HAI	ІИОНАЛЬ	ный ис	слелов	АТЕЛЬСКИЙ				
		УНИВЕ	РСИТЕТ					
		«Mč	ЭИ»					
 Институт: Энергомашиностроения и механики (ЭнМи) Кафедра: Паровых и Газовых Турбин им. А.В.Щегляева Направление: 130403, «Энергетическое машиностроение» 								
	МАГИ	СТЕРСК	АЯ ДИСС	СЕРТАЦИЯ				
Программа: Г	азотурбинны	е, паротур	бинные уста	ановки и двигатели				
Тема: Парог параметрами пара	аровая уст а (Р ₀ =35 МПа	тановка с , t ₀ =1500°С	с ультрасы 2)	верхвысокими начал	ьными			
Студент	С-04м-18 группа	подпись	ф	Куроптев Д.Б. амилия, и., о.,				
Научный								
Руководител	в: профессор должность), Д.Т.Н. <i>звание</i>	подпись	Зарянкин А.Е. фамилия, и., о.,				
Консультан	Г				_			
Консультан	<i>должность</i> Г	звание	подпись	фамилия, и., о.,				
- J	должность	звание	подпись	фамилия, и., о.,	_			
Магистерска	я диссертаці	ия допуще	на к защит	e				
Зав.кафедрой: профессор, д.т.н. Грибин В.Г. должность звание подпись фамилия, и., о.,								
Дата								
МОСКВА				2020 г.				

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

«МЭИ»

Институт ЭнМИ Кафедра Паровых и Газовых Турбин

Направление Энергетическое машиностроение, 130403

ЗАДАНИЕ НА МАГИСТЕРСКУЮ

ДИССЕРТАЦИЮ

по программе подготовки магистров Газотурбинные и паротурбинные установки и двигатели

Тема <u>Паропаровая установка с ультрасверхвысокими начальными</u> параметрами пара (P₀=35 МПа, t₀=1500°C)

Время выполнения работы с сентября 2018 г. по июнь 2020 г.

Студент	Куроптев Д.Б.	С-04м-08	
	Фамилия, и., о.	группа	подпись
Научный ру	ководитель професс <i>должноси</i>	сор, д.т.н. <i>пь, звание,</i>	Зарянкин А.Е. фамилия, и., о.
Консультант		должность зва	ние фамилия и о
Консультант		0010101000000, 500	nuc, <i>quininin, n</i> , o.
		должность, зва	ние, фамилия, и., о.
Зав. Кафедро	ой д.т.н. Грибин В. звание, фамилия,	Г. и., о., подпись, да	іта утверждения задания

Место выполнения научной работы <u>Национальный исследовательский</u> университет "МЭИ"

Москва

«____»____2020 г.

Vien

1.Обоснование выбора темы диссертационной работы

Повышение начальных параметров в паротурбинных блоках является перспективным способом увеличения эффективности паротурбинных установок. В настоящее время в мире уже осуществлен переход к суперсверхкритическим параметрам пара. В данной работе сделана попытка проанализировать дальнейшее повышение начальной температуры пары перед паровой турбиной в традиционном паросиловом цикле и возможность увеличения экономичности паротурбинных блоков за счет перехода к новому альтернативному паротурбинному циклу.

Научный руководитель проф., д.т.н. / Зарянкин А.Е. дата					
Студент Куроптев Д.Б.	дата	_			
2.Консультации по разделу		_			
		-			
Подпись консультанта	дата	-			
3.Консультации по разделу		_			
		-			
Подпись консультанта	дата	-			

4. План работы над магистерской диссертацией

N₂	Содержание разделов	Срок	Трудоём-
п\п		выпол-	кость
		нения	в %
I.	Теоретическая часть		
	1. Краткий обзор современных		
	высокотемпературных блоков ведущих	02.2019	7
	турбиностроительных фирм с оценкой		
	предельно допустимых начальных параметров		
	пара в таких блоках, работающих по		
	станлартному шиклу Ренкина		
	2. Расчет тепловой схемы нового базового		
	блока мошностью 300 МВт при следующих	03-04.	
	параметрах $P_0=30$ МПа $t_0=650^{\circ}$ С и провести	2019	8
	аэролинамический	2017	0
	3 Расчет тепловой схемы паропаровой		
	установки выполненный по тепловой схеме	05-10	
	А Е Зарянкина с начальными параметрами	2019	7
	$P_{a}=35 \text{ M} \Pi a t_{a}=1500^{\circ} \text{C}$	2017	7
	4 Провести тепловой и аэролинамический		
	пасчет основной высокотемпературной	01-04	
	турбины	2020	7
	Typomili	2020	7
II.	Экспериментальная часть		
	1. Лля турбины с ССКП и		
	высокотемпературной турбины разработать	10-12.	
	иилинлр низкого давления с полуторным	2019	6
	выхлопом на базе двухъярусной вильчатой		_
	рабочей лопатки		
	2. Разработать выносной блок соплового	01.	
	парораспределения для проектируемых	2020	6
	паровых турбин		
III.	Графическая часть		
	1. Тепловая схема К-300-300 с ССКП	02.2019	3
	2. Продольный разрез паровой турбины К-300-		
	300	03.2019	5
	3. Продольный разрез ЦНД с полуторным		
	выхлопом на базе двухъярусной вильчатой	04.2019	5
	рабочей лопатки		
	4. Тепловая схема энергетической установки,	05.2019	6
	работающей по высокотемпературному		
	паропаровому циклу		

		12 2010	7
	5. Продольный разрез высокотемпературной	12.2019	/
	паровой Туройны	01.02	
		01-02. 2020	5
	лопатки для цпд с полуторным выхлопом	2020	5
		02 2020	5
	парораспределения для проектируемых	02.2020	5
TX 7	паровых туроин		
1.	Пуоликации		
	1. М.С. Постникова, Д.Б. Куроптев, 1.		
	Падашмоганло, А.Е. Зарянкин, Гасители		
	неравномерности полеи скоростеи во	02 2010	2
	входных и выходных патруоках	03.2019	3
	туроомашин // Гезисы докладов ХХV		
	Международнои научно-техническои		
	конференции студентов и аспирантов		
	«Радиоэлектроника, электротехника и		
	энергетика». 14-15 марта 2019. С. 935.		
	2. Д.Б. Куроптев, А.Е. Зарянкин, Разработка и		
	исследование ЦНД с полуторным выхлопом	0	
	на базе двухъярусной ступени с вильчатой	05.2019	3
	лопаткой // Сборник тезисов докладов		
	Научно-технической конференции		
	студентов "Энергетика. Технологии		
	будущего"/ 28-29 мая 2019. С.21		
	3. Д.Б. Куроптев, А.Е. Зарянкин,		
	Ультрасверхвысокие температурные		
	технологии в паротурбинном строении //		_
	Сборник тезисов докладов II Научно-	11.2019	3
	технической конференции студентов		
	"Энергетика. Технологии будущего"/ 19-21		
	ноября 2019. С.16		
	4. М.С. Постникова, Д.Б. Куроптев,		
	Исследование эффективности		_
	высокотемпературных циклов А.Е.	12.2019	3
	Зарянкина // Всероссийский конкурс		
	«Новая идея». 20 декабря 2019.		
	5. В.И. Крутицкий, Д.Б. Куроптев, А.Е.		
	Зарянкин, Цилиндр низкого давления с		
	полуторным выхлопом на базе		
	двухъярусной ступени с вильчатой рабочей		
	лопаткой// Тезисы докладов XXVI	03.2020	3
	Международной научно-технической		
	конференции студентов и аспирантов		
	«Радиоэлектроника, электротехника и		
	энергетика». 12-13 марта 2020. С. 963.		

	 б. Д.Б. Куроптев, А.Е. Зарянкин, Высокотемпературная паровая турбина нового поколения// Сборник тезисов докладов III Научно-технической конференции студентов "Энергетика. 	05.2020	3
	Технологии будущего"/ 20-22 мая 2020. С.59		
V.	Оформление диссертации		
	Написание текста и подготовка презентации	03-05.	5
		2020	

5. Рекомендуемая литература

- 1. Трухний, А.Д. Парогазовые установки электростанций// А.Д. Трухний// Учебное пособие для вузов – М.: Издательство МЭИ, 2017.
- Костюк, А.Г. Паровые и газовые турбины для электростанций / А.Г. Костюк, В.В. Фролов, А.Е. Булкин, А.Д. Трухний // Учебное пособие для вузов - М.: Издательство МЭИ, 2016.
- 3. Трухний А.Д., Макаров А.А., Клименко В.В. «Основы современной энергетики. Часть 1.» М.: Издательство МЭИ, 2002. –376 с.
- 4. Костюк А.Г., Грибин В.Г., Трухний А.Д. Концепция паровых турбин ноугольной энергетики России. 1. вого поколения для Часть // Экономическое И техническое обоснование концепции Теплоэнергетика. - 2010. - № 12. - С. 23 - 31.
- Седлов А.С., Зарянкин, А.Е. Технические решения создания новых двухъярусных ступеней для цилиндров низкого давления с повышенной пропускной способностью / А.С. Седлов, А.Е. Зарянкин, А.Н. Рогалев, Е.Ю. Григорьев, И.В. Гаранин, С.К. Осипов// Вестник ИГЭУ. -2016, №3 – С. 27-34.
- Седлов А.С., Зарянкин, А.Е. Перспективы применения двухъярусных проточных частей в цилиндрах низкого давления мощных паровых турбин / А.С. Седлов, А.Е. Зарянкин, А.Н. Рогалев, Е.Ю. Григорьев, И.В. Гаранин, С.К. Осипов// Вестник ИГЭУ. -2016, №2 – С. 1-8.
- Разработка научных основ проектирования электростанций с высокотемпературными паровыми турбинами: Сборник статей. – М.: Издательство МГТУ им. Баумана, 2009. – 300 с.
- Зарянкин, А.Е., Регулирующие и стопорно-регулирующие клапаны паровых турбин/ А.Е. Зарянкин, Б.П. Симонов // Москва: изд-во МЭИ, 2005. 359 с.

6. Краткие сведения о студенте:

Домашний адрес г. Брянск, ул. Ульянова д. 117, кв. 115

Телефон служебный +79208530562 домашний

Примечание: задание брошюруется вместе с диссертацией и с отзывами руководителя и рецензентов.

АННОТАЦИЯ

В магистерской диссертации спроектированы паровая турбина на суперсверхкритические параметры пара и основная паровая турбина для высокотемпературного паропарового цикла А.Е.Зарянкина.

Структура магистерской диссертации состоит из введения, основной части, состоящей из 7 глав, заключения, списка использованной литературы и приложений.

Во введении обоснована актуальность темы, поставлена цель написания магистерской диссертации, определены объект и предмет исследования, поставлены задачи.

В главе 1 приведён краткий обзор современных высокотемпературных блоков ведущих турбиностроительных фирм с оценкой предельно допустимых начальных параметров пара в таких блоках, работающих по стандартному циклу Ренкина, превышение которых в термодинамическом плане ведет не к повышению, а к снижению экономичности паротурбинных блоков.

В главе 2 произведён тепловой и аэродинамический расчеть нового базового блока мощностью 300 МВт при начальных параметрах пара P₀=30 МПа и t₀=650°C. Спроектирована проточная часть паровой турбины на суперсверхкритические параметры пара.

В главе 3 приведен расчёт тепловой схемы паропаровой установки, выполненной по тепловой схеме А.Е. Зарянкина, с начальными параметрами пара: P₀=35 МПа t₀=1500°C. КПД такого цикла находится на уровне современных ПГУ (60-65%).

В главе 4 представлен расчёт тепловой схемы утилизационного паротурбинного блока высокотемпературного паропарового цикла. КПД утилизационного блока находится на уровне паротурбинных блоков, работающих с параметрами сверхкритического давления.

Глава 5 включает в себя аэродинамический расчет высокотемпературной паровой турбины нового поколения и проектирование ее проточной части.

В главе 6 осуществлена разработка спецификации оборудования для новой высокотемпературной установки, показаны технические решения, используемые для повышения эффективности паротурбинных блоков. Представлены 3D модели оборудования высокотемпературной турбины.

Глава 7 содержит оценку эффективности использования новой паропаровой установки на ТЭС нового поколения. Окупаемость нового блока сравнима с окупаемостью блоков на СКД.

ANNOTATION

The ultra-supercritical steam turbine and the main steam turbine for hightemperature steam-steam Zaryankin cycle are designed in the master's thesis.

The structure of the master's thesis consists of an introduction, the main part, divided into seven chapters, conclusions, a list of used literature and applications.

The introduction substantiates the relevance of the topic, sets the goal of writing a master's thesis, identifies the object and the subject of the study, sets tasks.

Chapter 1 gives a brief overview of modern high-temperature power units, developed by leading turbine building companies, and an estimate of the maximum permissible initial steam parameters (exceeding which thermodynamically decrease the efficiency) in such units, operating according to the standard Rankine cycle,

Chapter 2 shows the thermal and aerodynamic calculations of a new base power unit with a capacity of 300 MW with initial steam parameters $P_0=30$ MPa and $t_0=650^{\circ}$ C. The flow part of the steam turbine was designed for ultrasupercritical steam parameters.

Chapter 3 provides the heat scheme calculation of a steam-steam power plant, made according to the Zaryankin cycle, with initial parameters of steam:

 $P_0=35$ MPa and $t_0=1500^{\circ}$ C. The efficiency of this cycle is at the level of modern combined cycle plants (60-65%).

The heat scheme calculation of the utilization steam turbine unit for hightemperature steam-steam cycle is shown in chapter 4. The utilization unit efficiency is at the level of the steam turbine power units, operating with supercritical-pressure steam parameters.

Chapter 5 consists of the aerodynamic calculation of the new breed hightemperature steam turbine and its flow part design.

Chapter 6 is devoted to development of the equipment specification for a new high-temperature unit, and technical solutions used to increase the efficiency of steam turbine units are shown. 3D models of high-temperature turbine equipment are presented.

Chapter 7 contains the use efficiency assessment of a new steam-steam power plant at a new breed heat power plant. The payback of a new power unit is comparable to the payback of power plants, operating with supercritical-pressure steam parameters.

СОДЕРЖАНИЕ

Введение15
Обозначения16
Глава 1. Краткий обзор современных высокотемпературных блоков
ведущих турбиностроительных фирм с оценкой предельно допустимых
начальных параметров пара в таких блоках, работающих по стандартному
циклу Ренкина17
Глава 2. Тепловой и аэродинамический расчет нового базового
блока, мощностью 300 MBт при начальных параметрах пара P ₀ =30 MПа
t ₀ =650°C27
2.1. Расчёт тепловой схемы
2.1.1. Предварительная оценка процесса расширения турбины в
h,s-диаграмме28
2.1.2. Расчет подогревателей
2.2. Аэродинамический расчет
2.2.1. Расчёт числа ступеней и распределение теплоперепадов по
ступеням турбины части высокого давления
2.2.2. Расчет числа ступеней, диаметров и теплоперепадов по
ступеням цилиндра среднего давления45
2.2.3. Расчет числа ступеней, диаметров и теплоперепадов по
ступеням цилиндра низкого давления58
2.2.4. Расчет последней ступени ЦНД
2.2.5. Оценка предельной мощности трехцилиндровой турбины
при использовании полуторного выхлопа82
Глава 3. Расчёт тепловой схемы паропаровой установки,
выполненный по тепловой схеме А.Е.Зарянкина, с начальными
параметрами пара: P ₀ =35 МПа t ₀ =1500°С

3.1. Разработка принципиально новой высокотемпературной
паропаровой установки
3.2. Расчёт тепловой схемы высокотемпературной (основной)
паровой турбины
3.2.1. Расчет подогревателей94
3.2.2. Технико-экономические показатели
Глава 4. Расчёт тепловой схемы утилизационного паротурбинного
блока,
4.1. Расчёт тепловой схемы утилизационного блока 103
4.1.1. Расчет подогревателей105
4.1.2. Технико-экономические показатели
4.1.3. Технико-экономические показатели
высокотемпературного паропарового цикла с учетом охлаждения
основной турбины112
Глава 5. Аэродинамический расчет высокотемпературной паровой
турбины116
5.1. Расчёт числа ступеней и распределение теплоперепадов по
ступеням турбины части высокого давления высокотемпературной
турбины116
5.2. Расчёт числа ступеней и распределение теплоперепадов по
ступеням турбины части среднего давления высокотемпературной
турбины
5.3. Расчёт числа ступеней и распределение теплоперепадов по
ступеням турбины части низкого давления давления
высокотемпературной турбины142
Глава 6. Новые технические решения при создании паровых турбин
спелующего поколения 153

7.2. Расчет экономической эффективности паропаровго блока с начальной температурой пара t₀=1500°C с охлаждением.......165

Основные выводы и результаты.....169

Список литературы170

введение

В Российской Федерации более 60% оборудования электростанций работают за пределом своего паркового ресурса с КПД ниже 40%, и в скором времени может возникнуть дефицит электроэнергии, покрыть который на основе старых технологий даже теоретически окажется невозможно.

В этой связи актуальность разработки и внедрения новых технологических решений в энергетической отрасли не вызывает сомнений.

Переход к высокотемпературным паротурбинным циклам является перспективным способом в производстве электроэнергии. В мировом турбостроении уже много лет осваиваются и реализуются такие технологические решения при строительстве новых энергетических блоков.

В Европе, Северной Америке и Японии начиная с 60-ых годов активно проектировались энергоблоки с повышенными параметрами пара, и уже сейчас ступень с начальными параметрами P₀=28-30 МПа t₀=580-650°С за рубежом можно считать освоенной. Дальнейший этап развития паротурбинных блоков высокотемпературных является переход К ультрасверхкритическим параметрам пара p₀=30-35 МПа и t₀=700-750°C. Для достижения этой цели в Европейском Союзе создана программа AD700. В отечественной энергетике стоит отметить энергоблок Каширской ГРЭС Р-100-300 с начальной температурой пара $t_0=650$ °С, эксплуатируемый в 60ые годы прошлого века. После его закрытия существенных разработок, внедрённых в работу в нашей стране, не было. На данный момент в России начальная температура свежего пара не превышает 580°С.

Для того, чтобы обеспечить высокую конкуренцию в мировой энергетической отрасли, необходимы новые технологические решения, не имеющие аналогов в мировом турбостроении.

В представленном исследовании предлагается новый паротурбинный цикл, с помощью которого можно повысить экономичность до уровня современных парогазовых установок, а также уменьшить количество вредных выбросов в окружающую среду.

ОБОЗНАЧЕНИЯ

ПГУ	Парогазовая установка
ГТУ	Газотурбинная установка
ΓТ	Газовая турбина
КПД	Коэффициент полезного действия
ПТУ	Паротурбинная установка
ПТ	Паровая турбина
ПСУ	Паросиловая установка
ТЭС	Тепловая электростанция
ЦВД	Цилиндр высокого давления
ЦСД	Цилиндр среднего давления
ЦНД	Цилиндр низкого давления
КУ	Котёл-утилизатор
ПВД	Подогреватель высокого давления
ПНД	Подогреватель низкого давления
Д	Деаэратор
ЭК	Энергетический котёл
ТО	Теплообменник
ВΠ	Водородный пароперегреватель
ЭГ	Электрогенератор
ОК	Осевой компрессор
КС	Камера сгорания
ППВД	Пароперегреватель высокого давления
ППНД	Пароперегреватель низкого давления
ИВД	Испаритель высокого давления
ИНД	Испаритель низкого давления
ЭВД	Экономайзер высокого давления
ЭНД	Экономайзер низкого давления
ГПК	Газовый подогреватель конденсата
ПЭН	Питательный электронасос
КЭН	Конденсатный электронасос
ЭНРК	Электронасос рециркуляции конденсата
ДН	Дренажный насос
К	Конденсатор
СК	Стопорный клапан
СРК	Стопорно-регулирующий клапан
ССКП	Суперсверхкритические параметры
УСКП	Ультра-сверхкритические параметры

Глава 1. Краткий обзор современных высокотемпературных блоков ведущих турбиностроительных фирм с оценкой предельно допустимых начальных параметров пара в таких блоках, работающих по стандартному циклу Ренкина

B Российской Федерации основная лоля электроэнергии производится на электростанциях, где происходит преобразование тепловой энергии топлива в механическую на валу турбины, а затем механической энергии в электрическую в генераторе. Что касается возобновляемых источников энергии, то выработка электроэнергии таким способом нецелесообразна по ряду причин, характерных для нашей огромной страны. Именно поэтому увеличение эффективности оборудования электрических станций приоритетным является направлением в отечественной электроэнергетике.

К перспективным способам повышения коэффициента полезного действия можно отнести: создание трехконтурных утилизационных парогазовых установок и поднятие начальных параметров пара в традиционных паротурбинных блоках. Поскольку в России отсутствует налаженное производство газотурбинных установок мощностью 200-300 МВт с высокой начальной температурой, то надеяться на быстрое развитие ПГУ будет неоправданно. Тем более В условиях политических взаимоотношений России с миром в настоящее время отсутствие отечественной ГТУ средней мощности может сильно сдерживать развитие парогазовых технологий в нашей энергетике. Однако, наша страна имеет высокий уровень производства паротурбинных блоков, который позволяет перейти к следующему этапу развития энергоблоков. Повышение параметров уровня суперсверхкритических значений, пара ДО соответствующим следующим величинам: начальное давление 25-30 МПа и температура перед турбиной и в промежуточном перегреве 560-650°С, даст однозначный прирост КПД паросиловых установок, работающих по циклу

Ренкина. Стоит отметить следующие преимущества перехода к повышенным параметрам пара:

- снижение расхода топлива за счет роста эффективности установки;
- уменьшение вредных выбросов в окружающую атмосферу;
- уменьшение выбросов CO₂ на единицу вырабатываемой мощности;
- нет зависимости от вида используемого топлива в отличие от ПГУ утилизационного типа.

Для того чтобы создать современный паротурбинный с высокими начальными параметрами пара, необходимо изучить историю перехода к суперсверхкритическим параметрам зарубежной и советской энергетики.

Первопроходцем в области ССКП можно назвать энергоблок Эддистоун-1, введенный в эксплуатацию в 1954 году в Соединенных штатах Америки. Его мощность составляла 325 МВт, а начальные параметры 35,9 МПа и температура 648/565/565°С.

Спустя некоторое время, в 1966 году, в СССР был введена в эксплуатацию турбина с противодавлением СКР-100 на Каширской ГРЭС [16]. Начальное давление которой составляло 29,4 МПа, а температура 650°С. В течении 15 лет отечественная энергетика получала огромный опыт в освоении ССКП: проводились разработки системы охлаждения статоров и роторов паровой турбины, исследовались температурные режимы наиболее напряженных узлов энергоблока и т.д.

