

Thus, since it is based on RGB data, lighting conditions and all other problems common for 2D

images have a big impact on recognition quality.

Graph-based approach

Another approach is based on the widely used in computer vision operation - edge detection. The

general scheme of the Graph-based approach is presented on Figure 4.13.
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Figure 4.13: Graph-based algorithm scheme.

PCL library providesOrganizedEdgeFromRGBNormals class to extract edges from organized point

cloud. This class combines several approaches and allows a user to choose which edges he/she

wants to detect. Currently, there are following options implemented:

– Occluding boundary edges (edge of occluding object).

– Occluded boundary edges (edge on surface being occluded).

– High curvature edge.

– 2D edge (image only edge extracted from RGB).

– Combinations of the above mentioned options.

The results of extractions of all types of edges can be seen on Figure 4.14.

Figure 4.14: Detection of different edges types performed with OrganizedEdgeFromRGBNormals
PCL class.

The big drawback of OrganizedEdgeFromRGBNormals class is that it requires organized point

cloud as an input (at the time of writing this thesis there is no other option for edge detection
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implemented in PCL). A point cloud is called organized if it resembles an organized image (or

matrix) like structure, where the data is split into rows and columns (as on typical 2D image). The

advantages of an organized dataset is that by knowing the relationship between adjacent points (e.g.

pixels), nearest neighbor operations are much more efficient, thus speeding up the computation

and lowering the costs of certain algorithms in PCL. Application of any operation (e.g. filtering

or geometric transformation) to the raw point cloud, coming from the sensor, erode its structure

and the point cloud loses its organized quality. That is why edge detection should be applied

prior any other operations as a first processing step. The described previously filtration pipeline

is then applied to the extracted edges. The floor detection and dominant cluster extraction are not

necessary for this algorithm.

As a next step we perform line model fitting into extracted edges with the constrain that found

models are required to be parallel to the plane formed by X and Y axes of the camera frame. This

allows us to partially discard the unfiltered edges which are parts of the object which are not in

our interest (e.g. shelves, pallet). This is done with SACSegmentation class which was discussed

in the Region growing-based approach section. To extract the lines parallel to the specific plane

pcl::SampleConsensusModelParallelLine<PointType> model is used.

Having all line models we can find intersections between each pair of lines and create a graph in

which vertices will represent lines and edge between any of two vertices will mean intersection of

this lines in the 3D space. Intersection is checked with pcl::lineWithLineIntersection() function

implemented in PCL. In Figure 4.15 found lines are shown. Intersections are shown as red spheres.

Figure 4.15: Fitted into edges line models.

Using an adjacency matrix representation we then search for cycles of four in the created graph

using Breadth-first search algorithm. The general algorithm is presented in 3.
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Algorithm 3 Breadth-first search
Require: A, adjacency matrix, root
1: Q, empty queue← 0
2: S, empty set← 0
3: C, (current node) ← 0
4: Add root toS, S ← root
5: while Q is not empty do
6: C ← Q.top()
7: if thenC is a goal
8: return C
9: end if

10: for each node n that is adjacent to current do
11: if thenn < S
12: S ← n
13: n.parent ← currentnode
14: Q← n
15: end if
16: end for
17: end while

As the last step of graph-based pose estimation approach, the check of all found cycles is performed

against a known area of the box surface and expected orientation in space. Pose is computed using

an information about the front surface pose and predefined box dimensions.

Although this method showed a good precision in identification poses of boxes, it gives a moderate

precision and recall in terms of recognition of boxes in the scene. This is due to the problem that

even small errors in line model fitting lead to the missing or false intersections between edges.

Local point descriptors-based approach.

The recognition approach based on the calculation of the point descriptors is the most commonly

used technique to find a known object in the scene. There are two types of descriptors:

– Local descriptors are computed for each individual points in a point cloud. They have no

notion of what an object is. All they do is just describe how the local geometry looks like

around that point.

– Global descriptors encode the geometry of the whole object. They are not computed for

individual points, but for a whole cluster that represents an object.