В 1978 году в СССР велась разработка энергоблока мощностью 800 МВт с начальными параметрами 30 МПа и 650°С, при которой использовался опыт эксплуатации СКР-100. Такой переход позволил бы сэкономить расход топлива до 130 тыс.т условного топлива в год, если сравнивать с блоком на СКД К-800-240 [1].

Необходимо отметить, что во второй половине 20 века, помимо увеличения начальных параметров энергоблоков, в турбостроении активно

занимались аэродинамическим совершенствованием проточной части паровой турбины. Вследствие чего был создан энергоблок с ССКП нового поколения в Японии – Кавагое-1. Перед турбиной давление 30,5 МПа и температура 566/566/566°С. Введен в промышленную эксплуатацию данный блок в 1989 году.

Значительная часть энергоблоков с суперсверхкритическими параметрами была введена с 1990 по 2000 год. В таблице 1 представлены основные параметры энергоблоков с повышенным параметрами.

Таблица 1

№ эне рго бл ока п/п	Страна, электрос танция	Год ввода в экплуа тацию	Топлив о	Температура свежего пара и пара промежуточ ных перегревов, °C	Начал ьное давле ние	Электрическая мощность, МВт	Давлен ие в конден саторе	КПД энерго блока нетто, %
1	США, Эддисто ун-1	1954	Уголь	648/565/565	35,9	325	-	-
2	США, Фило-б	1965	Уголь	621/565/538	32,3	125	-	-
3	Россия, Каширс кая ГРЭС	1966	Уголь	650/565	29,4	100	-	_
4	Япония, Вакамац у	1968	Уголь	593/593/593	31	50	-	-
5	Япония, Кавагое- 1	1989	Сжиже	566/566/566	30,5	700	4	41,9
6	Япония, Кавагое- 2	1990	нныи газ	571/569/569	-	-	-	45-46
7	Дания, Эсбьерг 3	1992	Уголь	562/562	25	350	2,3	45,3
8	Германи я, Любек	1995	Уголь	580/560	27,5	400	-	45,7
9,1	Дания, Скербек 1 (2)	1997	Газ	582/580/580	29,5	395	2,3	47

№ эне рго бл ока п/п	Страна, электрос танция	Год ввода в экплуа тацию	Топлив о	Температура свежего пара и пара промежуточ ных перегревов, °C	Начал ьное давле ние	Электрическая мощность, МВт	Давлен ие в конден саторе	КПД энерго блока нетто, %
11	Дания, Альборг	1997	Уголь	580/580/600	28,5	400	2,35	49
12	Япония, Матсура 2	1998	Уголь	593/593/593	25,6	1000	-	45
13	Германи я, Гесслер	1998	Уголь	580/600	27,5	740	3,6	45,4
14	Германи я, Бексбах 2		Уголь	575/595/-	25	750	-	46,3
15	Япония, Тачибан аван	-	-	600/610	25	1050	-	44
16	Южная Корея, Данжин ТЭС	2007	-	596/596	25,5	500	-	-
17	Германи я, Люнен	2013	-	600/610	28,5	810	-	-
18	Китай, Датанг Хушан	2013	-	571/569	25,4	2x660	-	-
19	Германи я, Даттель н 4	2014	_	600/620	30,4	1100	-	45%
20	Китай, Хайфенг	2014	-	600/610	27	2x1000	-	-

Из таблицы 1 можно сделать вывод, что лидерами в освоении ССКП являются Япония, Германия, Дания.

В современной России проблемой перехода к повышенным параметрам паротурбинных блоков занимались: Шварц А.Л., Авруцкий Г.Д., Вербовецкий Э.Х., Тумановский А.Г. Алтухов М.Ю., Тугов А.Н. (ВТИ), Зарянкин А.Е., Костюк А.Г., Грибин В.Г., Трухний А.Д., Рогалёв

Н.Д., Дорохов Е.В., Седлов А.С., Комаров И.И., Киндра В.О. (МЭИ), Ноздренко Г.В., Шепель В.С. (НГТУ) [2-11].

В зарубежной литературе можно отметить следующие работы. Когеа Power Engineering Company разрабатывает проект энергоблока мощностью 1000 МВт с начальными параметрами пара 26,1 МПа и 620/621°С, коэффициент полезного действия составит 45% [12]. Паровая турбина Alstom STF 100, предназначенная для энергоблока Datteln 4 (Германия). Турбоагрегат рассчитан на начальное давление 30,4 МПа и 600/620°С и его мощность составляет 1100 МВт, КПД такого энергоблока превысит 45% [13].

В статьях [6,7] рассматривается турбоагрегат К-660-30 с начальными параметрами 30 МПа и 600/620°С, КПД нетто такой установки составит 45%.

Как показывают исследования японских турбостроительных фирм, при повышении начальных параметров энергоблока относительный КПД увеличивается на 2-10% в относительных величинах. Данная зависимость продемонстрирована на рис. 1.

Рис. 1. Относительное повышение КПД турбинной установки по отношению к КПД турбин с параметрами 24,1 МПа и 538/566°С

Поскольку западная энергетика уже уверенно освоила суперсверхкритические параметры пара, зарубежные фирмы ведут

разработки в области ультрасверхкритических параметров для энергоблоков нового поколения. Так, например, европейский проект AD-700 подразумевает под собой создание пылеугольного паротурбинного блока с двумя промежуточными перегревами и параметрами пара на входе 35-39 МПа 700-720°C [14,15]. Аналогичная программа имеется и в США с начальными параметрами 35 МПа и 760°C.

Необходимо отметить, что при переходе к повышенным параметрам пара возникает проблема, которая состоит в том, что при достижении предельной начальной температуры пара в промежуточном перегреве из последней ступени конденсационной турбины выходит сухой насыщенной пар, и дальнейшее повышении начальной температуры пара ведёт не к повышению, а к снижению КПД паротурбинного цикла, поскольку при дальнейшем повышении начальной температуры пара избыточная тепловая энергия перегретого пара, покидающего последнюю ступень цилиндра низкого давления турбины, повышает суммарный расход теплоты без производства полезной работы. С целью определения предельных начальных температур для различных начальных и конечный давлений был произведен расчет процесса расширения. При этом для простоты расчета относительные внутренние коэффициенты полезного действия были постоянными BO всех случаях И принимались равными: η_{оі}^{ЦВД}=η_{оі}^{ЦСД}=η_{оі}^{ЦНД}=0,88. Расчет производился со следующими начальными и конечными давлениями соответственно 24,30,35 МПа и 3,5, 4,5 и 6 кПа.

Основные параметры перед цилиндрами и после приведены в таблицах 2-4.

Таблица 2

Р ₀ , МПа	24	24	24
t ₀ , °C	760	787	809,8
Р _к , Па	6000	4500	3500
h ₀ , кДж/кг	3943	4015	4074
S ₀ , кДж/кг*К	7	7	7
h _{ztцвд} , кДж/кг	3329	3379	3421

h _{zцвд} , кДж/кг	3402	3455	3500
S _{ZЦВД} , кДж/кг*К	7	7	7
Рпп, МПа	4,8	4,8	4,8
t _{IIII} , °C	760	787	810
hпп, кДж/кг	4043	4108	4162
Sпп, кДж∕кг*К	8	8	8
h _{кt} , кДж/кг	2364	2346	2329
h _к , кДж/кг	2566	2557	2549
X _K	1	1	1

Таблица 3

Р ₀ , МПа	30	30	30
t ₀ , °C	793	820	843
Р _к , Па	6000	4500	3500
h ₀ , кДж/кг	4001	4074	4136
S ₀ , кДж/кг*К	7	7	7
h _{ztцвд} , кДж/кг	3370	3421	3465
h _{zцвд} , кДж/кг	3446	3500	3546
S _{ZЦВД, К} Дж/кг*К	7	7	7
Р _{пп} , МПа	6	6	6
t _{IIII} , °C	793	820	843
hпп, кДж/кг	4116	4182	4237
Sпп, кДж/кг*К	8	8	8
h _{кt} , кДж/кг	2354	2336	2319
h _к , кДж/кг	2566	2557	2549
X _K	1	1	1

Таблица 4

Р ₀ , МПа	35	35	35
t ₀ , °C	817	843	866
Р _к , Па	6000	4500	3500
h₀, кДж/кг	4044	4115	4178
S ₀ , кДж/кг*К	7	7	7
h _{ztцвд} , кДж/кг	3400	3450	3495
h _{zцвд} , кДж/кг	3477	3530	3577
\mathbf{S}_{z цвд, кДж/кг*К	7	7	7
Рпп, МПа	7	7	7
t _{nn} , °C	817	843	866

hпп, кДж/кг	4170	4233	4289
Sпп, кДж∕кг*К	8	8	8
h _{кt} , кДж/кг	2348	2329	2312
h _к , кДж/кг	2566	2557	2549
X _K	1	1	1

Исходя из проведенных расчетов, можно определить предельную начальную температуру и температуру промперегрева при различных начальных и конечных давлениях, при которых из последний ступени выходит пар со степенью сухости равной 1. Данная зависимость продемонстрирована на рис. 2. Диапазон предельных температур для блоков с повышенными параметрами составляет 760-865°C, дальнейшей повышение температур приведет к снижению КПД паросиловой установки, так как избыточная тепловая энергия перегретого пара, покидающего последнюю ступень конденсационной турбины, повышает суммарный расход теплоты без выработки электрической мощности.

Рис. 2. Зависимость предельных температур блоков с повышенными параметрами Процесс расширения пара при предельных начальных температурах представлен на рис. 3.

Рис. 3. Процесс расширения пара в турбине при различных предельных начальных параметрах и давлении в конденсаторе 3,5 кПа

Проведенный обзор энергоблоков с повышенными параметрами позволяет сделать следующие заключения:

-повышение начальных параметров приводит к росту эффективности традиционных паротурбинных блоков, но при превышении начальных

температур выше предельных, КПД установок будет снижаться, поскольку избыточная тепловая энергия перегретого пара, покидающего последнею ступень конденсационной турбины увеличивает суммарный расход теплоты без производства электрической мощности;

-в условиях ужесточения ограничений по вредным выбросам в окружающую среду, повышение начальных параметров энергоблока является весьма перспективным способом снижения выбросов CO₂, NO_x, SO_x и твердых частиц;

- зарубежная энергетика давно перешла на ССКП и стремится к следующему этапу начальных параметров пара энергоблока, называемыми ультрасверхкритическими;

- в России проведено множество работ на предмет создания энергоблока с повышенными параметрами пара, имеются работы по созданию пылеугольного котла, паровой турбины, материалам, необходимым при работе с высокими температурами

-отечественная энергетика имеет опыт эксплуатации энергоблока с суперсверхкритическими параметрами, а значит, готова к разработке энергоблока нового поколения.

Глава 2. Тепловой и аэродинамический расчет нового базового блока, мощностью 300 МВт при начальных параметрах пара Р₀=30 МПа t₀=650°C.

2.1. Расчёт тепловой схемы

Цель данного расчёта – рассмотреть увеличение эффективности паротурбинных блоков при переходе к повышенным параметрам пара, разработка новой паровой турбины мощностью 300 МВт на ССКП и сравнение ее экономичности по сравнению с блоком на СКД К-300-240. На рис. 4 представлена принципиальная схема установки.

Рис. 4. Принципиальная тепловая схема К-300-30: КА – котельный агрегат, ЦВД -цилиндр высокого давления, ЦСД -цилиндр высокого давления, ЦНД -цилиндр высокого давления, ЭГ – электрогенератор, К – конденсатор, КН – конденсатный электронасос, ПН – питательный электронасос насос КА, Д – деаэратор, П1..П7 – регенеративные подогреватели,

Исходные данные для расчёта тепловой схемы представлены в табл. 5.

Таблица	5
---------	---

Номинальная электрическая мощность <i>N</i> _э , МВт	300
Частота вращения <i>n</i> , с ⁻¹	50
Давление пара перед турбиной <i>р</i> ₀ , МПа	30

Температура пара перед турбиной $t_0,^{\circ}$ С	650
Температура перегретого пара после промежуточного перегрева <i>t</i> _{пп} , °C	620
Давление пара после промежуточного перегрева <i>р</i> пп, МПа	3,6
Давление отработавшего пара <i>р</i> к, кПа	3,5
Температура питательной воды <i>t</i> _{пв,} °C	280
Количество регенеративных подогревателей	8

2.1.1. Предварительная оценка процесса расширения турбины в h,sдиаграмме

Параметры свежего пара перед стопорными клапанами $P_0=30~M\Pi a$, $t_0=650$ °C. По этим параметрам найдем энтальпию и энтропию пара $h_0=3599,677~\kappa \square c/\kappa c$, $S_0=6,4077~\kappa \square c/\kappa c \cdot K$.

Определим потери в стопорном и регулирующем клапанах:

$$\Delta P_{\kappa n} = 0,05 \cdot P_0 = 1,5 M\Pi a.$$

Давление после клапанов равно:

$$P_0' = P_0 - \Delta P_{\kappa \eta} = 30 - 1,5 = 28,5 M \Pi a.$$

Найдем параметры пара на входе в турбину при неименной энтальпии $h_0 = const = 3599,677 \ \kappa \square \kappa / \kappa r$, $S_0^{'} = 6,4287 \ \kappa \square \kappa r$.

Определим давление пара за ЦВД, учитывая, что давление после промперегрева $P_{nn} = 3,6 M\Pi a$, а потери давления в тракте промежуточного перегрева $\Delta p / p_{nn} = 0,1$:

$$P_1 = 1, 1 \cdot 3, 6 = 4 M\Pi a.$$

Найдем значение энтальпии за ЦВД:

 $h_1 = h_0 - (h_0 - h_{1t})\eta_{oi}^{IIBII} = 3599,667 - (3599,667 - 2999,271) \cdot 0,88 = 3071,520$ кДж / кг, где h_{1t} – энтальпия пара при изоэнтропийном расширении;

 $\eta_{oi}^{\mathcal{U}B\mathcal{J}}=0,85...0,9$ - КПД ЦВД ориентировочный. Принимаем $\eta_{oi}^{\mathcal{U}B\mathcal{J}}=0,88.$

Параметры пара после промперегрева $P_{nn} = 3,6 M\Pi a$, $t_{nn} = 620 °C$, $h_{nn} = 3723,869 \kappa \square k$, $S_{nn} = 7,4738 \kappa \square k$.

Давление пара за ЦСД выбираем $P_2 = 0,27 \ M\Pi a$, для того чтобы обеспечить размеры ЦНД приемлемыми по конструктивным соображениям (5 ступеней в одном потоке).

Найдем величину энтальпии за ЦСД:

$$h_2 = h_{nn} - (h_{nn} - h_{2t})\eta_{oi}^{\mu C \mu} = 3723,869 - (3723,869 - 2920,706) \cdot 0,91 = 2992,991 \ \kappa \mu c / \kappa c,$$

где h_{2t} – энтальпия пара при изоэнтропийном расширении;

Оценим потери в перепускном патрубке между ЦСД и ЦНД по формуле:

$$\Delta P_{nep} = 0,02 \cdot P_2 = 0,02 \cdot 0,27 = 0,0054 M\Pi a.$$

Давление пара перед ЦНД:

$$P_3 = P_2 - \Delta P_{nep} = 0,27 - 0,0054 = 0,265 M\Pi a.$$

Определим параметры пара перед ЦНД $P_3 = 0,265 \ M\Pi a$, $t_3 = 261 \degree C$, $h_3 = 2992,991 \ \kappa \square \kappa / \kappa c$, $S_3 = 7,6229 \ \kappa \square \kappa / \kappa c \cdot K$.

Найдем энтальпию пара за ЦНД:

 $h_{\kappa} = h_{3} - (h_{3} - h_{\kappa})\eta_{oi}^{\mu\mu\mu} = 2992,991 - (2992,991 - 2280,224) \cdot 0,84 = 2394,393 \text{ KDH}/\text{KC}/\text{KC},$

где $h_{\rm kt}$ – энтальпия пара при изоэнтропийном расширении;

 $\eta_{oi}^{\mathcal{U}H\mathcal{I}}=0,75$...0,85 - КПД ЦНД ориентировочный. Принимаем $\eta_{oi}^{\mathcal{U}H\mathcal{I}}=0,84.$

2.1.2. Расчет подогревателей

В соответствии с принятым вариантом тепловой схемы суммарное повышение энтальпии питательной воды от h_{κ} в конденсаторе до $h_{\Pi B}$ перед

парогенератором распределяется по подогревателям, исходя из принципа равномерного подогрева в ПНД и ПВД, и выбираются параметры греющего пара в подогревателях и отборах турбины.

Принимаем деаэратор повышенного давления $p_{\partial}=0,62$ МПа и температурой насыщения $t_{\partial}=160$ °C.

Исходя из тепловой схемы (рис. 4), найдем температуры конденсата и питательной воды, выходящих из деаэратора, ПНД (4шт.) и ПВД (3шт.) соответственно.

$$\Delta t_{\Pi B \mathcal{A}} = \frac{t_{n.s} - t_{\partial}}{n_{\Pi B \mathcal{A}}} = \frac{280 - 160}{3} = 40 \ ^{\circ}C.$$

$$\Delta t_{\Pi H \square} = \frac{t_{\partial} - t_{\kappa}}{n_{\Pi H \square} + 1} = \frac{160 - 26,7}{4 + 1} = 26,6 \ ^{\circ}C.$$

Найдем температуры воды выходящей из подогревателей. Результаты представлены в табл. 6.

Таблица 6

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
<i>t</i> ₈ = <i>t</i> _{п.в} =280°С	<i>t</i> ₇ =240°C	t ₆ =200C	t_{∂} =160°C	<i>t</i> ₄ =133,4°C	<i>t</i> ₃ =106,8°C	<i>t</i> ₂ =80,2°C	<i>t</i> ₁ =53,6°C

Учитывая, что недогрев конденсата греющего пара присутствует в ПНД и ПВД. Найдем температуры конденсата греющего пара с учетом недогрева. Примем $\Delta t_{\Pi B \mathcal{A}} = 2^{\circ} C$ и $\Delta t_{\Pi H \mathcal{A}} = 4^{\circ} C$. Результаты представлены в табл. 7.

Таблица 7

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
$t_8' = 282^\circ C$	$t_7 = 242^\circ C$	$t_{6} = 202^{\circ}C$	$t_{\partial} = 160^{\circ} C$	$t_4 = 137, 4^\circ C$	$t_3 = 110,8^{\circ}C$	$t_2 = 84, 2^\circ C$	$t_1 = 57, 6^{\circ} C$

Этим температурам соответствует энтальпия и давление конденсата греющего пара (по параметрам насыщения). Значение указаны в табл. 8.

Таблица 8

		Энтальпия	Давление
NHOHOF	Порядок	конденсата	конденсата
и подогревателя	отбора.	греющего пара,	греющего пара,
		$h_{j}^{'}$, кДж/кг	МПа
П-8	O-1	$h_1 = 1247,164$	$p_1 = 6,6123$
П-7	O-2	$h_2 = 1047,084$	$p_2' = 3,4659$
П-6	O-3	$h'_3 = 861,417$	$p'_3 = 1,6208$
Д	O-4	$h_4' = 675,575$	$p_4' = 0,62$
П-4	O-5	$h_{5} = 578,047$	$p_5 = 0,3357$
П-3	O-6	$h_{6} = 464,751$	$p_6' = 0,1473$
П-2	O-7	$h_7 = 352,585$	$p_7 = 0,0561$
П-1	O-8	$h_8' = 241,115$	$p_8 = 0,0178$

При транспортировке греющего пара из камеры отбора турбины до соответствующего подогревателя на преодоление путевых и местных сопротивлений затрачивается от 5 до 8% давления в отборе. Принимая, что затрачивается 6,5%. В отборах турбины должны быть соответственно давления $p_j' = 1,065 \cdot p_j'$. Принимая что затрачивается 6,5%. Давления представлены в табл. 9.

Таблица 9

O-1	O-2	O-3	O-4
$p_1^{"} = 7,042 \ M\Pi a$	р ₂ = 3,6913 <i>МПа</i>	$p_{3}^{"}=1,7262 M\Pi a$	$p_4^{"} = 0,6603 M\Pi a$
O-5	O-6	O-7	O-8
$p_5^{"}=0,3575 M\Pi a$	$p_{6}^{"}=0,1568 M\Pi a$	$p_7^{''} = 0,0597 M\Pi a$	$p_8^{"} = 0,0189 M\Pi a$

По конструктивным соображениям делаем 2 и 6 отбор за ЦВД и ЦСД. При этом давление $p_2^{''} = 4 M\Pi a$, $p_2^{'} = 3,756 M\Pi a$, $h_2^{'} = 1069,448 \kappa \square c/\kappa c$, $h_7 = 1056,68 \kappa \square c/\kappa c$ -энтальпия воды на выходе из П-7 (при температуре 244°C). Для подогревателя номер 3 $p_6^{''} = 0,27 M\Pi a$, $p_2^{'} = 0,254 M\Pi a$, $h_6^{'} = 537,584 \kappa \square c/\kappa c$, $h_3 = 516,545 \kappa \square c/\kappa c$ (при температуре 125°C).

Отложим давления отборов на процессе турбины в *h*,*s* – диаграмме. Этим давления соответствуют энтальпии отбора пара из турбины, представленные в табл. 10.

	1	
гаолина		v
	-	~

	Энтальпия греющего пара из
Номер отбора	турбины
	$h_{_j}$, кДж/кг
1	3220
2	3071
3	3480
4	3240
5	3090
6	2992
7	2780
8	2600

Найдем коэффициенты отбора пара из турбины на регенеративный подогрев в каждом подогревателе по формуле:

$$\alpha_{m} = \frac{\beta_{m}(h_{n.e}^{\text{\tiny GLX}} - h_{n.e}^{\text{\tiny GX}}) - (h_{m+1}^{'} - h_{m}^{'}) \sum_{m+1}^{z} \alpha_{j}}{h_{m} - h_{m}^{'}},$$

где β_m - коэффициент, указывающий количество питательной воды, протекающей через рассматриваемый подогреватель, отнесенное к

количеству питательный воды на входе в котел, h_m, h_m' - энтальпии отбираемого пара и его конденсата, α_j - относительные расходы пара на регенеративные подогреватели, расположенные выше по давлению, и через них организован «каскадный» слив конденсата.

Расчет представлен в табл. 11.