Many descriptors have been proposed for 3D data processing. An overview of the most widely

used ones is presented in Table 4.2.
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Table 4.2: 3D point descriptors comparison

Name Type Size
PFH (Point Feature Histogram) Local 125
FPFH (Fast Point Feature Histogram) Local 33
RSD (Radius-Based Surface Descriptor) Local 289
3DSC (3D Shape Context) Local 1980
USC (Unique Shape Context) Local 1960
SHOT (Signatures of Histograms of Orientations) Local 352
Spin image Local 153∗
RIFT (Rotation-Invariant Feature Transform) Local 32∗
NARF (Normal Aligned Radial Feature) Local 36
RoPS (Rotational Projection Statistics) Local 135∗
VFH (Viewpoint Feature Histogram) Global 308
CVFH (Clustered Viewpoint Feature Histogram) Global 308
OUR-CVFH (Oriented, Unique and Repeatable Clustered
Viewpoint Feature Histogram)

Global 308

ESF (Ensemble of Shape Functions) Global 640
GFPFH (Global Fast Point Feature Histogram) Global 16
GRSD (Global Radius-Based Surface Descriptor) Global 21

Values marked with an asterisk (*) indicate that the descriptor’s size depends on some parameters,

and the one given is for the default values.

The local descriptors were used in this work since they describe the surface and suit better for our

application. Let us take a look at the typical local recognition pipeline (see Figure 4.16) [41].

Figure 4.16: Commonly used local recognition pipeline.

First of all, a training of the system is performed. Training means, in this case, creating a database

with all the objects we need to be able to recognize, and calculating the descriptors for them. Only
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after that, we can go through the recognition pipeline. In our case, when the warehouse automation

robot receives a new task from a WMS it also receives the dimensions of the box to be picked.

With this data, we generate a model of the box (see Figure 4.17) and compute local descriptors in

order to find correspondences with the scene descriptors in the following processing steps.

Figure 4.17: Generated box model.

There are some postprocessing steps that are not mandatory to perform but will yield better results

if done, like pose refinement and hypothesis verification. The following sections describe in more

details each step of the pipeline revealing some details about our particular implementation.

Keypoint extraction

Since computing descriptors for each point of the point cloud is a really costly operation that

can slow down the whole recognition system tremendously it makes sense to perform descriptors

computation only for a particular set of points. Such points are called keypoints. According to the

[42] a good 3D keypoint:

– Repeatable with respect to point-of-view variations, noise, etc. (locally definable)

– Distinctive, i.e. suitable for effective description and matching (globally definable).

Because the second one depends on the local descriptor being used (and how the feature is

computed), a different keypoint detection technique would have to be implemented for each.

Another simple alternative is to perform downsampling on the cloud and use all remaining points.

Intrinsic Shape Signatures (ISS) keypoint detector was used in this work. According to [43] it

provides perfect results for recognition and pose estimation of objects of simple geometry. ISS

keypoint detector scans the surfaces and chooses only points with large variations in the principal
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direction (i.e. the shape of the surface), which is ideal for keypoints. An example of detection is

presented on Figure 4.18. Keypoints are colored in green.

Figure 4.18: Result of keypoints detection and preliminary model alignment.

Computing descriptors

As it was previously discussed there is a big variety of descriptors available. For the purpose of this

research, Fast Point Feature Histogram (FPFH) descriptor was chosen, since it provides comparably

good recognition quality, fast to compute and requires a small amount of memory [44].

In order to deal with FPFH, we first need to understand how Point Feature Histogram (PFH) works

since FPFH originates from it [45]. The core idea is quite simple. The PFH captures information

about the geometry surrounding the point by analyzing the difference between the directions of the

normals in the point neighborhood.It is important to note, that imprecise normals estimation might

lead to the low-quality of descriptors estimation.

As a first step, the algorithm pairs all points in the vicinity (Figure 4.19). It uses not just the chosen

keypoint with its neighbors, but also the neighbors with themselves. Then, a fixed coordinate

frame is computed from their normals, for each pair. Having this frame, the difference between the

normals is encoded with 3 angular variables. These variables, together with the euclidean distance

between the points, are stored, and then binned to a histogram when all pairs have been computed.

The final descriptor is the concatenation of the histograms of each variable (4 in total) (Figure

4.20).