Таблица 11

Номер подогрев ателя	Расчетная формула	Отбор	$(1 - \sum \alpha) H_{iz},$ кДж/кг
-	Теплоперепад от состояния свежего пара до верхнего отбора	0	379
8	$\alpha_8 = \frac{1236 - 1057}{3220 - 1247}$	0,0912	135,4
7	$\alpha_7 = \frac{1056 - 852 - 0,0912(1247 - 1069)}{3071 - 1069}$	0,0933	198,2
6	$\alpha_6 = \frac{852 - 675 - 0,1845(1069 - 861)}{3480 - 861}$	0,0519	183,2
5(Д)	$\alpha_5 = \frac{675 - 560 - 0,2364(861 - 675)}{3240 - 675}$	0,0276	110,4
4	$\alpha_4 = 0,7360 \frac{561 - 516}{3090 - 578}$	0,0105	71,1
3	$\alpha_3 = \frac{0,7360(516 - 336) - 0,0105(578 - 537)}{2992 - 537}$	0,0568	141,7
2	$\alpha_2 = \frac{0,7360(336 - 224) - 0,0745(537 - 352)}{2660 - 352}$	0,028	115,3

1 $\alpha_1 = 0,6407 \frac{224 - 112}{2600 - 241}$	0,0304	108,6
--	--------	-------

Приведенный использованный теплоперепад равен:

$$\overline{H_i} = \sum (1 - \sum \alpha) H_{iz} = 1442,6 \ \kappa \square \mathcal{H} / \kappa \mathcal{E}.$$

Найдем расход свежего пара с учетом отборов:

$$G_1 = \frac{N_{3}}{\overline{H_i}\eta_{M}\eta_{3,c}} = \frac{300000}{1442,6\cdot0,996\cdot0,987} = 211,543 \text{ } \kappa c / c.$$

Расход в конденсатор:

$$G_{\kappa} = (1 - \sum \alpha) \cdot G_0 = 129,105 \ \kappa z \ / c.$$

Количество теплоты q_1 , затрачиваемой в котле на получение 1 кг пара с учетом того, что в промежуточном перегревателе протекает $1 - \alpha_8 - \alpha_7 = 0,8292$ кг пара, составляет:

$$q_1 = h_0 - h_8 + (1 - \sum_{6}^{7} \alpha)(h_{nn} - h_1) = 3599 - 1236 + 0,8155(3723 - 3071) = 2894,7 \ \kappa \square c/\kappa c.$$

Абсолютный внутренний КПД равен:

$$\eta_{ip} = \frac{H_i}{q_1} = \frac{1442, 6}{2894, 7} = 0,498.$$

Абсолютный электрический КПД равен:

$$\eta_{\mathfrak{g}} = \eta_{\mathfrak{g}} \eta_{\mathfrak{g}} \eta_{\mathfrak{g}} \eta_{\mathfrak{g},\mathfrak{g}} = 0,498 \cdot 0,996 \cdot 0,987 = 0,4895.$$

Удельный расход теплоты:

$$q_i = \frac{1}{\eta_{in}} = \frac{1}{0,498} = 2,008 \quad \frac{\kappa \not \square \mathcal{H}}{\kappa \not \square \mathcal{H}} = 7228 \quad \frac{\kappa \not \square \mathcal{H}}{\kappa Bm \cdot u}$$

По результатам расчёта тепловой схемы построен процесс расширения пара в турбине в h-S координатах (рис. 5).

Рис. 5. Расширение пара в турбине К-300-30 в h,s - диаграмме В результате расчёта тепловой схемы абсолютный внутренний КПД составил 49,8%, что превышает КПД блока на СКД примерно на 4%.

2.2. Аэродинамический расчет

В данном разделе производится аэродинамический расчет разрабатываемого блока на ССКП мощностью. Определяется количество ступеней в ЦВД, ЦСД, ЦНД, а также длины лопаток каждой ступени. Проектируемая турбина будет иметь реактивное облопачивание во всех трех цилиндрах.

2.2.1. Расчёт числа ступеней и распределение

теплоперепадов по ступеням турбины части высокого давления

В таблице 12 представлены основные параметры первой и последней ступеней ЦВД. Приняты постоянными степень реактивности (р=0,5) и характеристическое отношение скоростей (X=u/c_ф=0,629).

Таблица 12

Параметр	Формула	Значение
Степень реактивности по всему ЦВД, р	Принимаем	0,5
Коэффициент скорости сопловой решетки ф	Принимаем	0,96
Коэффициент расхода сопловой решетки первой ступени	Принимаем	0,97
Перекрыша между высотами первой ступени Δ , м	Принимаем	0,002
Внутренний КПД ЦВД η _{оі}	Принимаем	0,88
Корневой диаметр первой ступени d _к , м	Принимаем	0,9
Средний диаметр первой ступени d ₁ , м	Принимаем (в первом приближении)	0,917
Эффективный угол выхода из сопловой решетки α_{12}	Принимаем	22,0
Энтропия перед первой ступенью S ₀ , кДж/(кг·К)	h,s-диаграмма	6,429
Температура перед первой ступенью t ₀ , °C	h,s-диаграмма	646
Оптимальное значение u/c _ф , м/c	$X = \frac{\varphi \cos \alpha_{1,*}}{2\sqrt{1-\rho}}$	0,629
Окружная скорость первой ступени u ₁ , м/с	$u = \pi dn$	144,042
Фиктивная скорость с _ф , м/с	$c_{\phi} = u/X$	228,859
Располагаемый теплоперепад сопловой решетки первой ступени H ₀₁ *, кДж/кг	$H_{01}^{*} = \frac{c_{\phi}^{2}}{2} (1 - \rho)$	13,094
теоретическая скорость c _{1t} , м/с	$c_{1t} = \sqrt{2H_{01}^*}$	161,827
Теоретическая энтальпия за сопловым аппаратом первой ступенью h _{lt} , кДж/кг	$h_{1t} = h_0^* - H_{01}^*$	3586,583
Удельный объем пара за первой ступенью при изоэнтропийном процессе расширения v _{1t} , м3/кг	h,s-диаграмма	0,0136
Высота первой ступени l ₁₁ , м	$l_{11} = \frac{G_0 v_{1t}}{c_{1t} \mu_1 \pi d_1}$	0,017
Средний диаметр первой ступени d ₁ , м	$d_1 = d_{\kappa} + l_{11}$	0,917
Погрешность Δ, %	$\Delta = \frac{d_1 - d_1'}{d_1}$	-0,002

Продолжение таблицы 12
Высота рабочей лопатки первой ступени l ₂₁ , м	$l_{21} = l_{11} + \Delta$	0,019
Параметры пара за последней ступенью ЦВД:		
Энтальпия пара при изоэнтропийном расширении пара в ЦВД h _{zt} , кДж/кг	h,s-диаграмма	2999,271
Теоретический перепад на ЦВД Н ₀ *, кДж/кг	H_0 *= h_0 *- h_{zt}	600,406
Теплоперепад перепад на ЧВД ЦВД Н _{0i} , кДж/кг	Н _i =H ₀ *η _{оi} ^{ЦВД}	528,357
Объем за ЦВД U _{2z} , м ³ /кг	h,s-диаграмма	0,073
Высота рабочей лопатки последней ступени l _{2z} при линейно изменяющемся удельном объеме и постоянном корневом диаметре ЦВД	$l_{2z}^2 + l_{2z}d_{\kappa} = l_{21}d_{21}\frac{\upsilon_{2z}}{\upsilon_{2t}}$	0,09341
Средний диаметр последней ступени ЦВД d ₂₇ , м	$d_{2z} = d_{\kappa} + l_{2z}$	0,993

Произведем разбивку теплоперепадов, предположив, что диаметр ступеней и высота лопаток изменяются вдоль ЦВД линейно. Далее определяем по формулам для каждой ступени теплоперепад по статическим параметрам:

$$H_i = 12, 3 \cdot \left(\frac{d_i}{X_i}\right)^2 \cdot \left(\frac{n}{50}\right)^2 K_0,$$

где $K_0=1$ для первой ступени, $K_0=0.95$ для последующих ступеней;

Определяем среднее значение теплоперепадов:

$$H_{0cp} = rac{\sum_{i=1}^{z} H_i}{z} = 28,347$$
 кДж/кг,

где z=22 – принятое число ступеней.

Коэффициент возврата теплоты:

$$q_{t} = 4,8 \cdot 10^{-4} \cdot \left(1 - \eta_{oi}^{\text{LBA}}\right) \cdot H_{0}^{*} \frac{z - 1}{z} = 4,8 \cdot 10^{-4} \cdot \left(1 - 0,88\right) \cdot 600,396 \frac{22 - 1}{22} = 0,033.$$

Новое значение количества ступеней ЦВД:

$$z_{\text{HOBOR}} = \frac{H_0^*(1+q_t)}{H_{0cp}} = \frac{600,396(1+0,0415)}{28,347} = 21,88.$$

Следовательно, количество ступеней остается прежним Z=24.

Невязка после разбивки теплоперепадов:

$$\Delta = \frac{H_0^*(1+q_t) - \sum_{i=1}^z H_i}{z} = -0,156 \text{ кДж/ кг.}$$

Уточняем значение теплоперепадов на каждую ступень с учётом невязки:

$$H_i^{\text{HOBOP}} = H_i + \Delta.$$

Результаты расчётов представлены в табл. 13 и на рис. 6-8.

Таблица 13

№ ступени	di	l_i	Н _і , кДж/кг	Ні ^{новое} , кДж/кг
1	0,917	0,019	26,110	25,954
2	0,921	0,023	26,317	26,162
3	0,924	0,026	26,526	26,370
4	0,928	0,030	26,735	26,579
5	0,932	0,033	26,945	26,789
6	0,935	0,037	27,156	27,000
7	0,939	0,040	27,368	27,212
8	0,942	0,044	27,580	27,425
9	0,946	0,047	27,794	27,638
10	0,950	0,051	28,008	27,852
11	0,953	0,054	28,223	28,067
12	0,957	0,058	28,439	28,283
13	0,961	0,062	28,655	28,500
14	0,964	0,065	28,873	28,717
15	0,968	0,069	29,091	28,936
16	0,972	0,072	29,310	29,155
17	0,975	0,076	29,530	29,375
18	0,979	0,079	29,751	29,595
19	0,982	0,083	29,973	29,817
20	0,986	0,086	30,195	30,039
21	0,990	0,090	30,418	30,263
22	0,993	0,093	30,642	30,487

Рис. 6. Распределение средних диаметров по проточной части ЦВД

Рис. 5. Распределение высот рабочих лопаток по проточной части ЦВД

Рис. 7. Распределение теплоперепадов по проточной части ЦВД

Далее был детальный расчет первой нерегулируемой ступени ЦВД на среднем диаметре. Исходными данными послужили параметры за стопорным и регулирующим клапанами и данные, полученные из разбивки ЦВД. Расчёт представлен в таблице 14.

Таблица 14

Показатели	Формула		Первая ст	упень ЦВД
Показатель			Сопловая	Рабочая
Расход пара G, кг/с	Исходны	е данные	211	,543
Параметры пара перед				
ступенью:			20	500
давление p ₀ , МПа	Исходны	еданные	28,	500
энтальпия h ₀ , кДж/кг	Исходны	е данные	3599	9,677
удельный объем υ_0 , м ³ /кг	по h,s-диаграмме		0,01	3250
Кинетическая энергия на входе в ступень с ₀ ² /2, кДж/кг	Исходные данные			0
Давление торможения перед ступенью р ₀ *, МПа	$p_0^* = p_0^+ c_0^-$	$r_{0}^{2}/(v_{0}^{*}2)$	28,	500
Располагаемый теплоперепад от параметров торможения H ₀ *, кДж/кг	Из раз	бивки	25,	954
Располагаемый теплоперепад от статических параметров Н ₀ , кДж/кг	Из разбивки		25,	954
Отношение скоростей u/c_{φ}	$\left(\frac{u}{c_{\phi}}\right)_{opt} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}}$		0,6	529
коэффициент скорости ф	Принимаем	-	0,960	-
Фиктивная скорость с $_{\varphi},$ м/с	$C_{\phi} = \sqrt{2}$	$2H_0^*$	227	,833
Окружная скорость u ₁ ; u ₂ , м/с	$u = c_{\phi} \cdot$	$\left(\frac{u}{c_{\phi}}\right)_{opt}$	143	,397
Средний диаметр d ₁ ; d ₂ , м	$d = \frac{u}{\pi n}$		0,9	913
Степень реактивности:				
корневая р _к	Принимаем		0,4	450
средняя ρ_{cp}	Из разбивки		0,5	500
периферийная р _п	$\rho_n = \rho_{cp} + \frac{1,7}{1,7,4}$		0,5	531
Изоэнтропийный перепад в решетке Н _{0с} ; Н _{0р} , кДж/кг	H _{0c} =(1-p)H ₀ *	H _{0p} =ρH ₀ *	12,977	12,977
Теоретическая скорость на выходе c _{1t} ; w _{2t} , м/с	$c_{\rm lr} = \sqrt{2H_{\rm loc}}$	$w_{2t} = \sqrt{2H_{0p} + w_1^2}$	161,102	166,307

Параметры пара за решеткой				
давление p ₁ ; p ₂ , МПа	по h,s-диаграмме (по	по h,s-диаграмме (по	27,53	26,59
удельный объем v _{1t} ; v _{2t} , м ³ /кг	h ₁ =3586,67 кДж/кг, S ₀ =6,4287 кДж/кг)	h ₂ =3573,673 кДж/кг, S ₀ =6,4287 кДж/кг)	0,013600	0,013970
Скорость звука а1, а2, м/с	$a_1 = \sqrt{k \cdot p_1 \cdot v_{1t}}$	$a_2 = \sqrt{k \cdot p_2 \cdot v_{2t}}$	697,661	694,911
Число Маха M _{1t} ; M _{2t}	$M_{1t} = \frac{c_{1t}}{a_1}$	$M_{2t} = \frac{W_{2t}}{a_2}$	0,231	0,239
Предварительный коэффициент расхода µ'1	Принимаем	-	0,970	-
Предварительная площадь решетки F'1: м ²	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	-	0,0184	-
Предварительная высота решетки l' ₁ ; м	$l_1 = \frac{F_1'}{\pi d \sin \alpha}$	-	0,017	-
Коэффициент расхода µ ₁ ; µ ₂	Определяем	по рис. 3.4.	0,975	0,920
Площадь решетки F_1 ; F_2 , M^2	$F_1 = \frac{G \upsilon_{1t}}{\mu_1 c_{1t}}$	$F_2 = \frac{Gv_{2t}}{\mu_2 w_{2t}}$	0,0183	0,0193
Эффективный угол выхода α ₁₃ ; β ₂₃ , град	Принимаем	$\beta_2 = \arcsin \frac{F_2}{\pi d_2 l_2}$	22	20,705
Тип профиля решетки	Прини	имаем	C-90-22A	P-30-21A
Хорда профиля b ₁ ;b ₂ , м	Прини	имаем	0,035	0,030
Относительный шаг решетки	Прини	имаем	0,760	0,630
Высота решетки $l_1; l_2$, м	$l_1 = \frac{F_1}{\pi d \sin \alpha_1}$	$l_2 = l_1 + \Delta$	0,017	0,019
Количество лопаток в решетке z ₁ , z ₂ , шт	$z_1 = \frac{\pi d}{b_1 \overline{t}_1}$	$z_2 = \frac{\pi d}{b_2 \bar{t}_2}$	108	152
Относительная высота решетки l ₁ /b ₁ ; l ₂ /b ₂	l_1/b_1	l ₂ /b ₂	0,487	0,635
Отношение d ₂ /l ₂	-	d_2/l_2	-	47,925
Коэффициент скорости φ;ψ	Рис. 2.35	Рис. 2.35	0,965	0,950
Скорость на выходе потока из решетки с ₁ ; w ₂ , м/с	c ₁ = ϕ c _{1t}	w ₂ =ψw _{2t}	155,464	157,992
Относительная скорость на входе в рабочую решетку и абсолютная скорость на выходе из нее w ₁ ; с ₂ м/с	$w_1 = \sqrt{c_1^2 + u^2 - 2uc_1 \cos \alpha_1}$	$c_2 = \sqrt{w_2^2 + u^2 - 2uw_2 \cos \beta_2}$	58,243	56,032
Углы направления этих скоростей β ₁ ; α ₂ , град	$\beta_1 = \arg \frac{\sin \alpha_1}{\cos \alpha_1 - u/c_1}$	$\alpha_2 = \arctan \frac{\sin \beta_2}{\cos \beta_2 - u/w_2}$	89,265	85,506
Потери энергии в решетке ΔH _c ; ΔH _p кДж/кг	$\Delta H_{c} = (1 - \phi^{2})c^{2}_{1t}/2$	$\Delta H_p = (1 - \psi^2) w_{2t}^2/2$	0,892	1,348
Потери энергии с выходной скоростью $\Delta H_{B.c}$, кДж/кг	-	$\Delta H_{B.c} = c_2^2/2$	-	1,570

Коэффициент использования потерь энергии с выходной скоростью $\chi_{B.c}$	$\chi_{\rm BC} = \sin^2 \alpha_2$		0,994	
Располагаемая энергия ступени Е ₀ , кДж/кг	E ₀ =H ₀ *-;	$\chi_{\text{B.c}}\Delta H_{\text{B.c}}$	24,394	
Относительный лопаточный КПД _{Пол}	$\eta_{o.\pi} = (E_0 - \Delta H_c - \Delta H_c)$	$_{p}$ - $\Delta H_{BC}(1-\chi_{BC}))/E_{0}$	0,908	
Эквивалетные площади диафрагменного и переферийного зазоров ц. F. Vz., лd, δ., 10 ⁻⁴ м ²	$\mu_y F_y \sqrt{z_y}$	$\pi d_{\pi}\delta_{9}$	0,02886	0,00117
коэффициент расхода ц.	Опрелеляем	по рисунку	0.740	-
площадь зазора уплотнения F ₁₂ , м ²	πd _y δ _y -		0,011	-
число уплотнительных гребешков z _v	Принимаем		12,000	-
диаметр периферийный d _п , м ²	d+l1	d+l2	0,930	0,932
эквивалентный зазор δ _э	-	Принимаем	-	0,0004
Потери от утечек $\xi_{y}^{\sharp}; \xi_{y}^{6}$	$\xi_{y}^{\partial} = \frac{\mu_{y}\pi d_{y}k_{y}\eta_{o.\pi}}{\mu_{1}F_{1}\sqrt{z_{y}}}$	$\xi_{y}^{\theta} = \frac{\pi d_{\pi} \delta_{y} \eta_{o.\pi}}{F_{1}} \sqrt{\rho_{cp} + 1.8 l_{2} / d_{2}}$	0,016	0,021
поправочный коэффициент k _v	Определяем по рисунку 3.24	-	1,500	-
диаметр уплотнения d _y	d _y ≈d _κ	-	0,896	-
для рабочих лопаток с бандажом	-	$\delta_{a} = \frac{1}{\sqrt{1/(\mu_{a}\delta_{a})^{2} + z/(\mu_{r}\delta_{r})^{2}}}$	-	0,001
осевой зазор δ_a	-	Принимаем	-	0,004
расход через осевой зазор µ _а	-	Принимаем	-	0,500
радиальный зазор δ_r	-	Принимаем	-	0,001
расход через	-	Принимаем по	-	0.740
радиальный зазор µ _r		рис.3.22		
количество гребней уплотнения z		Принимаем	-	2
для раоочих лопаток без бандажа	-	$\delta_9=0,75\delta_r$	-	-
Потери от влажности $\xi_{вл}$	$\xi_{\rm Er} = a \frac{y_0 + y_2}{2}$		()
Потери от трения диска, парциальности, влажности $\xi_{\rm p} + \xi_{\rm n} + \xi_{\rm вл}$	- ξ ₁ p+ξ ₁ π+ξ ₁ π		()
Относительный внутренний КПД η _{0.i}	$\eta_{\scriptscriptstyle oi} = \eta_{\scriptscriptstyle o.n} - \bigl($	$\xi_y^{\delta} + \xi_y^{\delta} + \xi_{np} \Big)$	0,87	/042
Использованный теплоперепад Н _i , кДж/кг	H _i =F	$E_0\eta_{oi}$	21,	233
Внутрення мощность N _i , кВт	Ni=	GH _i	4491	,684
Энтальпия за ступенью h, кДж/кг	$h_i = h_0 - H_i$		3578	3,444

Расчёт на растяжение:				
Максимальное				
растягивающее напряжение	-	$\sigma_{\mu\alpha\kappac} = \rho \omega^2 r_{cp} l_2$	-	6,736
б _{макс} , МПа				
Плотность р, кг/м ³	-	Принимаем	-	7800,000
Угловая скорость				
вращения воздуха ω , рад/с	-	ω=2πn	-	314,159
		2		
С и	-	$C_{\delta} = \frac{2\pi}{2} \rho \left(\omega r_{\delta}\right)^2 f_{\delta}$	-	1119,316
		22		
	-	f ₆ =h∙a	-	16,000
сечения бандажа $f_6, *10^5$ м ²				
-высота бандажа h, м	-	Принимаем	-	0,005
-ширина бандажа а, м	-	Принимаем	-	0,032
Дополнительное напряжение				
в корневом сечении от цбс	-	$\Delta 6_{6} = \mathbf{C}_{6} / \mathbf{F}_{\mathbf{K}}$	-	6,050
$\Delta \mathbf{G}_{\mathbf{\tilde{o}}}, \mathbf{M} \boldsymbol{\Pi} \mathbf{a}$				
Площадь корневого		из атласа профилей		1.05
сечения лопатки F_{κ} , *10 ⁴ м ²	-	МЭИ	-	1,85
Полное растягивающее				
напряжение б., МПа	-	$6_{p} = 6_{Makc} + \Delta 6_{6}$	-	12,787
Коэффициент запаса				
прочности n	-	n=6 _{д.п} /6 _р	-	15,641
Прелел текучести 6.02.				
Мпа	-	Принимаем	-	200
Расчёт на изгиб:				
Усилие, действующее на		$\mathbf{D} = \sqrt{\mathbf{D}^2 + \mathbf{D}^2}$		
лопатку Р, Н	-	$P = \sqrt{P_z + P_u}$	-	393,367
Осевая составляющая		$P_{n} = \frac{G}{G}(c_{1}\sin\alpha_{1} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{1}\sin\alpha_{2} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{1}\sin\alpha_{2} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{1}\sin\alpha_{2} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{1}\sin\alpha_{2} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{2}\sin\alpha_{2} - c_{2}\sin\alpha_{2}) + \frac{G}{G}(c_{2}\cos\alpha_{2} - c_{2}\cos\alpha_{2}) + \frac$		
усилия Р., Н	-	z $(n - n) + l$	-	341,731
		$+(P_1 - P_2)t_2t$		0.0190
	-	$l_2 - \hbar d_{cp}/Z_2$	-	0,0189
Окружная составляющая	-	$P_{u} = \frac{G}{C} (c_1 \cos \alpha_1 - c_2 \cos \alpha_2)$	-	194,828
P _z , H		Z		
Изгибающий момент М _{изг} ,	-	$M_{\mu 3 r} = P \cdot 1/2$	-	3,747
Н.М				-
Изгибающее напряжение	-	6umax=Musr/Wx	-	10,362
б _{изг} , Mila				-
Момент сопротивления	_	$Wx = (h/h)^3W$	-	0 362
W _x , *10 ^{-о} м ³				0,002
Модельная хорда b _м , м	-	По атласу профилей МЭИ	-	0,0260
Модельный момент		По атласу профилей		0.001
сопротивления W _x , см ³	-	МЭИ	-	0,234
Коэффициент запаса		5- 3/-		
прочности п	-	n=[6 _и]/6 _{изг}	-	3,378
Допускаемое изгибающее напряжение [б _и], МПа	-	Принимаем	-	35

2.2.2. Расчет числа ступеней, диаметров и теплоперепадов по ступеням цилиндра среднего давления

Для определения высоты последней лопатки ЦСД зададимся следующими величинами d_к=1,2 м, ρ =0,35 – корневая степень реактивности, c_{2z} =105 м/с – выходная скорость из последней ступени ЦСД, ϕ =0,97 – коэффициент скорости сопловой решетки.

Запишем уравнение неразрывности для сечения за рабочей решеткой и соотношение для среднего диаметра рабочего колеса последней ступени:

$$\pi c_{az} l_{2z}^2 + \pi d_{\kappa} c_{az} l_{2z} = G_z \upsilon_z,$$

где $G_z = 153,474 \kappa c/c$ – расход пара перед последней ступенью ЦСД (с учетом отборов).

υ_z = 0,907 *м³* / *кг* (по *p_z*=0,27 *МПа*, *h_z*=2992,991 *кДж/кг*) − удельный объем в конце ЦСД.

Решая квадратное уравнение получаем положительный корень, который определяет значение высоты рабочей лопатки последней ступени ЦСД *l_z*=0,284 м.

Средний диаметр рабочего колеса последней ступени ЦСД:

$$d_{2z} = d_{\kappa} + l_{2z} = 1, 2 + 0, 284 = 1,484$$
 м.

Окружная скорость на среднем диаметре рабочего колеса последней ступени ЦСД:

$$u_{2z} = \pi d_{2z} n = \pi \cdot 1,484 \cdot 50 = 233,106 \ \text{m/c}.$$

Зададимся углом выхода потока из сопловой лопатки $\alpha_1 = 17^\circ$.

Степень реактивности на среднем диаметре последней ступени ЦСД:

$$p_{cp2z} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0,35\right) \left(\frac{1,484}{1,2}\right)^{-2 \cdot 0,97^2 \cos^2 20^\circ} = 0,543.$$

Оптимальное характеристическое отношение определяется по формуле:

$$\left(\frac{u_{cp2}}{c_{\phi}}\right)_{onm} = \varphi \frac{1 - \left(\frac{c_2}{c_{\phi}}\right)^2}{2\cos\alpha_1 \sqrt{1 - \rho_{cp}}}$$

Выразим из этой формулы фиктивную скорость и решим квадратное уравнение:

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot u_{cp2} \cdot \cos \alpha_{1} \sqrt{1 - \rho_{cp}}}{\varphi} - c_{2}^{2} = 0;$$

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot 233,106 \cdot \cos 20^{\circ} \sqrt{1 - 0,543}}{0,97} - 105^{2} = 0;$$

$$c_{\phi}^{2} - 305,320c_{\phi} - 11025 = 0;$$

Корни уравнения: $c_{\phi 1}$ =337,944 м/с, $c_{\phi 2}$ =-32,624 м/с. Выбираем положительный корень $c_{\phi z}$ = $c_{\phi 1}$ =337,944 м/с.

Характеристическое отношение ступени:

$$X = \frac{u_{cp2z}}{c_{\phi z}} = \frac{233,106}{337,944} = 0,689.$$

Располагаемый теплоперепад на ступень:

$$H_{0z} = \frac{c_{\phi z}^2}{2} = \frac{337,944^2}{2} = 57,103$$
 кДж/кг.

Для нахождения высот лопаток первой ступени ЦСД зададимся следующими параметрами: $d_{\kappa}=1,2$ м (т.к. корневой диаметр не изменяется по проточной части ЦСД), $\rho=0,5$ – степень реактивности на среднем диаметре, $\alpha_1=20^\circ$ – угол входа потока в рабочую решетку первой ступени, $\phi=0,97$ – коэффициент скорости сопловой решетки. В первом приближении примем $d_{1cp}=1,273$ м.

Характеристическое отношение скоростей и/сф первой ступени ЦСД:

$$X = \frac{u}{c_{\phi}} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}} = \frac{0.97 \cos 20^{\circ}}{2\sqrt{1-0.5}} = 0,645,$$

Окружная скорость на среднем диаметре первой ступени ЦСД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 1,273 \cdot 50 = 199,491 \ \text{m/c}.$$

Фиктивная скорость первой ступени ЦСД:

$$c_{\phi 1} = \frac{u_1}{X} = \frac{199,491}{0,645} = 309,515 \text{ m/c}.$$

Располагаемый теплоперепад на первую ступень ЦСД:

$$H_{01} = \frac{c_{\phi 1}^2}{2} = \frac{309,515^2}{2} = 47,899 \ \kappa \square \mathcal{H} \mathcal{H}$$
кг.

Теплоперепад на сопловой аппарат первой ступени ЦСД:

$$H_{0c1} = (1 - \rho)H_{01} = (1 - 0.5) \cdot 47,899 = 23,949 \ \kappa \square \mathcal{H}$$
кг.

Теоритическая абсолютная скорость на выходе из соплового аппарата:

$$c_{1t} = \sqrt{2H_{c01}} = \sqrt{2 \cdot 23,949} = 218,859 \ \text{m/c}.$$

Энтальпия пара за сопловым аппаратом при изоэнтропийном расширении:

$$h_{1t} = h_{nn} - H_{0c1} = 3723,869 - 23,949 = 3699,919 \ \kappa \square w / \kappa 2,$$

где h_{пп} – энтальпия пара перед ЦСД (по предварительному расчету).

Удельный объем за сопловым аппаратом $v_{1t} = f(h_{1t}, S_{nn}) = 0,118 \frac{M^3}{\kappa^2}$.

Зададим коэффициент расхода для соплового аппарата первой ступени ЦСД $\mu_1 = 0,97$.

Длина сопловой лопатки первой ступени ЦСД:

$$l_1 = \frac{G_1 \upsilon_{lt}}{\mu_1 c_{1t} \pi d_1 \sin \alpha_1} = \frac{172,513 \cdot 0,118}{0,97 \cdot 218,859 \cdot \pi \cdot 1,273 \cdot \sin 20} = 0,070 \text{ m},$$

где G_1 =172,513 *кг/с* – расход пара перед первой ступенью ЦСД.

Средний диаметр первой нерегулируемый ступени для соплового аппарата:

$$d_1 = d_{\kappa} + l_1 = 1, 2 + 0,070 = 1,27$$
 m.

Средние диаметры совпали, следовательно высота лопатки найдена правильно.

Перекрыша в ступени ∆=3 мм.

Длина рабочей лопатки первой ступени ЦСД:

$$l_2 = l_1 + \Delta = 0,07 + 0,003 = 0,073$$
 м.

Средний диаметр совпал с принятым, значит перерасчет не требуется.

Известно, что изменение среднего диаметра в части ЦСД происходит по показательному законув в конце цилилндра. Таким образом, зададим кривую распределения теплоперепадов по ступеням в ЦСД. Изменение среднего диаметра по проточной части ЦНД представлено на рис.9, принимая, что у нас Z=17 ступеней в ЦНД.

Рис. 9. Изменение среднего диаметра в ЦСД

Исходя из этого распределения, средний диаметр каждой ступени представлен в таблице 15.

Таблица 15

N⁰	
Ступени	Средний диаметр ступени, м
1	d1=1,273
2	d ₂ =1,28
3	d ₃ =1,287
4	d ₄ =1,295
5	d5=1,303
6	d ₆ =1,311
7	d7=1,32
8	d ₈ =1,329
9	d9=1,338
10	d ₁₀ =1,347
11	d ₁₁ =1,356
12	d ₁₂ =1,365
13	d ₁₃ =1,378
14	d ₁₄ =1,393
15	d ₁₅ =1,416
16	d ₁₆ =1,442
17	d ₁₇ =1,484

Определим распределение характеристического отношения u/c_{ϕ} в ЦСД. Известно, что это распределение происходит по показательному закону в конце ЦСД. Число разбития участков 16, число ступеней в ЦСД Z=17. На рис. 10 представлено предварительное распределение u/c_{ϕ} по ступеням в ЦСД.

Рис. 10. Распределение u/c_{φ} в ЦСД

Исходя из графика найдем значение u/c_ф каждой ступени. Значения представлены в таблице 16.

гаолица то	Таблица	1	6
------------	---------	---	---

№ Ступени	Характеристическое отношение u/c _ф
1	0,645
2	0,648
3	0,650
4	0,653
5	0,656
6	0,659
7	0,661
8	0,664
9	0,667
10	0,670
11	0,672
12	0,675
13	0,678
14	0,681
15	0,683
16	0,686
17	0,689

Для каждой ступени определим располагаемый теплоперепад по формуле:

$$H_{oi} = \frac{u_i^2}{2(u / c_{\phi})_i} = \frac{\pi d_i n}{2(u / c_{\phi})_i}.$$

Величина располагаемого теплоперепада каждой ступени представлены в таблице 16.

№ Ступени	Располагаемый телоперепад на ступень Н ₀ , кДж/кг
1	48,083
2	48,202
3	48,319
4	48,510
5	48,701
6	48,890
7	49,152
8	49,412
9	49,672
10	49,930
11	50,186
12	50,441
13	50,990
14	51,686
15	52,978
16	54,501
17	57,262

Определим средний теплоперепад на ступень в ЦСД:

$$H_{0cp} = \frac{\sum_{i=1}^{16} H_{0i}}{17} = 50,407 \ \kappa \square \mathcal{H}$$
ж.

Зададим внутренний относительный КПД ступени ЦСД $\eta_{0i}^{cm} = 0,9$.

Определим коэффициент возврата теплоты в ЦСД:

$$q_T = K_T (1 - \eta_{oi}^{cm}) H_{0 \downarrow I C Į} \frac{Z - 1}{Z} = 4,8 \cdot 10^{-4} \cdot (1 - 0,9) \cdot 803,163 \frac{17 - 1}{17} = 0,03628,163 \frac{17 - 1}{17} = 0,03628,178$$

где $K_T = 4,8 \cdot 10^{-4}$ - коэффициент при перегретом паре;

 $H_{0 \downarrow C \not Z} = 3723,869 - 2920,706 = 803,163 \kappa \not \Box \varkappa c / \kappa c$ - располагаемый

теплоперепад на ЦСД.

Число ступеней с учетом возврата теплоты:

$$z = \frac{H_{0UCA}(1+q_T)}{H_{0cp}} = \frac{803,163(1+0,03628)}{50,407} = 16,51.$$

Округляем до ближайшего целого числа Z=17.

Общая величина невязки теплоперепадов:

$$\Delta = \frac{H_{0UCA}(1+q_t) - \sum_{i=1}^{z} H_i}{z} = \frac{803,163(1+0,03628) - 856,913}{17} = -1,448 \ \kappa \square \mathcal{H} \mathcal{H} / \kappa \mathcal{I}.$$

Теплоперепад на каждую ступень с учетом невязки:

$$H_{0i} = H_{0i} + \Delta;$$

Значения теплоперепадов с учетом невязки представлены в таблице 17.

Таблица 17

	Располагаемый телоперепал с учетом невязки на
№ Ступени	ступень Н ₀ , кДж/кг
1	46,636
2	46,754
3	46,871
4	47,063
5	47,253
6	47,442
7	47,704

8	47,965
9	48,224
10	48,482
11	48,738
12	48,993
13	49,542
14	50,238
15	51,530
16	53,054
17	55,815

На рис. 11 представлено распределение теплоперепадов по ступеням в ЦСД с учетом невязки.

Рис. 11. Распределение располагаемых теплоперепадов в ЦСД

Далее был детальный расчет первой нерегулируемой ступени ЦСД на среднем диаметре. Исходными данными послужили параметры после промперегрева и данные, полученные из разбивки ЦСД. Расчёт представлен в таблице 18.

Таблица 18

Показатели	Фор	Первая ступень ЦСД			
Показатель	Φομ	мула	Сопловая	Рабочая	
Расход пара G, кг/с	Исходны	е данные	172	,513	
Параметры пара перед ступенью:					
лавление ро. МПа	Исхолны	е ланные	3 600		
энтальпия ho. кЛж/кг	Исхолны	е данные	3723	3.869	
удельный объем v ₀ , м ³ /кг	по h,s-ди	аграмме	0,11	2750	
Кинетическая энергия на входе в ступень с ₀ ² /2, кДж/кг	Исходны	(0		
Давление торможения перед ступенью p ₀ *, МПа	$p_0^* = p_0^+ c$	$\frac{2}{2} \frac{2}{2} \frac{1}{2} (v_0 * 2)$	3,6	500	
Располагаемый теплоперепад от параметров торможения H ₀ *, кДж/кг	Из раз	46,635			
Располагаемый теплоперепад от статических параметров H ₀ , кДж/кг	Из раз	46,635			
Отношение скоростей u/c_{φ}	$\left(\frac{u}{c_{\dot{\psi}}}\right)_{opt} =$	0,645			
коэффициент скорости ф	Принимаем	Принимаем -			
Фиктивная скорость с_ ϕ , м/с	$C_{\phi} = \sqrt{2}$	$2H_0^*$	305,401		
Окружная скорость u_1 ; u_2 , м/с	$u = c_{\phi} \cdot$	$u = c_{\phi} \cdot \left(\frac{u}{c_{\phi}}\right)_{out} $ 196,8		,840	
Средний диаметр d ₁ ; d ₂ , м	<i>d</i> =	$d = \frac{u}{\pi n}$			
Степень реактивности:					
корневая ρ_{κ}	Прини	0,450			
средняя $ ho_{cp}$	Из раз	0,5	500		
периферийная р _п	$\rho_n = \rho_{cp} + \frac{1}{2}$	1,7 $1,7+\theta$	0,5	589	
Изоэнтропийный перепад в	$H_{0c} = (1-\rho)H_0^*$	$H_{0n} = \rho H_0 *$	23,318	23,318	
решетке H _{0c} ; H _{0p} , кДж/кг	VC \- F7-7V	vp rv			
Теоретическая скорость на выходе c_{1t} ; w_{2t} , м/с	$c_{\rm lt} = \sqrt{2H_{\rm Qc}}$	$w_{2t} = \sqrt{2H_{0p} + w_1^2}$	215,951	222,525	

Параметры пара за решеткой				
давление p ₁ ; p ₂ , МПа	по h,s-диаграмме (по	по h,s-диаграмме (по	3,397	3,204
удельный объем v _{1t} ; v _{2t} , м ³ /кг	h ₁ =3700,551 кДж/кг, S ₀ =7,4738 кДж/кг)	h ₂ =3677,233 кДж/кг, S ₀ =7,4738 кДж/кг)	0,118	0,127
Скорость звука а1, а2, м/с	$a_1 = \sqrt{k \cdot p_1 \cdot v_1}$	$a_2 = \sqrt{k \cdot p_2 \cdot v_2}$	721,872	727,310
Число Maxa M _{1t} ; M _{2t}	$M_{\rm lt} = \frac{c_{\rm lt}}{a_{\rm l}}$	$M_{2t} = \frac{W_{2t}}{a_2}$	0,299	0,306
Предварительный коэффициент расхода µ'1	Принимаем	-	0,970	-
Предварительная площадь решетки F'1: м ²	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	-	0,0972	-
Предварительная высота решетки l' ₁ ; м	$l_1' = \frac{F_1'}{\pi d \sin \alpha_1}$	-	0,072	-
Коэффициент расхода µ1; µ2	Определяем	по рис. 3.4.	0,975	0,930
Площадь решетки $F_1; F_2$, м ²	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	$F_2 = \frac{Gv_{2t}}{\mu_2 w_{2t}}$	0,0967	0,1059
Эффективный угол выхода α ₁₃ ; β ₂₃ , град	Принимаем	$\beta_2 = \arcsin \frac{F_2}{\pi d_2 l_2}$	20	20,496
Тип профиля решетки	Прини	C-90-22A	P-30-21A	
Хорда профиля b ₁ ;b ₂ , м	Прини	0,050	0,045	
Относительный шаг решетки	Прини	0,760	0,630	
Высота решетки $l_1; l_2$, м	$l_1 = \frac{F_1}{\pi d \sin \alpha_1}$	$l_2 = l_1 + \Delta$	0,072	0,077
Количество лопаток в решетке z ₁ , z ₂ , шт	$z_1 = \frac{\pi d}{b_1 \overline{t}_1}$	$z_2 = \frac{\pi d}{b_2 \bar{t}_2}$	104	139
Относительная высота решетки l ₁ /b ₁ ; l ₂ /b ₂	l_1/b_1	l ₂ /b ₂	1,436	1,707
Отношение d_2/l_2	-	d_2/l_2	-	16,316
Коэффициент скорости φ;ψ	Рис. 2.35	Рис. 2.35	0,970	0,960
Скорость на выходе потока из решетки с ₁ ; w ₂ , м/с	c ₁ = ϕ c _{1t}	$w_2 = \psi w_{2t}$	209,473	213,624
Относительная скорость на входе в рабочую решетку и абсолютная скорость на выходе из нее w ₁ ; с _{2,} м/с	$w_1 = \sqrt{c_1^2 + u^2 - 2uc_1 \cos \alpha_1}$	$c_2 = \sqrt{w_2^2 + u^2 - 2uw_2 \cos \beta_2}$	71,644	74,869
Углы направления этих скоростей β ₁ ; α ₂ , град	$\beta_1 = \arg \frac{\sin \alpha_1}{\cos \alpha_1 - u/c_1}$	$\alpha_2 = \arctan \frac{\sin \beta_2}{\cos \beta_2 - u/w_2}$	90,000	87,503
Потери энергии в решетке ΔH _c ; ΔH _p кДж/кг	$\Delta H_{c} = (1-\phi^{2})c^{2}_{1t}/2$	$\Delta H_{p} = (1 - \psi^{2}) w_{2t}^{2}/2$	1,378	1,941
Потери энергии с выходной скоростью $\Delta H_{B.c}$, кДж/кг	-	$\Delta H_{B.c} = c_2^2/2$	-	2,803

Коэффициент использования потерь энергии с выходной скоростью _{Хв.с}	$\chi_{\tt BC} = s$	0,998		
Располагаемая энергия ступени Е ₀ , кДж/кг	E ₀ =H ₀ *-;	$\chi_{B,c}\Delta H_{B,c}$	43,838	
Относительный лопаточный КПД _{По.л}	$\eta_{o.\pi}=(E_0-\Delta H_c-\Delta H)$	$p_p - \Delta H_{BC}(1-\chi_{BC}))/E_0$	0,9	024
Эквивалетные площади				
диафрагменного и переферийного зазоров $\mu_v F_v \sqrt{z_v}; \pi d_n \delta_3, 10^{-4} M^2$	$\mu_y F_y \sqrt{z_y}$	$\pi d_{\pi}\delta_{\mathfrak{s}}$	0,02357	0,00167
коэффициент расхода µ _v	Определяем	по рисунку	0,740	-
площадь зазора уплотнения F _{vs} м ²	$\pi d_y \delta_y$	-	0,011	-
число уплотнительных гребешков z _v	Прин	имаем	8,000	-
диаметр периферийный d _п , м ²	d+l1	d+l2	1,325	1,330
эквивалентный зазор δ _э	-	Принимаем	-	0,0004
Потери от утечек $\xi^{\mathfrak{q}}_{y};\xi^{\mathfrak{b}}_{y}$	$\xi_{y}^{\partial} = \frac{\mu_{y}\pi d_{y}k_{y}\eta_{o.\pi}}{\mu_{1}F_{1}\sqrt{z_{y}}}$	$\xi_{y}^{\delta} = \frac{\pi d_{n} \delta_{s} \eta_{o.s}}{F_{1}} \sqrt{\rho_{cp} + 1.8l_{2} / d_{2}}$	0,005	0,006
поправочный	Определяем по		1 500	
коэффициент k _y	рисунку 3.24	-	1,500	-
диаметр уплотнения d _y	$d_y \approx d_\kappa$	-	1,181	-
для рабочих лопаток с бандажом	-	$\delta_{s} = \frac{1}{\sqrt{1 / (\mu_{a} \delta_{a})^{2} + z / (\mu_{r} \delta_{r})^{2}}}$	-	0,001
осевой зазор δ_a	-	Принимаем	-	0,004
расход через осевой зазор µ _а	-	Принимаем	-	0,500
радиальный зазор δ_r	-	Принимаем	-	0,001
расход через	_	Принимаем по	_	0 740
радиальный зазор µ _r	_	рис.3.22		0,740
количество гребней уплотнения z		Принимаем	-	2
для рабочих лопаток без банлажа	-	$\delta_3=0,75\delta_r$	-	-
Потери от влажности ξ _{вл}	$\xi_{\kappa_1} = a^{\frac{y}{2}}$	$\frac{y_0 + y_2}{2}$	()
Потери от трения диска, парциальности, влажности $\xi_{rp} + \xi_{n} + \xi_{вл}$	ξ _{īp} +ξ	0		
Относительный внутренний КПД n _{o.i}	$\eta_{oi} = \eta_{o.n} - ($	$\xi_y^{\partial} + \xi_y^{\delta} + \xi_{np} \Big)$	0,91	.293
Использованный		~		0.01
теплоперепад Н _і , кДж/кг	H _i =F	± ₀ η _{oi}	40,	021
Внутрення мощность N _i , кВт	Ni=	GH _i	6904	1,066
Энтальпия за ступенью h, кДж/кг	h _i =h	₀ -H _i	3683	3,848

Расчёт на растяжение:					
Максимальное					
растягивающее напряжение	-	$\sigma_{\mu\alpha\kappac} = \rho \omega^2 r_{cn} l_2$	-	37.284	
б _{макс} , МПа					
Плотность р, кг/м ³	-	Принимаем	-	7800,000	
Угловая скорость		2			
вращения воздуха ω, рад/с	-	ω=2πn	-	314,159	
Пентробежная сила банлажа		277 2			
	-	$C_{\delta} = \frac{2\pi}{Z_{\delta}} \rho \left(\omega r_{\delta}\right)^2 f_{\delta}$	-	2482,908	
		-2			
$f = 10^5 \text{ mm}^2$	-	f ₆ =h∙a	-	16,000	
сечения оандажа 16,*10 м				0.005	
-высота оандажа n, м	-	Принимаем	-	0,005	
-ширина бандажа а, м	-	Принимаем	-	0,032	
Лополнительное напряжение					
в корневом сечении от цбс	-	$\Delta 6_{5} = \mathbf{C}_{5} / \mathbf{F}_{\mathbf{r}}$	-	13.421	
$\Delta 6_{5}$ MIIa		— - 0 - 0 - K		13,421	
Плошаль корневого		из атпаса профилей			
$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$	-	мэи МЭИ	-	1,85	
		Mon			
	-	$6_{p} = 6_{makc} + \Delta 6_{6}$	-	50,705	
		-			
Коэффициент запаса	-	$n = \mathbf{G}_{\mathbf{d}.\mathbf{n}} / \mathbf{G}_{\mathbf{p}}$	-	3,944	
Прочности П					
Предел текучести О _{t0.2} ,	-	Принимаем	-	200	
усилие, деиствующее на	-	$P = \sqrt{P_z^2 + P_u^2}$	-	480,785	
		G			
Осевая составляющая	-	$P_z = \frac{-}{z} (c_1 \sin \alpha_1 - c_2 \sin \alpha_2) +$	-	416,319	
усилия Р _z , н		$+(P_1-P_2)t_2l$			
Шаг лопаток t ₂ , м	-	$t_2 = \pi d_{cp}/z_2$	-	0,02835	
Окружная составляющая		$B = G_{(a \circ a \circ$		240.485	
P _z , H	-	$r_u = \frac{(c_1\cos\alpha_1 - c_2\cos\alpha_2)}{z}$	-	240,465	
Изгибающий момент М _{изг} ,		M = -D.1/2		19 462	
Н∙м	-		-	16,405	
Изгибающее напряжение		6 -M /W		15 121	
б _{изг} , MПа	-	$O_{\text{umax}} - M_{\text{u3r}} / W_{\text{x}}$	-	15,151	
Момент сопротивления		···· /1 /1 \3····		1.000	
W_x , *10 ⁻⁶ m ³	-	$Wx = (b_H/b_M)^2 W_{xM}$	-	1,220	
		По атласу профилей			
Модельная хорда b _м , м	-	МЭИ	-	0,0260	
Модельный момент		По атласу профилей			
сопротивления W _r , см ³	-	МЭИ	-	0,234	
Коэффициент запаса					
прочности п	-	$n=[G_{\mu}]/G_{\mu_{3\Gamma}}$	-	2,313	
допускаемое изгибающее	-	Принимаем	-	35	
напряжение [O _и], MI la		_			

2.2.3. Расчет числа ступеней, диаметров и теплоперепадов по ступеням цилиндра низкого давления

Для определения высоты последней лопатки ЦНД зададимся следующими величинами d_к=1,8 м – корневой диаметр ЦНД (постоянный), $\rho_{\text{кz}}$ =0,15 – корневая степень реактивности, c_{2z}=255 м/с – выходная скорость из последней ступени, φ =0,97 – коэффициент скорости сопловой решетки.