PFH gives accurate results, but it has a serious drawback: it is too computationally expensive to

be computed at the real time. For a cloud of n keypoints with k neighbors considered, it has a

complexity of O(nk2). In order to eliminate this problem, FPFH was created. The FPFH considers

only the direct connections between the current keypoint and its neighbors, not taking into account
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Figure 4.19: Point pairs produced while computing the PFH for a point.

Figure 4.20: Fixed coordinate frame and angular features computed for one of the pairs.

additional links between neighbors (Figure 4.21). This decreases the complexity down to O(nk).

Because of this, the resulting histogram is referred to as Simplified Point FeatureHistogram (SPFH).

The reference frame and the angular variables are computed in the same manner as for PFH.

Figure 4.21: Point pairs established while computing the FPFH for a point.

To account for the lost connections, an extra step is introduced after computation of all histograms:

the SPFHs of a point’s neighbors are concatenated with its own, weighted according to the distance.

This has the effect of giving a point surface information of points as far away as 2 times the radius

used. As the last step, the 3 histograms (distance is not used) are merged to produce the final

descriptor [46].
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Descriptors matching

After the local descriptor has been computed for all keypoints in the cloud, the next step is to match

them, finding correspondences between the scene and the object stored in our database (generated

model of the box in our case). To do this, a search structure like a k − d tree can be exploited

to perform a nearest neighbor search, retrieving the Euclidean distances between descriptors.

Optionally, a maximum distance value can be set as a threshold to consider two descriptors as

corresponding ones. Every descriptor in the scene should be matched against the descriptors of the

model. In general, if there are different objects to be recognized (different objects stored in objects

data) every descriptor in the scene should be matched against the descriptors of all objects in order

to account for the presence of multiple objects in the scene. We assume that in our case boxes of

only one type are stored on one pallet, that is usually the case for the typical warehouse.

Correspondence grouping

At this point, we have a list of correspondences between keypoints in the scene and keypoints from

the object (box). This does not necessarily mean that a given object is present in the scene. We

need an additional check to discard correspondences that are not geometrically consistent. This

check can be implemented with an additional step called correspondence grouping. It groups

correspondences that are geometrically consistent (for the given object model) in clusters and

discards the ones that do not. Rotations and translations are permitted, but anything other than that

will not meet the criteria. Also, as a minimum of 3 correspondences is required for retrieving the

6 degrees of freedom (DoF) pose, groups with less than that can be ignored.

Several classes to perform correspondence grouping are offered by PCL. The simple one:

pcl::GeometricConsistencyGrouping was chosen for the purpose of this work since our model

(box) is geometrically simple. This class iterates over all feature correspondences which are not

yet grouped, and adds them to the current subset if they are geometrically consistent. For every

subset is also computes the transformation (rotation and translation), making the next step (pose

estimation) unnecessary.

Pose estimation

Despite the fact, that we can already obtain pose estimate at the previous step we need another step

to verify the results (remove correspondences that are not compatible with the same 6 DoF pose).

Methods like RANSAC can be used, to get the rotation and translation of the rigid transformation

that best fits the correspondences of a model instance. PCL has some classes for this. The one we
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are using here adds a prerejection step to the RANSAC loop, in order to discard hypotheses that are

probably wrong. For that, the algorithm forms polygons with the points of the input subsets and

then checks pose-invariant geometrical constraints. In other words, it makes sure that the polygon

edges are of similar length. The number of iterations can be specified or a precision threshold can

be set. The pcl::SampleConsensusPrerejective class is used in this research. It aligns model to the

scene and returns its pose. In the form described in Affine transformation section of this chapter.

Due to the complex scene layout in or testing data (high level of occlusion, lack of geometrical

information), this method shows good results only on some images and in general loses to other

methods described in this chapter (see Implementation and experimental results chapter).
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C h a p t e r 5

SYSTEM IMPLEMENTATION

This chapter discusses practical aspects of the implementation of computer vision algorithm devel-

oped in this work. This includes a software packages architecture, integration with ROS and other

subsystems of the warehouse automation robot. Industrial manipulator (Universal Robot UR-10 in

our case) control and its integration with the computer vision subsystem is discussed as well in this

chapter.

5.1 Implementation of proposed methods

As it was already mentioned a PCL library was used for the development of algorithms, proposed

in this work. The Point Cloud Library is an open-source library of algorithms for the tasks, related

to the processing of point clouds and 3D geometry processing. The library contains algorithms

for feature estimation, registration, model fitting, surface reconstruction, and segmentation. PCL

is written in C++ and released under the BSD license. The algorithms implemented in PCL have

been widely used in such areas as robotics perception, architecture, 3D scanning, and others.

The main practical result of this work is developed box_detector_pkg software package, which

implements all described in the previous chapter algorithms as well as additional methods for point

cloud processing and processing parameters tuning.

5.2 Integrations with ROS

Robot Operating System (ROS) is a collection of software packages, frameworks and standalone

programs for robot software development. ROS provides standard operating system services such

as hardware abstraction, low-level device control, implementation of commonly used functional-

ity, message-passing between processes, and package management. Running sets of ROS-based

processes are represented in a graph architecture where processing takes place in nodes that may

receive, post and multiplex messages: sensor, control, state, planning, actuator and other types.

All parts of ROS software can be divided into 3 groups:

– Language-and platform-independent tools used for building and distributing ROS-based

software.

– ROS client library implementations (roscpp, rospy, and roslisp).

– Packages containing application-related code which uses one or more ROS client libraries.
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All software included in ROS is released under the BSD license, and as such are open source

software and free for both commercial and research use.

Three layered architecture was used in warehouse automation robot design [47]. According to this

approach, there are three layers of the robot architecture distinguished:

– Tasks - high-level goals and objectives that robot tries to achieve.

– Actions - atomic simple actions performed by the robot in order to complete tasks set for a

robot.

– Actuators/Sensors - set of tools robot uses in order to perform useful actions and achieve its

goals.

The simplified architecture developed for our particular robot is presented on Figure 5.1.

Figure 5.1: Three layered architecture developed for automation warehouse robot.

ROS allows an easy mapping of such architecture to the actual software. Further, we will discuss

how computer vision subsystem developed in this work is implemented in ROS.

To communicate with the camera openni2_launch ROS package was used. This package contains

launch files for using OpenNI-compliant devices in ROS. It supports the Asus Xtion, Xtion Pro,

multiple version of the Primesense cameras. OpenNI stands for Open Natural Interaction. It is an

open source software project focused on certifying and improving interoperability of natural user

interfaces and organic user interfaces for Natural Interaction (NI) devices, applications that use

those devices and middleware that facilitates access and use of such devices [48]. Openni2_launch

launches an ROS-node which takes a row data from the sensor, does preprocessing and publishes

the data to specific topics from where any subscriber can read it. Since the depth and color images
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come from two separate, slightly offset, cameras, they do not perfectly overlap. Therefore, for each

pixel in the depth image, its position in 3D space has to be calculated and reprojected into the image

plane of the RGB camera. This date is then published to ”/camera/depth_registered/points”

topic which was used in this work.

Developed box_detector_pkg subscribes to discussed above ”/camera/depthr egistered/points”

topic in order to receive the latest images captured by the sensor(figure form rqt graph). Since

we do not need to continuously process images but do it only when picking is to be performed

there should be a specific mechanism of launching the processing. Luckily ROS provides such

capabilities through the use of ROS actionlib package which provides tools to create servers that

execute long-running goals that can be preempted. It also provides a client interface in order to

send requests to the server. In our case box_detection action is called each time when robot arrives

to the pallet and needs to perform picking.

5.3 Integration with industrial manipulator

UR-10 industrial manipulator from Universal Robots was incorporated in the design of warehouse

automation robot [49]. ROS-Industrial - an open-source project that extends the advanced capa-

bilities of ROS software to industrial applications(i.e. manufacturing) - provides an easy to use

interface to simulation and programming of UR-10. The universal_robot package contains pack-

ages that provide nodes for communication with Universal’s industrial robot controllers, Unified

Robot Description Format (URDF) models for various robot arms and associatedMoveIt packages

for manipulator control and kinematics.