Запишем уравнение неразрывности для сечения за рабочей решеткой и соотношение для среднего диаметра рабочего колеса последней ступени:

$$\pi c_{az} l_{2z}^2 + \pi d_{\kappa} c_{az} l_{2z} = G_k \upsilon_k,$$

где $G_k = 129,046/2 = 64,523 \kappa c/c$ – расход пара перед последней ступенью ЦНД, т.к. двухпоточный ЦНД делим на 2;

v_k = 36,95 *м³* / *кг* (по *p_к*=3,5 *кПа.*, *h_к*=2394,393 *кДж/кг*) − удельный объем в конце ЦНД.

Решая квадратное уравнение, получаем положительный корень, который определяет значение высоты рабочей лопатки последней ступени ЦНД *l_z*=1,056 *м*.

Средний диаметр рабочего колеса последней ступени ЦНД:

$$d_{2z} = d_{\kappa} + l_{2z} = 1,8 + 1,056 = 2,856$$
 м.

Окружная скорость на среднем диаметре рабочего колеса последней ступени ЦНД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 2,856 \cdot 50 = 448,392 \ \text{m/c}.$$

Зададимся углом выхода потока из сопловой лопатки $\alpha_1 = 15^\circ$.

Степень реактивности на среднем диаметре последней ступени ЦНД:

$$p_{cp2z} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0, 15\right) \left(\frac{2,856}{1,8}\right)^{-2 \cdot 0,97^2 \cos^2 15^\circ} = 0,622.$$

Оптимальное характеристическое отношение определяется по формуле:

$$\left(\frac{u_{cp2}}{c_{\phi}}\right)_{onm} = \varphi \frac{1 - \left(\frac{c_2}{c_{\phi}}\right)^2}{2\cos\alpha_1 \sqrt{1 - \rho_{cp}}}$$

Выразим из этой формулы фиктивную скорость и решим квадратное уравнение:

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot u_{cp2} \cdot \cos \alpha_{1} \sqrt{1 - \rho_{cp}}}{\varphi} - c_{2}^{2} = 0;$$

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot 448,392 \cdot \cos 15^{\circ} \sqrt{1 - 0,622}}{0,97} - 255^{2} = 0;$$

$$c_{\phi}^{2} - 549,248c_{\phi} - 65025 = 0;$$

Корни уравнения: $c_{\phi 1}$ =649,203 м/с, $c_{\phi 2}$ =-100,161 м/с. Выбираем положительный корень $c_{\phi z}$ = $c_{\phi 1}$ =649,203 м/с.

Характеристическое отношение ступени:

$$X = \frac{u_{cp2z}}{c_{\phi z}} = \frac{448,392}{649,203} = 0,691.$$

Располагаемый теплоперепад на ступень:

$$H_{0z} = \frac{c_{\phi z}^2}{2} = \frac{649,203^2}{2} = 210,732$$
 кДж/кг.

Для нахождения высот лопаток первой ступени ЦНД зададимся следующими парамтерами: $d_{\kappa}=1,8$ м (т.к. корневой диаметр не изменяется по проточной части ЦНД, $\rho_{\kappa z}=0,3$ – корневая степень реактивности, $\alpha_1=12^{\circ}$ – угол входа потока в рабочую решетку первой ступени, $\phi=0,97$ – коэффициент скорости сопловой решетки. В первом приближении примем $d_{1cp}=1,975$ м.

Степень реактивности на среднем диаметре первой ступени:

$$p_{cp2} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0, 15\right) \left(\frac{1,975}{1,8}\right)^{-2 \cdot 0,97^2 \cos^2 12^\circ} = 0,.$$

Характеристическое отношение скоростей и/сф первой ступени ЦНД:

$$X = \frac{u}{c_{\phi}} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}} = \frac{0.97 \cos 12}{2\sqrt{1-0.406}} = 0.616,$$

Окружная скорость на среднем диаметре первой ступени ЦНД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 1,972 \cdot 50 = 309,761 \ \text{m/c}.$$

Фиктивная скорость первой ступени ЦНД:

$$c_{\phi 1} = \frac{u_1}{X} = \frac{309,761}{0,616} = 503,211 \ \text{m/c}.$$

Располагаемый теплоперепад на первую ступень ЦНД:

$$H_{01} = \frac{c_{\phi 1}^2}{2} = \frac{503,211^2}{2} = 126,610 \ \kappa \square \mathcal{H} / \kappa \mathcal{P}.$$

Теплоперепад на сопловой аппарат первой ступени ЦНД:

Теоритическая абсолютная скорость на выходе из соплового аппарата:

$$c_{1t} = \sqrt{2H_{c01}} = \sqrt{2 \cdot 75,198} = 387,809 \ \text{m/c}.$$

Энтальпия пара за сопловым аппаратом при изоэнтропийном расширении:

$$h_{1t} = h_3 - H_{0c1} = 2992,991 - 75,198 = 2917,793$$
кДж / кг,

где h_3 – энтальпия пара перед ЦНД (по предварительному расчету).

Удельный объем за сопловым аппаратом $v_{1t} = f(h_{1t}, S_3) = 1,18 \frac{M^3}{\kappa^2}$.

Зададим коэффициент расхода для соплового аппарата первой ступени ЦНД $\mu_1 = 0.97$.

Длина сопловой лопатки первой ступени ЦНД:

$$l_1 = \frac{G_1 \upsilon_{lt}}{\mu_1 c_{1t} \pi d_1 \sin \alpha_1} = \frac{70,729 \cdot 1,18}{0,97 \cdot 387,809 \cdot \pi \cdot 1,972 \cdot \sin 12} = 0,172 \text{ m},$$

где G₁=141,458/2=70,729 *кг/с* – расход пара перед первой ступенью ЦНД, т.к. двухпоточный ЦНД делим на 2.

Средний диаметр первой нерегулируемый ступени для соплового аппарата:

$$d_1 = d_{\kappa} + l_1 = 1,8 + 0,172 = 1,972$$
 м.

Средние диаметры совпали, следовательно, высота лопатки найдена правильно.

Перекрыша в ступени ∆=5 *мм*.

Длина рабочей лопатки первой ступени ЦНД:

$$l_2 = l_1 + \Delta = 0,172 + 0,005 = 0,177$$
 м.

Известно, что изменение среднего диаметра в части ЦНД происходит по показательному закону. Таким образом, зададим кривую распределения теплоперепадов по ступеням в ЦНД. Изменение среднего диаметра по проточной части ЦНД представлено на рис.12, принимая, что у нас 5 ступеней в ЦНД.

Рис. 12. Изменение среднего диаметра в ЦНД

Исходя из этого распределения, средний диаметр каждой ступени будет иметь следующее значение:

$$d_1 = 1,977 \text{ M.}$$

 $d_2 = 2,045 \text{ M.}$
 $d_3 = 2,175 \text{ M.}$
 $d_4 = 2,43 \text{ M.}$
 $d_5 = 2,856 \text{ M.}$

Определим распределение характеристического отношения u/c_{ϕ} в ЦНД. Известно, что это распределение происходит по показательному закону. Число разбития участков 4, число ступеней в ЦНД Z=5. На рис. 13 представлено предварительное распределение u/c_{ϕ} по ступеням в ЦНД.

Рис. 13. Распределение Х в ЦНД

$$X_1 = \frac{u_{cp1}}{c_{\phi1}} = 0,616;$$

$$X_2 = \frac{u_{cp2}}{c_{\phi2}} = 0,635;$$

$$X_3 = \frac{u_{cp3}}{c_{\phi3}} = 0,655;$$

$$X_4 = \frac{u_{cp4}}{c_{\phi4}} = 0,673;$$

$$X_5 = \frac{u_{cp5}}{c_{\phi5}} = 0,691;$$

Для каждой ступени определим располагаемый теплоперепад по формуле:

$$H_{oi} = \frac{u_i^2}{2(u / c_{\phi})_i} = \frac{\pi^2 d_i^2 n^2}{2(u / c_{\phi})_i}.$$

Располагаемые теплоперепады в каждой ступени представлены в таблице 19.

Таблица 19

№ ступени	Средний диаметр d, м	Характеристическое отношение u/c _ф	Располагаемый теплоперепад H _{oi} , кДж/кг
1	1,977	0,616	127,075
2	2,045	0,635	127,953
3	2,175	0,655	136,033
4	2,43	0,673	160,839
5	2,856	0,691	210,751

Определим средний теплоперепад на ступень в ЦНД:

$$H_{0cp} = \frac{\sum_{i=1}^{5} H_{0i}}{5} = 152,530 \ \kappa \square \mathcal{H} / \kappa \mathcal{P}.$$

где $H_{0,UH,U} = 2992,991 - 2280,224 = 712,767 \ \kappa \square c/\kappa c$ - располагаемый теплоперепад на ЦНД. Зададим внутренний относительный КПД ступени ЦНД $\eta_{0i}^{cm} = 0,87$ (так как будут установлены распределительные решетки для предпоследней и последней ступени).

Определим коэффициент возврата теплоты в ЦНД:

$$q_T = K_T (1 - \eta_{oi}^{cm}) H_{0 \text{LHA}} \frac{Z - 1}{Z} = 3, 2 \cdot 10^{-4} \cdot (1 - 0, 87) \cdot 712, 767 \frac{5 - 1}{5} = 0,02189,$$

где $K_T = 3, 2 \cdot 10^{-4}$ - коэффициент при перегретом и влажном паре;

*H*_{0ЦНД} = 2992,991−2280,224 = 712,767 *кДж / кг* - располагаемый теплоперепад на ЦНД.

Число ступеней с учетом возврата теплоты:

$$z = \frac{H_{0\mathcal{I}\mathcal{H}\mathcal{I}\mathcal{I}}(1+q_T)}{H_{0cp}} = \frac{712,767(1+0,02189)}{152,530} = 4,76.$$

Округляем до ближайшего целого числа Z=5.

Общая величина невязки теплоперепадов:

$$\Delta = \frac{H_{0\mathcal{U}H\mathcal{A}}\left(1+q_{t}\right) - \sum_{i=1}^{z} H_{i}}{z} = \frac{712,767(1+0,02189) - 762,652}{5} = -6,856 \ \kappa \mathcal{A}\mathcal{B}\mathcal{K} \ / \ \kappa \mathcal{E}.$$

Теплоперепад на каждую ступень с учетом невязки:

$$H_{0i} = H_{0i} + \Delta;$$

Значения теплоперепадов с учетом невязки приведены в таблице 20.

Т		\mathbf{a}	റ
	аопина	- 71	
	иолици	~	v

			-
			Располагаемый
			теплоперепад с
	Средний	Характеристическое	учетом невязки H _{oi} ,
№ ступени	диаметр d, м	отношение u/c_{ϕ}	кДж/кг
1	1,977	0,616	120,220
2	2,045	0,635	121,097
3	2,175	0,655	129,178
4	2,43	0,673	153,984
5	2,856	0,691	203,896

На рис. 14 представлено распределение теплоперепадов по ступеням в ЦНД с учетом невязки.

Рис. 14.График распределения располагаемых теплоперепадов в ЦНД с учетом невязки

Далее был произведен последовательный детальный расчет первых четырех ступеней ЦНД. Основные показатели каждой ступени представлены в таблице 21.

Таблица 21

Помородо ду	Первая ступень ЦНД		Вторая ступень ЦНД		Третья ступень ЦНД		Четвертая ступень ЦНД	
показатель	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая
Расход пара G, кг/с	70,7	29	70,7	29	67,7	68	67,7	68
Параметры пара перед ступенью:								
давление p ₀ , МПа	0,26	55	0,15	73	0,08	73	0,042	25
энтальпия h ₀ , кДж/кг	2992,	991	2888,	671	2784,	935	2675,	112
удельный объем υ_0 , м ³ /кг	0,923	850	1,400	860	2,24	41	3,97	98
Располагаемый теплоперепад от статических параметров H ₀ , кДж/кг	120,2	219	121,0	97	129,1	178	153,9	984
Отношение скоростей и/с $_{\varphi}$	0,63	33	0,655		0,668		0,682	
Средний диаметр d ₁ ; d ₂ , м	1,975	1,980	2,052	2,060	2,161	2,170	2,408	2,430
Степень реактивности на среднем диаметре ρ_{cp} :	0,438		0,478		0,5	5	0,52	
Параметры пара за решеткой								
давление p1; p2, МПа	0,1993	0,1573	0,1171	0,0873	0,0618	0,04253	0,02683	0,01573
удельный объем υ_{1t} ; υ_{2t} , м ³ /кг	1,1490	1,3770	1,7571	2,1939	2,9102	3,8669	5,759	9,262
Число Маха М _{1t} ; М _{2t}	0,669	0,617	0,681	0,682	0,736	0,777	0,858	0,929
Эффективный угол выхода α _{1э} ; β _{2э} , град	12,00	16,17	12,70	16,50	13,20	17,60	13,00	20,04
Высота решетки l ₁ ; l ₂ , м	0,175	0,180	0,252	0,260	0,361	0,370	0,608	0,630
Коэффициент скорости φ;ψ	0,965	0,950	0,962	0,947	0,959	0,945	0,956	0,941

Померете и	Первая ступень ЦНД		Вторая ступень ЦНД		Третья ступень ЦНД		Четвертая ступень ЦНД	
показатель	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая
Углы направления этих скоростей β1; α2, град	63,56	96,13	81,38	96,32	92,80	96,87	103,85	99,26
Относительный лопаточный КПД _{пол}	0,91	0,914 0,907		7 0,901 0,890		0,901		90
Потери от утечек ξ ^д _y ;ξ ^б _y	0,0026	0,0085	0,0016	0,0062	0,0010	0,0046	0,0006	0,0033
Потери от трения на диск ξ _д	0,0069		0,0104		0,0078		0,0056	
Потери от влажности $\xi_{\scriptscriptstyle BЛ}$	0,00	00	0,00	00	0,00	00	0,01	33
Относительный внутренний КПД η _{0.i}	0,89	96	0,88	39	0,88	37	0,86	58
Использованный теплоперепад Н _і , кДж/кг	104,3	320	103,8	335	109,8	323	126,2	247
Внутрення мощность N _i , кВт	7378,	441	7344,	147	7442,	472	8555,	476
Энтальпия за ступенью h, кДж/кг	2888,	671	2784,	836	2675,	112	2548,	865

2.2.4. Расчет последней ступени ЦНД

Исходными данными для расчета последней ступени были получены в разделе 1.2.3, а также после детального расчета четырех ступеней ЦНД представленных в таблице 21.

В данном расчёте для определения необходимых величин применялись следующие формулы [17].

Радиус сопловой решетки:

$$r_{1i} = \frac{d_{\kappa}}{2} + (i-1)\frac{l_1}{4}.$$

Окружная скорость:

$$u_{1i} = 2\pi r_{1i}n.$$

Степень реактивности:

$$p_i = 1 - \left(1 - \rho_\kappa\right) \left(\frac{r_{i1}}{r_\kappa}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1}$$

Теплоперепад сопловой решетки:

$$H_{0ci} = (1 - \rho_i)H_0.$$

Энтальпия пара за сопловой решеткой при изоэнтропийном расширении:

$$h_{1ti} = h_0 - H_{0ci}$$
.

Давление пара, удельный объем и степень сухости за сопловой решеткой определяются как функции от энтальпии и энтропии, при этом $S_0=7,8515$ кДж/(кг·K): $p_{1i}=f(h_{1ti}, S_0); v_{1i}=f(h_{1ti}, S_0); x_{1i}=f(h_{1ti}, S_0).$

Давление перед ступенью $p_{0i}=f(h_0, S_0)$.

Показатель изоэнтропы $k_i = f(h_{1ti}, p_{1i})$.

Критическое давление:

$$p_{1\kappa p} = p_0 \varepsilon_{\kappa p i} = p_0 \left(\frac{2}{k_i + 1}\right)^{\frac{k_i}{k_i - 1}}.$$

Энтальпия и удельный объем: $h_{1 \text{крi}} = f(p_{1 \text{ikp}}, S_0); v_{1 \text{крi}} = f(p_{1 \text{ikp}}, S_0).$ Располагаемый теплоперепад:

$$H_{0c\kappa pi} = h_0 - h_{1\kappa pi}.$$

Скорость звука на выходе из соплового аппарата:

$$a_{1i} = \sqrt{k_i \cdot p_{1i} \cdot v_{1ti}}.$$

Теоретическая скорость выхода потока из соплового аппарата:

$$c_{1ti} = \sqrt{2 \cdot H_{0ci}}.$$

Теоретическая скорость выхода потока из соплового аппарата при критических параметрах:

$$c_{1\kappa pi} = \sqrt{2 \cdot H_{0c\kappa pi}}.$$

Число Маха:

$$M_{1ti} = \frac{c_{1ti}}{a_{1i}}.$$

Для учёта расширения в косом срезе при сверхзвуковом течении:

$$\alpha_{1i} = \arcsin\left(\sin\left(\alpha_{1i\phi}\right)\frac{c_{1kpi}}{v_{1kpi}}\right).$$

Для сечений, где $M_i < 1$ эффективный и действительный углы выхода потока из сопловой решетки равны: $\alpha_{1i} = \alpha_{1 ext{-} d}$.

Коэффициент расхода для сопловой решетки:

$$\mu_{1i} = \frac{\mu_{1nni}}{\sqrt{x_{1ti}}}.$$

Удельный расход пара:

$$\Delta G_i = \frac{\mu_{1i}c_{1ti}\sin(\alpha_{1i})}{\nu_{1ti}}.$$

Суммарный расход:

$$G_{\sum} = \frac{2\pi l_1}{4} \left[\frac{\Delta G_1 r_{11}}{2} + \sum_{i=2}^{4} \left(\Delta G_i r_{1i} \right) + \frac{\Delta G_5 r_{15}}{2} \right].$$

Невязка по расходу:

$$\frac{\left|G_{\sum} - G\right|}{G} < 1\%.$$

Скорость выхода из соплового аппарата:

$$c_{1i} = \varphi_i c_{1i}.$$

Относительная скорость входа в рабочую решетку:

$$w_{1i} = \sqrt{(u_{1i})^2 + (c_{1i})^2 - 2u_{1i}c_{1i}\cos(\alpha_{1i})}.$$

Угол входа в рабочую решетку:

$$\beta_{1i} = \arccos\left(\frac{c_{1i}\cos(\alpha_{1i}) - u_{1i}}{w_{1i}}\right).$$

Энтальпия и давление торможения перед рабочей решеткой:

$$h_{1i}^* = h_{1ii} + \frac{w_{1i}^2}{2};$$
$$p_{1i}^* = f(h_{1i}^*, S_0).$$

Теоретическая скорость на выходе из ступени в относительном движении:

$$w_{2ti} = \sqrt{\left(w_{1i}\right)^2 + 2\rho_i H_{0_i}}.$$

Радиус рабочей решетки:

$$r_{2i} = \frac{d_{\kappa}}{2} + (i-1)\frac{l_2}{4}.$$

Окружная скорость:

$$u_{2i} = 2\pi r_{2i}n.$$

Скорость звука на выходе из рабочей решетки:

$$a_{2i} = \sqrt{k_i \cdot p_{2i} \cdot v_{2i}}.$$

Число Маха:

$$M_{2ti} = \frac{W_{2ti}}{a_{2i}}.$$

Коэффициент расхода рабочей решетки:

$$\mu_{2i} = \frac{\mu_{2nni}}{\sqrt{1 - (1 - x_{2t}) \left[1 - \left(\frac{w_{1i}}{w_{2ti}}\right)^2\right]}}.$$

Угол выхода из рабочей решетки:

$$\beta_{2i} = \arcsin\left(\frac{\Delta G}{\mu_{2i}} \frac{\nu_{2t}}{w_{2ti}} \frac{r_{1i}}{r_{2i}} \frac{l_1}{l_2}\right).$$

Критическое давление в рабочей решетке:

$$p_{2\kappa pi} = \varepsilon_{\kappa pi} p_{1i}^*.$$

Энтальпия и удельный объем пара при критическом давлении: $h_{2\kappa pi}=f(p_{2i\kappa p}, S_0); v_{2\kappa pi}=f(p_{2i\kappa p}, S_0).$

Критическая скорость на выходе из ступени:

$$w_{2\kappa pi} = \sqrt{2\left(h_{1i}^* - h_{2\kappa pi}\right)}.$$
Эффективный угол выхода из рабочей решетки:

$$\beta_{2 \ni \phi_i} = \arcsin\left(\sin\left(\beta_{2i}\right) \frac{w_{2ti} \upsilon_{2\kappa pi}}{\upsilon_{2ti} w_{2\kappa pi}}\right).$$

Коэффициент скорости для рабочей решетки по высоте:

$$\psi = 0,957 - 0,011 \frac{b_{2i}}{l_{2i}}.$$

Относительная скорость выхода из ступени:

$$W_{2i} = \Psi_i W_{2i}.$$

Абсолютная скорость выхода из ступени:

$$c_{2i} = \sqrt{(u_{2i})^2 + (w_{2i})^2 - 2u_{2i}w_{2i}\cos(\beta_{2i})}.$$

Абсолютный угол выхода из рабочей решетки:

$$\alpha_{2i} = \arccos\left(\frac{w_{2i}\cos(\beta_{2i}) - u_{2i}}{c_{2i}}\right).$$

Потери с выходной скоростью:

$$\Delta H_{\rm BCI} = \frac{c_{2i}^2}{2}.$$

Удельная работа ступени:

$$L_{ui} = (u_{1i}c_{1i}\cos(\alpha_{1i}) + u_{2i}c_{2i}\cos(\alpha_{2i})).$$

Относительный лопаточный КПД:

$$\eta_{\scriptscriptstyle oni} = \frac{L_{\scriptscriptstyle ui}}{H_{\scriptscriptstyle 0i}}.$$

Осредненный по высоте лопаточный КПД:

$$\eta_{on} = \frac{2\pi l_2}{4G} \left[\frac{\Delta G_1 r_{21} \eta_{on1}}{2} + \sum_{i=2}^{4} \left(\Delta G_i r_{2i} \eta_{oni} \right) + \frac{\Delta G_5 r_{25} \eta_{on5}}{2} \right].$$

Суммарный расход:

$$G_{\sum} = \frac{2\pi l_2}{4} \left[\frac{\Delta G_1 r_{21}}{2} + \sum_{i=2}^{4} \left(\Delta G_i r_{2i} \right) + \frac{\Delta G_5 r_{25}}{2} \right].$$

Невязка по расходу:

$$\frac{\left|G_{\sum} - G\right|}{G} < 1\%.$$

В таблице 22 представлен детальный расчёт последней ступени ЦНД в Excel.