The ur_control_node was developed in this work. It subscribes to the topic (published by

box_detector_package) containing 3D pose of the detected boxes and sends commands to per-

form picking to the arm. The ur_control_node can control the real arm, as well as a manipulator,

simulated in Gazebo [50], which simplifies the development process. The simulation process is

shown on Figure 5.2.
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Figure 5.2: Simulation of UR-10 robot in Gazebo simulator.
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C h a p t e r 6

RESULTS AND EVALUATION

This chapter evaluates the performance of the [roposed pose estimation algorithm and its parts.

6.1 Testing environment

Framework

The entire systemwas implemented in C++within ROS ecosystem, making use of highly optimized

libraries for 3D point cloud processing (PCL) and tools (OpenNI) to create robot applications, with

the state of art algorithms.

Dataset

For the performance evaluation, a dataset of scenes was collected. It contains 20 point clouds wich

can be classified as:

– Synthetic point clouds. Gazebo simulator was used in order to capture modeled scenes.

– Real point clouds, captured in a synthetic environment. Pallets with boxes were assembled

and captured in the Skoltech Robotics laboratory.

– Real point clouds, captured in real environment. This part of the dataset was collected in a

real warehouse.

Hardware

All tests for which we report the results have been made using a desktop with an Intel CoreT M

i7-4790 CPU 3.60GHz x 8, 12GB RAM DDR3, Gallium 0.4 on NVE4, Ubuntu 14.04 64bit OS

and ROS Indigo release.

Performance metrics

There are several standard metrics used in this work to evaluate the performance of developed

algorithms.

Precision:

precision =
correct matches f ound

total matches f ound
(6.1)

Recall:

recall =
correct matches f ound

total matches
(6.2)
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Another important performance measurement is Computational time.

Since there are many parameters to tune in each individual algorithm we also evaluate them in

order to identify the optimal set.

Testing results

The main results are presented in Table 6.1.

Table 6.1: Testing results

Algorithm Precision (%) Recall (%) Average computational time (s)
Graph-based 76 69 1.81
Region growing-based 79 86 0.93
Local descriptors-based (FPFH) 83 54 3.74
Combination 81 84 4.53

As it might be seen from testing results, Region growing-based approach shows the best overall

performance. The deviation from the 100%precision is related to the fact that themethod sometimes

generates false clusters due to changing lighting conditions or loss/blurring of RGB edges on

filtering stage.

The approach based on matching local descriptors of the model and scene has shown the best

precision. This can be explained by the fact that by the principle of this method and a specific of

problem solved in this work the method has a tiny probability to generate a false positive. In other

words if this algorithm detects box in a scene, there is a big probability that in reality there is a

box. Meanwhile due to partiality of data (some boxes are occluded by other, some sides of boxes

are not visible in the images) the approach based on local descriptors often can not recognize the

box and therefore has a very low "Recall" metric.

As for Graph-based method it showed to be the less reliable one. Since the presence of noise and

errors in fitting line models the method generates big amount of false positives and false negatives.

Although the method is can not be considered as a reliable one, there are ways simple to improve

the quality of recognition and pose estimation (see Future work section).

It might be seen from the experimental results that the combination of methods losses to individual

algorithms in one of the metrics but has the best performance in term of metrics in total. That

allows us to say that the combination of individual methods outperform each individual one and

with some improvements can be used in a real-life application.



50

Region-growing

One of the most crucial parameters for the Region growing approach is RegionColorThreshold

which sets the threshold in the difference of RGB values to distinguish clusters. The experiment

to identify the most appropriate value was run. The precision and recall of box recognition were

used as a performance metric, since they allow us to understand whether all cluster/boxes in the

scene were detected or not and how what is a fraction of false positives was. The results of the

experiment are presented on Figure 6.1.

Figure 6.1: Dependency of region growing-based approach precision/recall from RegionCol-
orThreshold algorithm parameter.

The experimental results presented above demonstrate the trade-off between precision and recall

metrics. The optimum of RegionColorThreshold is identified to 5 as these two metrics meet in

this point. It is interesting to note, that in none of the points of discovered dependencies we

achieve 100% precision or recall. This proves again that none individual method can be applied to

solve reliably box pose estimation problem and only their combination can be used in a real-world

application.

Local descriptors

There is a huge variety of local descriptors proposed for 3D recognition problem (see Local point

descriptors-based approach). Several of them were tested in the scope of this work. The results
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are presented in Table 6.2.

Table 6.2: Local-descriptors pose estimation testing results

Descriptor Translation (mm) Rotation (rad)
RSD 30 0.0052
PFH 7 0.0037
FPFH 9 0.044
USC 13 0.0037

As it might be seen from experimental results FPFH loses in accuracy to PFH, however, it takes

much less to be computed and therefore was chosen to be used in this work.

Time profiling

One of the most important metrics for any algorithm is computational time. All proposed methods

were studied in terms of timings. 100 runs of each algorithm were performed. An overview of the

total computation time of the main steps are reported in Figures 6.2a, 6.2b, 6.3.

The overall time of the hybrid algorithm equals in average to 4.53 s which allows us to draw a

conclusion that the proposed approach can be used in a real-world application.
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(a) Graph-based approach.

(b) Local descriptors-based approach.

Figure 6.2: Time profiling of used algorithms.
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Figure 6.3: Region-growing-based approach time profiling.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

The pose estimation pipeline for detection of boxes lying on the pallet was proposed in this work.

In order to evaluate proposed technique box_detector_pkg ROS software package was developed.

It takes as an input the raw scene point cloud from RGB-D camera as well as camera 3D pose and

dimensions of boxes to be detected. The package performs preprocessing of the input point cloud

and applies the combination of three discussed pose estimation approaches: local descriptors-

based, region-growing based and graph-based. As a result on the output of the program we obtain

estimated 6 DoF pose of each visible box in the scene which is sent to the manipulator in order to

perform picking. Developed algorithm does not require human intervention and preloaded database

of models of the boxes.

The ROS package for receiving and interpreting the output of the box_detector_pkgwas also imple-

mented (ur_control_node). It receives coordinates of boxes, knowing the dimensions of the box cal-

culates the coordinate for picking, and sends this coordinates to the manipulator. box_detector_pkg

also was successfully integrated with the rest of robot’s subsystems by introducing an action_server

which allows other subsystems to make calls to the recognition system in order to initialize pose

estimation procedure.

In the Results and Evaluation chapter, the quality of each of the estimation algorithms as well

as their combination was evaluated by testing on a collected dataset of images. The test dataset

contained both synthetic scenes, and scenes captured on a real warehouse. The results obtained in

the tests have proved that proposed estimation pipeline can be used in real life applications. Even

though the final has shown good recognition and pose estimation results, there are many improve-

ments and optimizations to be done. In order to achieve at least the human level of efficiency,

warehouse automation robot has to have a perception system which has a recognition quality close

to 100% and be fast enough. Thereby, some further improvements will be mentioned in the Future

Work section with the purpose of optimizing the speed and the reliability of the algorithm.

7.2 Future work

There are many ways to improve results of recognition and pose estimation algorithms presented in

this work. Region growing-based approach highly depends on color and therefore has all drawbacks

typical for algorithms working with 2D images. To eliminate errors related to changing lighting
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conditions adaptive threshold for assigning cluster to a point needs to be developed. It would

tremendously decrease amount of false positives and therefore improve precision of the algorithm.

Talking about local descriptors pipeline - Iterative Closes Point (ICP) refinement can be applied as

the last step to increase pose estimation accuracy.

In a graph-based approach in order to decrease false negatives and positives rate another approach

to finding intersections can be applied. Even a small inaccuracy in line model fitting leads to

missing intersection between lines and detection of false intersections. Usage of cylinders of small

radius (exact radius has to be identified experimentally) could help to overcome this issue.

The technique used in this work to combine pose estimation algorithms is quiet simple. Other

techniques ( e.g. neural network) could be applied to make pose estimation more reliable. Neural

networks might be developed to recognize objects in a point cloud. This is currently a big topic of

research and proposed architectures show promising results [51].

Finally, the speed of all algorithm can be improved with application of parallel computing which

suits well for many used here approaches. PCL provides special classes substitutions (e.g. Nor-

malEstimationOMP< PointInT, PointOutT > instead of NormalEstimation< PointInT, PointOutT

>) which useOpenMP - programming interface (API) that supports multi-platform shared memory

multiprocessing programming [52].
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