таолица 22

Наименование		Сеч	ение реше	стки	
величины	0	0,251	0,51	0,75 <i>l</i>	l
Радиус сопловой					
решетки <i>r</i> ₁ , м	0,9	1,154	1,408	1,662	1,916
Окружная скорость					
и1, м/с	282,743	362,540	442,336	522,133	601,929
Степень					
реактивности р	0,150	0,451	0,613	0,710	0,774
Теплоперепад					
сопловой решетки					
H_{0c} , кДж/кг	173,312	112,014	78,992	59,036	45,991
Энтальпия пара за					
сопловой решеткой					
$h_{1\mathrm{t}},$ кДж/кг	2375,553	2436,851	2469,873	2489,829	2502,874
Давление пара за					
сопловой решеткой					
<i>p</i> ₁ , кПа	4,49	7,13	9,06	10,45	11,46
Удельный объем					
пара за сопловой					
решеткой v_{1t} , м ³ /кг	28,868	19,056	15,352	13,514	12,446
Степень сухости					
пара за сопловой					
решеткой <i>x</i> _{1t}	0,9251	0,9438	0,954	0,9601	0,9641
Давление пара перед					
ступенью p_0 , кПа			15,73		
Показатель			,		
изоэнтропы <i>k</i>	1,269	1,284	1,292	1,297	1,301

Наименование		Сеч	ение реше	стки	
величины	0	0,251	0,51	0,75 <i>l</i>	l
Критическое					
давление $p_{1 \text{кр, к}\Pi a}$	8,673413	8,630043	8,607104	8,592834	8,581456
Энтальпия пара за					
сопловой решеткой					
при критических					
параметрах $h_{1 \kappa p}$,					
кДж/кг	2463,729	2463,089	2462,72	2462,446	2462,286
Удельный объем					
пара за сопловой					
решеткой при					
критических					
параметрах $v_{1 \text{кр}}$,					
м ³ /кг	15,973	16,039	16,078	16,107	16,124
Располагаемый					
теплоперепад					
сопловой решетки					
при критических					
параметрах $H_{0 c \kappa p}$,					
кДж/кг	85,136	85,776	86,145	86,419	86,579
Скорость звука на					
выходе из соплового					
аппарата <i>a</i> ₁ , м/с	405,567	417,679	423,914	427,977	430,770
Теоретическая					
скорость на выходе					
из соплового					
аппарата <i>с</i> _{1t} , м/с	588,747	473,316	397,471	343,616	303,286
Теоретическая					
скорость на выходе					
из соплового					
аппарата при					
критических					
параметрах $c_{1 \text{кр}}$, м/с	412,640	414,188	415,078	415,738	416,123
Число Маха за					
сопловым аппаратом					
M_{1t}	1,452	1,133	0,938	0,803	0,704
Эффективный угол					
выхода из сопловой					
решетки $\alpha_{1 \rightarrow \phi}$, град	15	15	15	15	15

Наименование	Сечение решетки								
величины	0	0,251	0,51	0,75 <i>l</i>	l				
Эффективный угол									
выхода из сопловой									
решетки с учетом									
расширения в косом									
срезе α_1 , град	19,138	15,610	15	15	15				
Коэффициент									
расхода сопловой									
решетки									
перегретого пара									
$\mu_{1 \pi \pi}$	0,98	0,98	0,98	0,98	0,98				
Коэффициент									
расхода сопловой									
решетки с учетом									
влажности μ_1	1,019	1,009	1,003	1,000	0,998				
Удельный расход									
пара ΔG , кг/с	7,324	7,162	7,465	7,223	6,908				
Суммарный расход									
пара через сопловой									
аппарат G_{Σ} , кг/с	64,944								
Невязка по расходу,									
%		ſ	-0,652	1					
Коэффициент									
скорости для									
соплового аппарата									
ϕ	0,93	0,96	0,97	0,96	0,92				
Скорость на выходе									
из соплового									
аппарата с1, м/с	547,535	454,383	385,547	329,872	279,023				
Относительная									
скорость на входе в									
рабочую решеткуа									
<i>w</i> ₁ , M/c	295,342	143,483	121,849	220,685	340,167				
Угол входа в									
рабочую решетку β ₁ ,									
град	37,43	58,45	125,02	157,24	167,74				
Энтальпия									
торможения перед									
рабочей решеткой									
h_1^* , кДж/кг	2419,167	2447,145	2477,297	2514,180	2560,731				

величины00,25/0,5/0,75//Давление торможения перед рабочей решеткой p_1^* , кПа6,257,699,5612,417,04Теоретическая скорость на выходе из ступени в относительном движении w_{2t} , м/с6,257,699,5612,417,04Величи w_{2t} , м/с6,257,699,5612,417,04Скорость на выходе из ступени в относительном движении w_{2t} , м/с385,222452,053514,447581,740656,904Радиус рабочей решетки r_2 , м0,91,1641,4281,6921,956Окружная скорость u_2 , м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a_2 , м/с400,617402,977404,231405,012405,636	Наименование		Сеч	ение реше	стки	
Давление торможения перед рабочей решеткой $p_1^*,$ кПа6,257,699,5612,417,04Теоретическая скорость на выходе из ступени в относительном движении w_{21} , м/с6,257,699,5612,417,04Вотносительном движении w_{21} , м/с385,222452,053514,447581,740656,904Радиус рабочей решетки r_2 , м0,91,1641,4281,6921,956Окружная скорость u_2 , м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a_2 , м/с400,617402,977404,231405,012405,636	величины	0	0,251	0,51	0,75 <i>l</i>	l
торможения перед рабочей решеткой $p_1^*,$ кПа6,257,699,5612,417,04Теоретическая скорость на выходе из ступени в относительном движении w_{2t} , м/с6,257,699,5612,417,04Вотносительном движении w_{2t} , м/с885,222452,053514,447581,740656,904Радиус рабочей решетки r_2 , м0,91,1641,4281,6921,956Окружная скорость u_2 , м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a_2 , м/с400,617402,977404,231405,012405,636	Давление					
рабочей решеткой $p_1^*, кПа$ 6,25 7,69 9,56 12,4 17,04 Теоретическая скорость на выходе из ступени в относительном движении w_{2t} , M/с 385,222 452,053 514,447 581,740 656,904 Радиус рабочей решетки r_2 , M 0,9 1,164 1,428 1,692 1,956 Окружная скорость u_2 , M/с 282,743 365,681 448,619 531,557 614,496 Скорость звука на выходе из рабочей решетки a_2 , M/с 400,617 402,977 404,231 405,012 405,636	торможения перед					
$p_1^*,$ кПа6,257,699,5612,417,04Теоретическая скорость на выходе из ступени в относительном движении w_{2t} , м/с385,222452,053514,447581,740656,904Радиус рабочей решетки r_2 , м0,91,1641,4281,6921,956Окружная скорость u_2 , м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a_2 , м/с400,617402,977404,231405,012405,636	рабочей решеткой					
Теоретическая скорость на выходе из ступени в относительном движении w_{2t} , м/савьходе 385,222из ступени в из ступени в 385,222из ступени в из ступени w_{2t} , м/сиз ступени в 385,222из ступени в из ступени w_{2t} , м/сиз ступени в 385,222из ступени в из ступени w_{2t} , м/сиз ступени	p_1^* , кПа	6,25	7,69	9,56	12,4	17,04
скорость на выходе из ступени в относительном движении w2t, м/савбу,222452,053514,447581,740656,904Радиус рабочей решетки r2, м0,91,1641,4281,6921,956Окружная скорость и2, м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a2, м/с400,617402,977404,231405,012405,636	Теоретическая					
из ступени в ст	скорость на выходе					
относительном движении w_{2t} , м/с385,222452,053514,447581,740656,904Радиус рабочей решетки r_2 , м0,91,1641,4281,6921,956Окружная скорость u_2 , м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a_2 , м/с400,617402,977404,231405,012405,636	из ступени в					
движении w2t, м/с385,222452,053514,447581,740656,904Радиус рабочей </td <td>относительном</td> <td></td> <td></td> <td></td> <td></td> <td></td>	относительном					
Радиус рабочей 0,9 1,164 1,428 1,692 1,956 Окружная скорость 282,743 365,681 448,619 531,557 614,496 Скорость звука на выходе из рабочей 400,617 402,977 404,231 405,012 405,636	движении <i>w</i> _{2t} , м/с	385,222	452,053	514,447	581,740	656,904
решетки r2, м0,91,1641,4281,6921,956Окружная скорость и2, м/с282,743365,681448,619531,557614,496Скорость звука на выходе из рабочей решетки a2, м/с400,617402,977404,231405,012405,636	Радиус рабочей					
Окружная скорость 282,743 365,681 448,619 531,557 614,496 и2, м/с 282,743 365,681 448,619 531,557 614,496 Скорость звука на выходе из рабочей решетки a2, м/с 400,617 402,977 404,231 405,012 405,636	решетки <i>r</i> ₂ , м	0,9	1,164	1,428	1,692	1,956
и2, м/с 282,743 365,681 448,619 531,557 614,496 Скорость звука на выходе из рабочей решетки a2, м/с 400,617 402,977 404,231 405,012 405,636	Окружная скорость					
Скорость звука на выходе из рабочей решетки <i>a</i> ₂ , м/с 400,617 402,977 404,231 405,012 405,636	и2, м/с	282,743	365,681	448,619	531,557	614,496
выходе из рабочей решетки <i>a</i> ₂ , м/с 400,617 402,977 404,231 405,012 405,636	Скорость звука на					
решетки <i>a</i> ₂ , м/с 400,617 402,977 404,231 405,012 405,636	выходе из рабочей					
	решетки <i>а</i> ₂ , м/с	400,617	402,977	404,231	405,012	405,636
Число Маха за	Число Маха за					
рабочей решетки M_{2t} 0,962 1,122 1,273 1,436 1,619	рабочей решетки <i>M</i> _{2t}	0,962	1,122	1,273	1,436	1,619
Коэффициент	Коэффициент					,
расхода рабочей	расхода рабочей					
решетки	решетки					
перегретого пара	перегретого пара					
$\mu_{2\pi\pi}$ 0,98 0,98 0,98 0,98 0,98	$\mu_{2\pi\pi}$	0,98	0,98	0,98	0,98	0,98
Коэффициент	Коэффициент					
расхода рабочей	расхода рабочей					
решетки с учетом	решетки с учетом					
влажности µ ₂ 0,997 1,018 1,020 1,016 1,011	влажности μ_2	0,997	1,018	1,020	1,016	1,011
Угол выхода из	Угол выхода из					
рабочей решетки β ₂ ,	рабочей решетки β_2 ,					
град 41,54 32,44 29,19 24,66 20,75	град	41,54	32,44	29,19	24,66	20,75
						,
Критическое	Критическое					
давление $p_{2 \text{кр}}$, кПа 2.446 4.210 5.221 6.774 0.206	давление <i>р</i> _{2кр,} кПа	2 116	4 210	5 021	6774	0.206
5,440 4,219 5,251 0,774 9,290		5,440	4,219	3,231	0,774	9,290
Онтальния пара за	онтальния пара за					
	раобчей решеткой					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	μ mapamerpar $n_{2 \text{Kp}}$,	2341 512	2367 542	2395 505	2420 003	2473 110

Наименование		Сечение решетки									
величины	0	0,251	0,51	0,75 <i>l</i>	l						
Удельный объем											
пара за рабочей											
решеткой при											
критических											
параметрах $v_{2\kappa p}$,											
м ³ /кг	36,703	30,528	25,156	19,945	15,005						
Относительная											
скорость на выходе											
из рабочей решетки											
при критических											
параметрах $w_{2\kappa p}$, м/с	394,094	399,006	404,455	410,553	417,880						
Эффективный угол											
выхода рабочей											
решетки β _{2эф} , град	41,174	30,896	25,584	19,049	13,375						
Коэффициент											
скорости для											
рабочей решетки ү	0,91	0,95	0,96	0,95	0,9						
Относительная											
скорость выхода из											
ступени w ₂ , м/с	350,552	429,450	493,869	552,653	591,214						
Абсолютная											
скорость выхода из											
ступени с2, м/с	233,333	230,409	241,477	232,479	218,386						
Абсолютный угол											
выхода из рабочей											
решетки α ₂ , град	95,00	90,81	94,15	97,25	106,40						
Потери с выходной											
скоростью $\Delta H_{\rm BC}$,											
кДж/кг	27,22215	26,54423	29,15546	27,02315	23,84622						
Удельная работа											
ступени $L_{\rm u}$, кДж/кг	140,5048	157,4638	156,8986	150,781	124,3478						
Относительный											
лопаточный КПД η ол	0,6891	0,772275	0,769503	0,739499	0,609859						
Осредненный по											
высоте лопаточный											
КПД η _{ол}			0,773								
Суммарный расход											
пара через рабочую											
решетку G_{Σ} , кг/с	65,121										
Невязка по расходу,											
%			-0,927								

<u>Дополнительные потери в ступени</u>

Потери от трения:

$$\xi_{mp} = k_{mp} \frac{d_{\kappa}^2}{\pi d_1 l_1 \sin(\alpha_{13\phi})} X^3 = 1 \cdot 10^{-3} \frac{1.8^2}{\pi \cdot 2.816 \cdot 1.016 \cdot \sin 15^\circ} \cdot 0.703^3 = 0.00069,$$

где $k_{mp} = 1 \cdot 10^{-3}$ - коэффициент трения.

Радиальный зазор в уплотнении:

$$\delta_r = 0,001 \cdot 1, 2 = 1,2$$
 мм.

Для лопаток без бандажа:

$$\delta_{_{_{3KG}}} = 0,75 \cdot \delta_{_{r}} = 0,9$$
 MM.

Площадь сопловой решетки:

$$F_1 = \pi d_1 l_1 \sin(\alpha_{1:p\phi}) = \pi \cdot 2,816 \cdot 1,016 \cdot \sin 15^\circ = 2,326 \ \text{m}^2.$$

Потери от утечек на периферии:

$$\xi_{y}^{n} = \pi \frac{(d_{cp} + l_{2})\delta_{_{3KB}}}{\mu_{1}F_{1}} \sqrt{\rho_{cp} + 1.8\frac{l_{2}}{d_{cp}}} \cdot \eta_{_{o.\pi}} = \pi \frac{(2.856 + 1.056)0,0009}{0.98 \cdot 2.326} \sqrt{0.613 + 1.8\frac{1.056}{2.856}} \cdot 0.773 = 0.0048.$$

Потери от утечек через диафрагменное уплотнение(ступенчатое):

$$\xi_{y}^{\partial} = \frac{\mu_{y} F_{y} k_{y}}{\mu_{1} F_{1} \sqrt{z_{y}}} \cdot \eta_{o...} = \frac{0.7 \cdot 0.0043 \cdot 1}{0.98 \cdot 2.326 \sqrt{8}} \cdot 0.773 = 0.00036,$$

где $z_y = 8$ - число гребней уплотнения;

 $\delta_v = 0,002 \, M$ - зазор в уплотнении;

 $d_v = 1,392 \, M$ - диаметр вала под уплотнение;

 $\Delta_y = 0,0005 \ M$ - ширина гребней уплотнения;

$$F_{v} = \pi d_{v} \delta_{v} = \pi \cdot 1,392 \cdot 0,001 = 0,0043 \, M^{2}$$
 - площадь зазора уплотнения;

$$\frac{\delta_y}{\Delta_y} = 2 \Longrightarrow \mu_y = 0,7$$
-коэффициент расхода уплотнения;

 $k_y = 1$ - поправочный коэффициент.

Суммарные потери от утечек:

$$\xi_{y} = \xi_{y}^{n} + \xi_{y}^{\partial} = 0,0048 + 0,00036 = 0,00516$$

Потери от влажности:

$$\xi_{an1} = 0,5(y_2 + y_0) = 0,5(0,02 + 0,084) = 0,052;$$

$$\xi_{an2} = 2 \cdot X \cdot (0,9 \cdot y_0 + 0,35 \cdot (y_2 - y_0)) = 2 \cdot 0,703 \times (0,9 \cdot 0,02 + 0,35(0,084 - 0,02)) = 0,057;$$

$$\xi_{an1} = 0,5(\xi_{an1} + \xi_{an2}) = 0,5(0,052 + 0,057) = 0,055$$

где $x_0 = f(p_0; h_0) = 0,98, x_2 = f(p_2; h_2) = 0,916$ - степень сухости пара перед и за ступенью;

 $y_0 = 1 - x_0 = 0,02, y_2 = 1 - x_2 = 0,084$ - влажность пара перед и за ступенью.

Относительный внутренний КПД ступени:

$$\eta_{o.i} = \eta_{o.n} - \xi_{mp} - \xi_{y} - \xi_{an} = 0,773 - 0,00069 - 0,00516 - 0,055 = 0,7122.$$

Использованный теплоперепад ступени:

$$H_i = H_0 \cdot \eta_{o.i} = 203,896 \cdot 0,7122 = 145,215$$
 кДж / кг.

Внутренняя мощность ступени:

$$N_i = G \cdot H_i = 64,523 \cdot 145,215 = 9369,690 Bm.$$

На рис. 15 представлен продольный разрез турбины К-300-30 с суперсверхкритическими параметрами пара.

Рис. 15. Продольный разрез К-300-30

2.2.5. Оценка предельной мощности трехцилиндровой турбины при использовании полуторного выхлопа

При модернизации разработанной турбины с начальными параметрами 650°С и давлением 30 МПа представляется целесообразным рассмотреть на сколько может быть увеличена ее мощность при переходе к полуторному выхлопу. Для оценки увеличения следует оценить увеличение расхода пара в конденсатор при полуторном выхлопе. Для этого необходимо произвести предварительный расчет предпоследней ступени ЦНД, используя ступень Баумана.

Исходными данными для расчета является длина рабочей лопатки ступени $l_2=1056$ мм (длина последней ступени из расчета выше). Высота нижнего яруса будет равна высоте рабочей лопатки до модернизации ЦНД со ступенью Баумана $l_{H_8}=630$ мм. Угол входа в рабочую решетку верхнего яруса остается прежним $\alpha_1=17$ °. Теплоперепад верхнего яруса будет равен сумме теплоперепадов на четвертую ступень и последнюю ступень $H_{B_8}=153,984+203,896=357,880$ кДж/кг. Параметры перед ступенью сохраняются такими же ($p_0=0,0425$ МПа $h_0=2675,112$ кДж/кг, $S_0=7,75$ кДж/кг·К).

Длина верхнего яруса ступени Баумана:

Средний диаметр верхнего яруса ступени Баумана:

$$d_{cpbg} = d_{k} + 2l_{hg} + l_{bg} = 1800 + 2.630 + 2.20 + 406 = 3506 \text{ mm} = 3,506 \text{ mm}$$

Окружная скорость на среднем диаметре верхнего яруса ступени Баумана:

$$u_{cDeg} = \pi d_{cDeg} n = \pi \cdot 3,506 \cdot 50 = 550,442 \quad M/c.$$

Фиктивная скорость верхнего яруса в ступени Баумана:

$$c_{\phi^{eg}} = \sqrt{2H_{eg}} = \sqrt{2 \cdot 357,880} = 846,026 \text{ m/c}.$$

Характеристическое отношение Х ступени Баумана:

$$X = \frac{u_{cpeg}}{c_{deg}} = \frac{550,442}{846,026} = 0,651.$$

Энтальпия за верхним ярусом при идеальном процессе расширения:

$$h_{2_{69}} = h_0 - H_{_{69}} = 2675,112 - 357,880 = 2317,232$$
 кДж / кг.

По энтальпии и давлению в за ступенью (давление в конденсаторе $p_{\kappa}=3,5$ кПа) найдем теоретический удельный объем за верхнем ярусом ступени Баумана $v_{2tв\pi}=f(h_{2в\pi},p_{\kappa})=35,706$ м³/кг.

Из уравнения неразрывности найдем расход через верхний ярус, считая, что осевая скорость выхода из верхнего яруса ступени Баумана равна с_{2z}=265 м/с.

$$G_{_{\!G\!R}} = \frac{\pi d_{_{\!C\!P\!G\!R}} l_{_{\!G\!R}} \cdot c_{_{2z}}}{v_{_{2t\!G\!R}}} = \frac{\pi \cdot 3,506 \cdot 0,406 \cdot 265}{35,706} = 33,631 \; \kappa_{2} \, / \, c.$$

Новый расход в конденсатор:

$$G'_{\kappa} = G_{\mu_{\pi}} + G_{\epsilon_{\pi}} = 135,536 + 2.33,631 = 202,798 \text{ kg/c}.$$

Новый расход в голову турбины:

$$G_1' = \frac{G_{\kappa}'}{(1 - \sum \alpha)} = \frac{202,798}{0,6103} = 332,292 \ \kappa c \ / c.$$

Новая мощность паровой турбины:

$$N_{\mathfrak{g}} = G_1 \overline{H_{\mathfrak{g}}} \eta_{\mathfrak{g}} \eta_{\mathfrak{g},\mathfrak{g}} = 332,292 \cdot 1442, 6 \cdot 0,996 \cdot 0,987 = 471,240 \ MBm.$$

После определения нового расхода на турбину, был произведен детальный расчет четырех первых ступеней ЦНД. В таблице 23 представлены основные параметры каждой ступени, с учетом повышенного расхода пара.

Таблица 23

Показатель	Первая стуг	пень ЦНД	Вторая сту	пень ЦНД	Третья сту	лень ЦНД	Четвертая ЦНД (ниж	отая ступень (ижний ярус) ЦНД (верхний яру		і ступень ний ярус)
	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая
Расход пара G, кг/с	111,1	102	111,	102	106,449		67,7	68	33,631	
Параметры пара перед ступенью:										
давление р ₀ , МПа	0,26	55	0,1573		0,0873		0,0425		0,0425	
энтальпия h ₀ , кДж/кг	2992,991		2889,063		2785,085		2674,391		2674,391	
удельный объем υ ₀ , м ³ /кг	0,92	24	1,401		2,241		3,98	80	3,9	80
Располагаемый теплоперепад от статических параметров H ₀ , кДж/кг	120,219		121,097		129,178		153,984		357,88	
Отношение скоростей u/c _ф	0,654		0,686		0,7	/30	0,67	0,679		51
Средний диаметр d ₁ ; d ₂ , м	2,041	2,046	2,153	2,165	2,363	2,383	2,368	2,430	3,238	3,486
Степень реактивности на среднем диаметре р _{ср} :	0,48	30	0,5	0,530 0,58 (0,5	2	0,4	69	
Параметры пара за решеткой										

Показатель	Показатель ЦНД		Вторая ступень ЦНД		Третья ступень ЦНД		Четвертая ступень ЦНД (нижний ярус)		Четвертая ступень ЦНД (верхний ярус)		
	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	
давление p ₁ ; p ₂ , МПа	0,2030	0,1573	0,1205	0,0873	0,0618	0,04253	0,02683	0,01573	0,01499	0,00347	
удельный объем υ ₁ t; υ _{2t} , м ³ /кг	1,1320	1,3770	1,7167	2,1939	2,9102	3,8669	5,759	9,262	9,673	35,706	
Число Маха М _{1t} ; М _{2t}	0,642	0,644	0,644	0,719	0,669	0,842	0,858	0,932	1,420	1,473	
Эффективный угол выхода α _{1э} ; β _{2э} , град	13,60	17,27	14,00	16,68	12,70	14,75	14,00	20,07	12,00	27,71	
Высота решетки l ₁ ; l ₂ , м	0,241	0,246	0,353	0,365	0,563	0,583	0,568	0,630	0,302	0,406	
Коэффициент скорости ф;у	0,965	0,950	0,962	0,947	0,959	0,945	0,956	0,941	0,940	0,930	
Углы направления этих скоростей β ₁ ; α ₂ , град	82,12	94,86	106,25	95,21	132,17	97,03	102,86	98,08	64,20	104,26	
Относительный лопаточный КПД _{10.л}	0,91	12	0,905		0,898		0,890		0,840		
Потери от утечек ξ ^д _y ;ξ ^б _y	0,0016	0,0060	0,0010	0,0045	0,0006	0,0037	0,0006	0,0033	0,0000	0,0059	
Потери от трения на диск ξ _д	0,00	50	0,00	0,0081		0,0074		0,0055		0,0142	
Потери от влажности ξ _{вл}	0,00	00	0,00	000	0,0	000	0,0133		0,0380		

Показатель	Первая ступень ЦНД		Д Вторая ступень ЦНД Третья ступень ЦНД Четвертая ступень ЦНД (нижний ярус		Третья ступень ЦНД		і ступень ний ярус)	Четвертая ЦНД (верх	н ступень зний ярус)		
	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	Сопловая	Рабочая	
Относительный											
внутренний	0,90	00	0,891		0,8	0,886		0,868		0,781	
КПД η _{о.i}											
Использованный											
теплоперепад Н _і ,	103,928		103,	,586	110	,544	126,1	178	238,	610	
кДж/кг											
Внутрення											
мощность N _i ,	11546	,639	11508,580		11767,321		8550,863		8024	,693	
кВт											
Энтальпия за											
ступенью h,	2889,	063	2785,085		2674,391		2548,934		2436,502		
кДж/кг							,				

После детального расчета ЦНД с повышенным расходом был спроектирован цилиндр низкого давления с полуторным выхлопом на базе двухъярусной вильчатой рабочей лопатки. Продольный разрез ЦНД с полуторным выхлопом представлен на рис. 16.

Рис. 16. Продольный разрез двухпоточного ЦНД с полуторным выхлопом на базе двухъярусной вильчатой рабочей лопатки

Глава 3. Расчёт тепловой схемы паропаровой установки, выполненный по тепловой схеме А.Е.Зарянкина, с начальными параметрами пара: Р₀=35 МПа t₀=1500°C

3.1. Разработка принципиально новой высокотемпературной паропаровой установки

Как было указано ранее в главе 1, в блоках с ультра- и суперсверхкритическими параметрами пара возникает следующая проблема. При повышении начальной температуры и температуры пара промперегрева свыше 760-870°С из последней ступени конденсационной паротурбинной установки выходит сухой насыщенный пар и дальнейшее повышение указанных температур приведёт к уменьшению коэффициента полезного действия энергоблоков с повышенными параметрами, поскольку избыточная тепловая энергия перегретого пара, покидающего последнюю ступень цилиндра низкого давления повышает суммарный расход теплоты без производства полезной работы.

С целью решения указанной проблемы А.Е. Зарянкин разработал новый высокотемпературный В паро-паровой цикл. данном термодинамическом цикле предлагается повысить начальные параметры пара перед паровой турбиной до уровня 1400-1700°С путём перегрева его в перегревателе. Сжигание водородном водорода происходит непосредственно в кислородной среде. Использовать такой способ подвода тепла целесообразно только при перегреве пара, который был получен в традиционных котлах, до температур, недоступных при существующих технологиях. При этом продукты сгорания водорода представляют собой то же химическое соединение, что и основное рабочее тело, поэтому не происходит вредных выбросов в окружающую среду. Принципиальная схема рассматриваемого цикла представлена на рис. 17.

88

Работа такого энергоблока заключается в следующем. Пар после энергетического котла 1 с параметрами 30-40 МПа и 540°С-560°С направляется в водородный поверхностный пароперегреватель 2. В водородном пароперегреватель происходит нагрев пара до температуры 1400-1700°С за счет сжигания водородного топлива Поверхностный водородный перегреватель позволяет производить сжигание водорода при низком давлении 0,3-0,45 МПа, которое чуть выше давления перед цилиндром низкого давления основной турбины 5. Далее после водородного перегревателя пар направляется в цилиндр высокого давления основной турбины 3, где, расширяясь до давления 5-6 МПа, перепускается в цилиндр среднего давления основной турбины 4. В цилиндре среднего давления пар, расширяясь до 0,32-0,5 МПа и температуры 560-590°С, смешиваясь с продуктами сгорания водородного пароперегревателя, направляется в паропаровой теплообменник 13 утилизационной паровой турбины 14. Пар основной турбины отдает свое тепло рабочему телу утилизационной турбины 14, тем самым нагревая пар до температуры 540-560°С, при этом начальное давление пара перед основной турбиной составляет 12-13 МПа. При отдаче тепла основной турбины в паропаровом теплообменнике 13 происходит охлаждение рабочего тела высокотемпературной турбины до температуры 240-260°С, которая соответствует температуре пара перед энергоблоков, работающих цилиндрами низкого давления co сверхкритическим давлением. После паропарового теплообменника 13 пар основной турбины поступает в цилиндр низкого давления основной турбины 5, где, расширяясь до давления 3,5-5 кПа, попадает в конденсатор основной турбины 7. В конденсаторе 7 пар отдает тепло охлаждающей воде, тем самым происходит преобразование пара в воду. После этого рабочее тело основной турбины с помощью конденсатного электронасоса 8 проходит группу подогревателей низкого давления основной турбины 9. Далее вода поступает в деаэратор основной турбины 10, где происходит очистка и нагрев рабочего тела основной турбины при давлении 0,58-0,6

89

МПа. После деаэратора 9 питательная вода основной турбины, поступает в группу подогревателей высокого давления основной турбины 13, где происходит, нагрев питательной воды до температуры 280-330°С. Перед энергетическим котлом 1 давление воды находится на уровне 33-42 МПа. Параллельно с этим, после того как сгенерировался пар для утилизационной турбины 14 в паропаровом теплообменнике 13, он поступает в цилиндр высокого давления утилизационной турбины. После цилиндра высокого давления утилизационной турбины, пар поступает в паропаровой теплообменник 13 для перегрева пара до температуры 540-560°С, после которого направляется в цилиндр среднего давления утилизационной Пар расширяясь в цилиндре среднего давления, турбины. далее перепускается в цилиндр низкого давления утилизационной турбины. После цилиндра низкого давления утилизационной турбины пар поступает в конденсатор 16. После конденсатора вода проходит систему регенерации утилизационной турбины, после которой температура питательной воды утилизационной турбины составляет 235-255°С.

Поскольку на данном этапе развития промышленности материалы для основной высокотемпературной турбины рассматриваемого цикла обладают высокой стоимостью, для реализации цикла предусмотрена открытая система охлаждения ЦВД и ЦСД. В качестве охлаждающего тела используется пар, который дополнительно вырабатывается в энергетическом котле с параметрами 35 МПа и 540-560°С.

Ожидаемый результат такого решения состоит в достижении КПД паротурбинных энергоблоков на уровне современных трёхконтурных ПГУ, а именно 57-63%. При этом в отличии от ПГУ, для работы которой необходим природный газ, работа данного энергоблока не зависит от вида топлива, используемого на станции.

90

Рис. 17. Принципиальная тепловая схема высокого температурного паропарового цикла
А.Е. Зарянкина: 1 – энергетический котёл; 2 – водородный пароперегреватель; 3 – цилиндр высокого давления основной турбины; 4 – цилиндр среднего давления основной турбины; 5 – цилиндр низкого давления основной турбины; 6 – электрогенератор основной турбины; 7 – конденсатор основной турбины; 8 – конденсатный электронасос основной турбины; 9 – группа подогревателей низкого давления основной турбины; 10 – деаэратор основной турбины; 11 – питательный электронасос основной теплообменник утилизационной турбины; 14 – утилизационная паровая турбина; 15 – электрогенератор утилизационной турбины; 16 – конденсатор утилизационной турбины; 18 – группа подогревателей низкого давления утилизационной турбины; 19 – деаэратор основной турбины; 20 – питательный электронасос утилизационной турбины; 21 – группа подогревателей высокого давления утилизационной турбины; 21 – группа подогревателей высокого давления утилизационной турбины; 12 – группа подогревателей низкого давления утилизационной турбины; 12 – группа подогревателей высокого давления утилизационной турбины; 21 – группа подогревателей высокого давления утилизационной турбины; 21 – группа подогревателей высокого давления утилизационной турбины; 21 – группа подогревателей высокого давления

3.2. Расчёт тепловой схемы высокотемпературной (основной) паровой

турбины

Проведем оценку процесса расширения в высокотемпературной турбины.

Параметры свежего пара перед стопорными клапанами $P_0=35~M\Pi a$, $t_0=1500$ °C. По этим параметрам найдем энтальпию и энтропию пара $h_0=5920~\kappa \mbox{$\mathcal{L}$}\mbox{$\mathcal{K}$}, S_0=8,119~\kappa \mbox{\mathcal{L}}\mbox{\mathcal{K}}.$

Определим потери в стопорном и регулирующем клапанах:

$$\Delta P_{\kappa \pi} = 0,05 \cdot P_0 = 1,75 M\Pi a.$$

Давление после клапанов равно:

$$P_0 = P_0 - \Delta P_{\kappa \pi} = 35 - 1,75 = 33,25 M\Pi a.$$

Найдем параметры пара на входе в турбину при неименной энтальпии $h_0 = const = 5920 \ \kappa \square \kappa \square \kappa \square, S_0 = 8,143 \ \kappa \square \omega \square \kappa \square \kappa \square$.

Давление пара за ЦВД, $P_z^{IIBA} = 5,5 M\Pi a$. При изоэнтропийном расширении пара в ЦВД, найдем теоретические параметры пара за ЦВД $h_{zt}^{IIBA} = 4657 \ \kappa \square m kc$.

Найдем значение энтальпии за ЦВД при реальном процессе расширения в первом приближении:

$$h_1 = h_0 - (h_0 - h_{zt}^{UBA}) \eta_{oi}^{UBA} = 5920 - (5920 - 4657) \cdot 0,88 = 4808,56 \ \kappa \square \mathcal{H} \mathcal{H} / \kappa \mathcal{E},$$

 $\eta_{oi}^{\mathcal{U}B\mathcal{I}}=0,85...0,9$ - КПД ЦВД ориентировочный. Принимаем $\eta_{oi}^{\mathcal{U}B\mathcal{I}}=0,88.$

Учитывая потери давления в пароперепускных паропроводах:

$$\Delta P_{nep} = 0,02 \cdot P_z^{IIBI} = 0,02 \cdot 5,5 = 0,11 MIIa.$$

Давление перед ЦСД:

$$P_1 = P_z^{UBA} - \Delta P_{nep} = 5, 5 - 0, 11 = 5, 39 M\Pi a.$$

Найдем все параметры пара перед ЦСД: $S_I = 8,267 \ \kappa \square \mathscr{K} / \kappa \mathscr{E} \cdot \mathscr{K},$ $t_I = 1072 \ ^\circ C.$

Давление пара за ЦСД выбираем $P_2 = P_z^{I\!I\!B\!I} = 0,4 \ M\Pi a$, для того чтобы обеспечить размеры ЦНД приемлемыми по конструктивным соображениям (5 ступеней в одном потоке), а также для обеспечения высокой эффективности второй утилизационной турбины, найдем теоретические параметры пара за ЦСД $h_{zt}^{IICI} = 3544 \ \kappa \square \infty/\kappa c$.

Найдем величину энтальпии за ЦСД:

$$h_2 = h_1 - (h_1 - h_z^{UCI})\eta_{oi}^{UCI} = 4808,56 - (4808,56 - 3544) \cdot 0,91 = 3657,810 \text{ kJw} / \text{ke} / \text$$

где h_{zt}^{UCA} – энтальпия пара при изоэнтропийном расширении;

 $\eta_{oi}^{\mathcal{UCA}} = 0,9$...0,93 - КПД ЦСД ориентировочный. Принимаем $\eta_{oi}^{\mathcal{UCA}} = 0,91$

По энтальпии на выходе из ЦСД и давлению за ЦСД найдем параметры пара за ЦСД t_2 =580°C и $P_2 = 0,4$ МПа, именно с такими параметрами пар поступает в котел-утилизатор, где отдает свое тепло пару и питательной воде второго паротурбинного контура, охлаждаясь до температуры t_3 =250°C направляется в ЦНД основного паротурбинного контура. Потери давления в тракте ЦСД-Т-ЦНД принимаем равными 20 кПа.

Давление пара перед ЦНД:

$$P_3 = P_2 - \Delta P_{nep} = 0, 4 - 0, 02 = 0, 38$$
 MITa.

Определим параметры пара перед ЦНД $P_3 = 0,38 M\Pi a$, $t_3 = 250 °C$, $h_3 = 2965 \kappa \square \kappa \kappa c$, $S_3 = 7,39 \kappa \square \kappa \kappa c \cdot \kappa c$.

Найдем энтальпию пара за ЦНД:

$$h_{\kappa} = h_3 - (h_3 - h_{\kappa t}) \eta_{oi}^{UHJ} = 2965 - (2965 - 2210) \cdot 0,87 = 2308,15 \, \kappa \square \mathcal{H} / \kappa^2,$$

где *h*_{кt} – энтальпия пара при изоэнтропийном расширении;

 $\eta_{oi}^{UHA} = 0,75 \dots 0,85$ - КПД ЦНД ориентировочный. Принимаем $\eta_{oi}^{UHA} = 0,87$ (так в ЦНД будут установлены распределительные сопловые решетки).

На рис. 18. представлен процесс расширения пара в *h*,*s* – диаграмме.

Рис.18. Расширение пара в высокотемпературной турбине в h,s – диаграмме

3.2.1. Расчет подогревателей

В соответствии с принятым вариантом тепловой схемы суммарное повышение энтальпии питательной воды от h_{κ} в конденсаторе до $h_{\Pi B}$ перед парогенератором распределяется по подогревателям, исходя из принципа равномерного подогрева в ПНД и ПВД, и выбираются параметры греющего пара в подогревателя и отборах турбины.

При температуре питательной воды $t_{n.e}=300^{\circ}$ С найдем энтальпию питательной воды $h_{n.e}=1345$ кДж/кг.

При давлении конденсата *p_к*=3,5 *кПа* найдем энтальпию питательной воды *h_{ne}*=111,8 кДж/кг.

Принимаем деаэратор повышенного давления $p_{\partial}=0,62$ МПа и температурой насыщения $t_{\partial}=160^{\circ}$ С, $h_{\partial}=676,1$ кДж/кг. На рис. 18 представлена тепловая схема с подогревателями высокотемпературной паровой турбины.

Исходя из тепловой схемы прототипа (рис. 18), найдем подогревы конденсата и питательной воды, выходящих из деаэратора, ПНД (4шт.) и ПВД (3шт.) соответственно. Для простоты на тепловой схеме указаны не все ПВД и ПНД.

$$\Delta h_{\Pi B \square} = \frac{h_{n.s} - h_{\partial}}{n_{\Pi B \square}} = \frac{1345 - 676, 1}{3} = 223 \ \kappa \square \mathcal{D} \kappa / \kappa \mathcal{E}.$$

$$\Delta h_{\Pi H \square} = \frac{h_{\partial} - h_{\kappa}}{n_{\Pi H \square} + 1} = \frac{676, 1 - 111, 8}{4 + 1} = 112,86 \ \kappa \square \mathcal{H} \mathcal{H} / \kappa \mathcal{P}.$$

Найдем энтальпии воды выходящей из подогревателей. Результаты представлены в табл. 24.

Таблица 24

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
h ₈ = h _{п.в} =1345 кДж/кг	<i>h</i> 7=1122 кДж∕кг	<i>h</i> ₅=899 кДж∕кг	<i>h</i> ∂=676 кДж∕кг	<i>h</i> ₄=563,14 кДж∕кг	<i>h</i> ₃=450,28 кДж∕кг	h₂=337,42 кДж∕кг	h₁=224,56 кДж/кг

Найдем энтальпии воды выходящей из подогревателей. Результаты представлены в табл. 25.

Таблица 25

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
$t_8 = t_{\pi.B} = 300^{\circ} C$	<i>t</i> ₇ =257°C	<i>t</i> ₆ =211C	t_{∂} =160°C	<i>t</i> ₄ =134°C	<i>t</i> ₃ =107°C	<i>t</i> ₂ =81°C	<i>t</i> ₁ =53°C

Учитывая, что недогрев конденсата греющего пара присутствует в ПНД и ПВД. Найдем температуры конденсата греющего пара с учетом недогрева. Примем $\Delta t_{\Pi B \Pi} = 2^{\circ} C$ и $\Delta t_{\Pi H \Pi} = 4^{\circ} C$ (поверхностного типа). Результаты представлены в табл. 26.

Таблица 26

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
$t_8' = 302^{\circ}C$	$t_{7} = 259^{\circ}C$	$t_{6} = 213^{\circ}C$	$t_{\partial} = 160^{\circ} C$	$t_{4}^{'} = 138^{\circ}C$	$t_{3} = 111^{\circ}C$	$t_{2}^{'}=81^{\circ}C$	$t_1' = 57^{\circ}C$

Этим температурам соответствует энтальпия и давление конденсата греющего пара (по параметрам насыщения). Значение указаны в табл. 27.

Γ	аблица	27
_		

		Энтальпия	Давление
N HOHODDODOTOHA	Порядок	конденсата	конденсата
и подогревателя	отбора.	греющего пара,	греющего пара,
		$h_{j}^{'},$ кДж/кг	МПа
П-8	O-1	$h_1 = 1356$	$p_1 = 8,832$
П-7	O-2	$h_2 = 1130$	$p'_2 = 4,616$
П-6	O-3	$h'_{3} = 911,4$	$p_3 = 2,024$
Д	O-4	$h_{4}^{'} = 676$	$p'_4 = 0,62$
П-4	O-5	$h_{5} = 581$	$p_5 = 0,342$
П-3	O-6	$h_{6} = 466$	$p_{6} = 0,148$
П-2	O-7	$h_{7} = 356$	$p_7 = 0,05787$
П-1	O-8	$h_{8} = 239$	$p_8 = 0,0173$

При транспортировке греющего пара из камеры отбора турбины до соответствующего подогревателя на преодоление путевых и местных сопротивлений затрачивается от 5 до 8% давления в отборе. Принимая, что затрачивается 6,5%. В отборах турбины должны быть соответственно давления $p''_{j} = 1,065 \cdot p'_{j}$. Принимая что затрачивается 6,5%. Давления представлены в табл. 28.

Таблица 28

O-1	O-2	O-3	O-4
$p_1^{"} = 9,406 M\Pi a$	р ₂ = 4,916 <i>МПа</i>	р ₃ = 2,156 МПа	р ₄ = 0,6603 МПа
O-5	O-6	O-7	O-8
$p_5^{"} = 0,364 M\Pi a$	$p_{6}^{"}=0,158 M\Pi a$	$p_7^{"} = 0,0616 M\Pi a$	р ₈ = 0,0184 <i>МПа</i>

По конструктивным соображениям делаем 2 и 6 отбор за ЦВД и ЦСД. При этом давление $p_2^{''} = 5,5 M\Pi a$, $p_2^{'} = 5,164 M\Pi a$, $h_2^{'} = 1165 \kappa \beta \omega / \kappa c$, $h_7 = 1155 \kappa \beta \omega / \kappa c$ -энтальпия воды на выходе из П-7 (при температуре 264°С). Для подогревателя номер 3 $p_6^{''} = 0,4 M\Pi a$, $p_2^{'} = 0,376 M\Pi a$, $h_6^{'} = 592,5 \kappa \beta \omega / \kappa c$, $h_3 = 576,3 \kappa \beta \omega / \kappa c$ (при температуре 137°С). Из-за того что давление пара в 6 отборе больше чем в 5, давление отбора пара поднимем до 0,5 МПа при этом $p_5^{'} = 0,469 M\Pi a$, $h_5^{'} = 630 \kappa \beta \omega / \kappa c$, $h_4 = 611 \kappa \beta \omega / \kappa c$.

Отложим давления отборов на процессе турбины в *h*,*s* – диаграмме. Этим давления соответствуют энтальпии отбора пара из турбины, представленные в табл. 29.

Таблица 29

	Энтальпия греющего пара из
Номер отбора	турбины
	h_{j} , кДж/кг
1	5105,12
2	4808,56
3	4333,94
4	3834,35
5	3734,25
6	3657,81
7	2652,67
8	2495,2

Найдем коэффициенты отбора пара из турбины на регенеративный подогрев в каждом подогревателе по формуле:

$$\alpha_{m} = \frac{\beta_{m}(h_{n.e}^{e_{blx}} - h_{n.e}^{e_{x}}) - (h_{m+1}^{'} - h_{m}^{'})\sum_{m+1}^{z} \alpha_{j}}{h_{m} - h_{m}^{'}},$$

где β_m - коэффициент, указывающий количество питательной воды, протекающей через рассматриваемый подогреватель, отнесенное к количеству питательный воды на входе в котел, h_m, h_m - энтальпии отбираемого пара и его конденсата, α_j - относительные расходы пара на регенеративные подогреватели, расположенные выше по давлению, и через них организован «каскадный» слив конденсата.

Расчет представлен в табл. 30.

Таблица 30

Номер			$(1-\sum \alpha)H_{iz}$
подогревате	Расчетная формула	Отбор	
ЛЯ			кДж/кг

-	Теплоперепад от состояния свежего пара до верхнего отбора	0	814,88
8	$\alpha_8 = \frac{1345 - 1155}{5105, 12 - 1356}$	0,0507	281,531
7	$\alpha_7 = \frac{1155 - 899 - 0,0507(1356 - 1165)}{4808,56 - 1165}$	0,0676	418,02
6	$\alpha_6 = \frac{899 - 676 - 0,1183(1165 - 911,4)}{4333,94 - 911,4}$	0,0564	412,324
5(Д)	$\alpha_5 = \frac{676 - 611 - 0,1747(911,4 - 676)}{3834,35 - 676}$	0,0076	81,858
4	$\alpha_4 = 0,8178 \frac{611 - 576,3}{3734,25 - 630}$	0,0091	61,811
3	$\alpha_3 = \frac{0,8178(576,3-337,42) - 0,0091(630-57)}{3657,2-576,3}$	<u>(6,3)</u> 0,0636	232,688
2	$\alpha_2 = \frac{0,8178(337,42 - 224,56) - 0,0727(592,5)}{2670,62 - 356}$	-356) 0,0324	112,168
1	$\alpha_1 = 0,7126 \frac{224,56 - 111,8}{2522,2 - 239}$	0,0351	126,579

Приведенный использованный теплоперепад равен:

$$\overline{H_i} = \sum (1 - \sum \alpha) H_{iz} = 2542, 31_9 \kappa Дж / \kappa г.$$

3.2.2. Технико-экономические показатели

Ранее в главе 2 был спроектирован ЦНД с полуторным выхлопом на базе двухъярусной вильчатой лопатки, расход в конденсатор которого составил G_к=202,798 кг/с. В высокотемпературной турбине будем использовать один такой цилиндр низкого давления.

Найдем расход свежего пара с учетом отборов:

$$G_0 = \frac{G_{\kappa}}{1 - \sum \alpha} = \frac{202,798}{1 - 0,3233} = 299,681 \ \kappa c \ / \ c.$$

Теплота, подведенная в энергетическом котле:

$$Q_{_{\mathcal{H}}} = (h_{_{\mathcal{H}}} - h_{_{\mathcal{H}}})G_0 = (3178 - 1345) \cdot 299,681 = 549,315 \ MBm,$$

где h_{эк}-энтальпия пара на выходе из энергетического котла с параметрами 35 МПа и 540°С;

h_{пв}-энтальпия питательной воды перед котлом.

Теплота, подведенная в водородном перегревателе пара:

$$Q_{en} = (h_0 - h_{3\kappa})G_0 = (5920 - 3178) \cdot 299,681 = 821,725 MBm.$$

Расход водородного топлива, сжигаемого в котле-утилизаторе:

$$B_T = \frac{(h_0 - h_{_{3\kappa}})G_0}{Q_{_{H}}^p} = \frac{(5920 - 3178) \cdot 299,681}{120 \cdot 10^3} = 6,848 \ \kappa z \ / \ c.$$

Для сжигания водородного топлива необходим кислород, который соотносится с водородом, как H₂:O₂=1:8.

Расход кислорода составит:

$$B_{O_2} = 8B_T = 8 \cdot 6,848 = 54,782 \ \kappa 2 \ / c.$$

Расход продуктов сгорания водородной камеры сгорания, котоыре являются паром составит:

$$G_{nc} = B_{O_2} + B_T = 54,782 + 6,848 = 61,629 \ \kappa c / c.$$

При этом продукты сгорания из водородной камеры сгорания выходит с температурой 590 °С и давлением 0,41 МПа и принимая потери давления в 0,01 МПа и температуры 10 °С по паропровдоам до точки смешения с основынм паром после ЦСД основной турбины, смешивается с параметрами 580 °С и 0,4 МПа.

Мощность ЦВД основной турбины:

$$N_{_{\mathcal{I}B\mathcal{I}}} = G_0 \overline{H}_{iz}^{_{\mathcal{I}B\mathcal{I}}} \eta_{_{\mathcal{M}}} \eta_{_{\mathcal{9},\mathcal{2}}} = 299,681 \cdot 1096,411 \cdot 0,996 \cdot 0,987 = 323,005 \ MBm.$$

Мощность ЦСД основной турбины:

$$N_{\mu CA} = G_0 \overline{H}_{iz}^{\mu CA} \eta_{M} \eta_{3.2} = 299,681 \cdot 974,474 \cdot 0,996 \cdot 0,987 = 287,082 MBm.$$

Мощность ЦНД основной турбины:

$$\begin{split} N_{_{\mathcal{U}H\mathcal{A}}} &= G_0 \overline{H}_{_{iz}}^{\mathcal{U}H\mathcal{A}} \eta_{_{\mathcal{M}}} \eta_{_{\mathcal{S},2}} + G_{_{nc}}(h_3 - h_{_{\kappa t}}) \eta_{_{oi}}^{\mathcal{U}H\mathcal{A}} \eta_{_{\mathcal{N}}} \eta_{_{\mathcal{S},2}} \\ &= 299,681 \cdot 471,435 \cdot 0,996 \cdot 0,987 + 61,629 \cdot (2965 - 2210) \cdot 0,87 \cdot 0,996 \cdot 0,987 = 178,681 \ MBm. \end{split}$$

Суммарная электрическая мощность основной турбины:

$$N_{_{21}}^{IIT} = N_{_{IIBJ}} + N_{_{IICJ}} + N_{_{IIHJ}} = 323,005 + 287,082 + 178,681 = 788,767 \approx 790 MBm.$$

Абсолютный внутренний КПД основного цикла равен:

$$\eta_{ip}^{1} = \frac{N_{31}}{(h_{0} - h_{8}) \cdot G_{0} - (1 - \sum_{1}^{5} \alpha)(h_{6} - h_{0}^{\mathcal{U}H\mathcal{I}}) \cdot G_{0}} = \frac{788 \cdot 1000}{(5920 - 1345) \cdot 299,681 - (1 - 0,1914 \sum_{1}^{5})(3657,81 - 2965) \cdot 299,681} = 0,6485.$$

Расход пара поступающий в теплообменник утилизационной турбины:

$$G_{cm} = (1 - \sum_{1}^{6} \alpha) \cdot G_{0} + G_{nc} = (1 - 0, 2549) \cdot 299, 681 + 61, 629 = 284, 894 \ \kappa c / c.$$

Поскольку продукты сгорания и пар основной после теплообменника направляются в ЦНД основной турбины, то расход пара в конденсатор будет равен:

$$G'_{\kappa} = (1 - \sum \alpha)G_0 + G_{nc} = (1 - 0,3232) \cdot 299,681 + 61,629 = 264,427 \ \kappa z / c.$$

Расход пара в конденсатор значительно выше принятого ранее G_к=202,798 кг/с, а, следовательно, необходимо будет изменить выхлоп основной паровой турбины.

Результаты расчёта (п. 3.2. и 3.2.1) представлены в сводной таблице 31.

тс	21
гаолина	51
тастица	~ 1

Название параметра	Размер- ность	Обозна- чение	Значе- ние
Параметры цикла ПСУ 1:			
Температура свежего пара	°C	t_0	1500
Давление свежего пара перед СК ВД	МПа	p_0	35
Давление пара после ЦСД	МПа	$p_{ m n\pi}$	0,40
Расход свежего пара	кг/с	G_0	299,681
Расход пара, поступающего в конденсатор	кг/с	$G_{ ext{k}}$	202,798
Давление в конденсаторе	кПа	рк	3,5
Относительные расходы пара, отбираемого в систему регенерации:			
- П1	-	α_1	0,0507
- П2	-	α_2	0,0676
- ПЗ	-	α3	0,0564
- П4	-	$lpha_4$	0,0076
- Д (П5)	-	α_5	0,0091
- Пб	-	$lpha_6$	0,0636
- П7	-	α7	0,0327
- П8	-	α_8	0,0356
Технико-экономические показатели	всей устан	ювки	
Мощность ПСУ 1	МВт	$N_{\mathfrak{I}}^{_{\mathrm{IIT}}}$ 1	789
Абсолютный электрический КПД брутто ПСУ 1	%	$\eta_{\mathfrak{s}}^{\mathrm{ncy}}{}_{1}$	64,8
Расход кислорода на подогреватель	кг/с	B_{H2}	6,848
Расход водородного топлива на подогреватель	кг/с	B_{O2}	54,782

Глава 4. Расчёт тепловой схемы утилизационного паротурбинного блока,

4.1. Расчёт тепловой схемы утилизационного блока

Принимая, что температурный напор в начале утилизационного теплообменника равен 20°С, а в конце 5°С [18]. Тогда параметры свежего пара перед стопорными клапанами $P_0=12,8~M\Pi a, t_0=560°C$, температура $t_{\text{п.в}}=245°C$. По начальным параметрам найдем энтальпию и энтропию пара $h_0=3500~\kappa \mathcal{J} \mathcal{K}/\kappa r$, $S_0=6,649\kappa \mathcal{J} \mathcal{K}/\kappa r$.

Определим потери в стопорном и регулирующем клапанах:

$$\Delta P_{\mu \pi} = 0.05 \cdot P_0 = 0.64 M\Pi a.$$

Давление после клапанов равно:

$$P_0' = P_0 - \Delta P_{\kappa n} = 12, 8 - 0, 64 = 12, 16 M\Pi a.$$

Найдем параметры пара на входе в турбину при неименной энтальпии $h_0 = const = 3500 \kappa \square \kappa / \kappa r$, $S_0' = 6,672 \kappa \square \kappa r$.

Давление пара за ЦВД, $P_z^{UBA} = 3,5 M\Pi a$. При изоэнтропийном расширении пара в ЦВД, найдем теоретические параметры пара за ЦВД $h_{zt}^{UBA} = 3112 \ \kappa \square m c/\kappa c$.

Найдем значение энтальпии за ЦВД при реальном процессе расширения в первом приближении:

$$h_1 = h_0 - (h_0 - h_{zt}^{\mathcal{UBA}})\eta_{oi}^{\mathcal{UBA}} = 3500 - (3500 - 3112) \cdot 0,88 = 3158,56 \, \kappa \mathcal{I} \mathcal{H} \mathcal{H} / \kappa z,$$

где $h_z^{\mathcal{U}B\mathcal{I}}$ – энтальпия пара при изоэнтропийном расширении;

 $\eta_{oi}^{\mathcal{U}B\mathcal{I}}=0,85...0,9$ - КПД ЦВД ориентировочный. Принимаем $\eta_{oi}^{\mathcal{U}B\mathcal{I}}=0,88.$

Учитывая потери давления в тракте промперегрева, найдем давление после промперегрева:

$$P_{nn} = 0,9 \cdot P_z^{\mu B \mu} = 0,9 \cdot 3,5 = 3,15 M \Pi a.$$

Температура пара после промперегрева $t_{nn}=t_0=560^{\circ}$ С.Найдем все параметры пара перед ЦСД: $S_{nn}=7,38 \ \kappa \square \mathscr{K} / \kappa \mathcal{E} \cdot \mathcal{K}, \ h_{nn}=3591 \ \kappa \square \mathscr{K} / \kappa \mathcal{E}.$

Давление пара за ЦСД выбираем $P_2 = P_z^{UCA} = 0,3 \ M\Pi a$, для того чтобы обеспечить размеры ЦНД приемлемыми по конструктивным соображениям (5 ступеней в одном потоке), найдем теоретические параметры пара за ЦСД $h_{zt}^{UCA} = 2898 \ \kappa \square \varkappa c/\kappa c$.

Найдем величину энтальпии за ЦСД:

$$h_2 = h_{nn} - (h_{nn} - h_{zt}^{UCI})\eta_{oi}^{UCI} = 3591 - (3591 - 2898) \cdot 0,91 = 2960,37 \ \kappa \square w// \kappa P$$

 $\eta_{_{oi}}^{_{UCI}}=0,9$...0,93 - КПД ЦСД ориентировочный. Принимаем $\eta_{_{oi}}^{_{UCI}}=0,91.$

Оценим потери давления между ЧСД и ЧНД по формуле:

$$\Delta P = 0.02 \cdot P_z^{\mu C \mu} = 0.02 \cdot 0.3 = 0.006 M \Pi a.$$

Давление пара перед ЦНД:

$$P_3 = P_2 - \Delta P_{nep} = 0, 3 - 0,006 = 0,294 MITa.$$

Определим параметры пара перед ЦНД $P_3 = 0,294 \ M\Pi a$, $t_3 = 246,2 \ °C$, $h_3 = 2960,37 \ \kappa \square \kappa / \kappa c$, $S_3 = 7,513 \ \kappa \square \kappa / \kappa c \cdot K$.

Найдем энтальпию пара за ЦНД:

где *h*_{кt} – энтальпия пара при изоэнтропийном расширении;

Построим процесс расширения пара в *h*,*s* – диаграмме (рис. 19).

Рис.19. Расширение пара в модернизированной паровой турбине присоединенного блока в h,s - диаграмме

4.1.1. Расчет подогревателей

В соответствии с принятым вариантом тепловой схемы суммарное повышение энтальпии питательной воды от h_{κ} в конденсаторе до $h_{\Pi B}$ перед парогенератором распределяется по подогревателям, исходя из принципа равномерного подогрева в ПНД и ПВД, и выбираются параметры греющего пара в подогревателя и отборах турбины.

При температуре питательной воды $t_{n.e}$ =245°С найдем энтальпию питательной воды $h_{n.e}$ =1061 кДж/кг.

При давлении конденсата *p_к*=3,5 *кПа* найдем энтальпию питательной воды *h_{ne}*=111,8 кДж/кг.

Принимаем деаэратор повышенного давления $p_{\partial}=0,62$ МПа и температурой насыщения $t_{\partial}=160^{\circ}$ С, $h_{\partial}=676,1$ кДж/кг.

Исходя из тепловой схемы прототипа (рис. 17), найдем подогревы конденсата и питательной воды, выходящих из деаэратора, ПНД (4шт.) и ПВД (3шт.) соответственно. Для упрощения на тепловой схемы не обозначены все подогреватели высокого (3 шт.) и низкого давления (4 шт.).

$$\Delta h_{\Pi B \Pi} = \frac{h_{n.s} - h_{\partial}}{n_{\Pi B \Pi}} = \frac{1061 - 676, 1}{3} = 128 \ \kappa \Pi \mathcal{D} \kappa / \kappa \mathcal{P}.$$

$$\Delta h_{\Pi H \square} = \frac{h_{\partial} - h_{\kappa}}{n_{\Pi H \square} + 1} = \frac{676, 1 - 111, 8}{4 + 1} = 112,86 \ \kappa \square \mathcal{H} \mathcal{H} / \kappa \mathcal{P}.$$

Таблица 31

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
h ₈ = h _{п.в} =1061 кДж/кг	<i>h</i> 7=933 кДж∕кг	<i>h</i> ₆ =805 кДж/кг	<i>h</i> ∂=676 кДж∕кг	<i>h</i> ₄=563,14 кДж∕кг	<i>h</i> ₃=450,28 кДж∕кг	h ₂ =337,42 кДж/кг	h ₁ =224,56 кДж/кг

Найдем энтальпии воды выходящей из подогревателей. Результаты представлены в табл. 32.

Таблица 33

П-8	П-7	П-6	Д	П-4	П-3	П-2	П-1
<i>t</i> ₈ = <i>t</i> _{п.в} =245°С	<i>t</i> ₇ =217°C	<i>t</i> ₆ =188C	t_{∂} =160°C	<i>t</i> ₄ =134°C	<i>t</i> ₃ =107°C	<i>t</i> ₂ =81°C	<i>t</i> ₁ =53°C

Учитывая, что недогрев конденсата греющего пара присутствует в ПНД и ПВД. Найдем температуры конденсата греющего пара с учетом недогрева. Примем $\Delta t'_{\Pi B J} = 2^{\circ} C$ и $\Delta t'_{\Pi H J} = 4^{\circ} C$ (поверхностного типа)... Результаты представлены в табл. 34.

Таблица 34

ПО	Π7	Πζ	π	Π 4	πэ	πо	Π 1
11-8	11-/	11-6	Д	11-4	11-3	11-2	11-1

$t_8' = 247^{\circ}C$	$t_7 = 219^{\circ}C$	$t_{6}^{'} = 190^{\circ}C$	$t_{\partial} = 160^{\circ}C$	$t_4' = 138^\circ C$	$t_3 = 111^\circ C$	$t_{2}' = 81^{\circ}C$	$t_1^{'} = 57^{\circ}C$

Этим температурам соответствует энтальпия и давление конденсата греющего пара (по параметрам насыщения). Значение указаны в табл. 35.

Таблица 35

<i>N</i> подогревателя		Энтальпия	Давление
	Порядок	конденсата	конденсата
	отбора.	греющего пара,	греющего пара,
		$h_{j}^{'},$ кДж/кг	МПа
П-8	O-1	$h_1 = 1071$	$p_1 = 3,778$
П-7	O-2	$h_2' = 939$	$p_2 = 2,275$
П-6	O-3	$h_3 = 807, 6$	$p_3 = 1,255$
Д	O-4	$h_{4} = 676$	$p_4 = 0,62$
П-4	O-5	$h_{5} = 581$	$p_5 = 0,342$
П-3	O-6	$h_{6} = 466$	$p_6 = 0,148$
П-2	O-7	$h_{7} = 356$	$p_7 = 0,05787$
Π-1	O-8	$h_{8} = 239$	$p_8 = 0,0173$

При транспортировке греющего пара из камеры отбора турбины до соответствующего подогревателя на преодоление путевых и местных сопротивлений затрачивается от 5 до 8% давления в отборе. Принимая, что затрачивается 8%. В отборах турбины должны быть соответственно давления $p'_{i} = 1,08 \cdot p'_{i}$. Давления представлены в табл. 36.

Таблица 36

O-1	O-2	O-3	O-4
$p_1' = 4,08 M\Pi a$	р ₂ = 2,457 МПа	р ₃ =1,3554 <i>МПа</i>	р ₄ = 0,6603 МПа
O-5	O-6	O-7	O-8
$p_5^{"} = 0,364 M\Pi a$	$p_{6}^{"}=0,158 M\Pi a$	р ₇ = 0,0616 <i>МПа</i>	р ₈ = 0,0184 <i>МПа</i>

По конструктивным соображениям делаем 2 и 6 отбор за ЦВД и ЦСД. При этом давление $p_2^{"} = 3,5 M\Pi a$, $p_2^{'} = 3,241 M\Pi a$, $h_2^{'} = 1029 \kappa \Delta w / \kappa c$, $h_7 = 1019 \kappa \Delta w / \kappa c$ -энтальпия воды на выходе из П-7 (при температуре 237°C). Для подогревателя номер 3 $p_6^{"} = 0,3 M\Pi a$, $p_2^{'} = 0,276 M\Pi a$, $h_6^{'} = 561,5 \kappa \Delta w / \kappa c$, $h_3 = 537,9 \kappa \Delta w / \kappa c$ (при температуре 128°C).

Отложим давления отборов на процессе турбины в *h*,*s* – диаграмме. Этим давления соответствуют энтальпии отбора пара из турбины, представленные в табл. 37.

Таблица 37

	Энтальпия греющего пара из	
Номер отбора	турбины	
	h_{j}, κ Дж/кг	
1	3196,4	
2	3158,56	
3	3325,28	
4	3136	
5	3000,41	
6	2960,37	
7	2691,218	
8	2530,268	

Найдем коэффициенты отбора пара из турбины на регенеративный подогрев в каждом подогревателе по формуле:
$$\alpha_{m} = \frac{\beta_{m}(h_{n.e}^{\text{\tiny 6bix}} - h_{n.e}^{\text{\tiny 6x}}) - (h_{m+1}^{'} - h_{m}^{'})\sum_{m+1}^{z} \alpha_{j}}{h_{m} - h_{m}^{'}},$$

где β_m - коэффициент, указывающий количество питательной воды, протекающей через рассматриваемый подогреватель, отнесенное к количеству питательный воды на входе в котел, h_m, h_m - энтальпии отбираемого пара и его конденсата, α_j - относительные расходы пара на регенеративные подогреватели, расположенные выше по давлению, и через них организован «каскадный» слив конденсата.

Расчет представлен в табл. 38.

Номер			$(1-\sum \alpha)H_{iz}$
подогревате	Расчетная формула	Отбор	
ля			кДж/кг
_	Теплоперепад от состояния свежего	0	
	пара до верхнего отбора		303,6
8	$\alpha_8 = \frac{1061 - 1019}{3196, 4 - 1071}$	0,0198	37,092
7	$\alpha_7 = \frac{1019 - 805 - 0,0198(1071 - 1029)}{3158,56 - 1029}$	0,1001	233,870
6	$\alpha_6 = \frac{805 - 676 - 0,1199(1029 - 807,6)}{3325,28 - 807,6}$	0,0407	158,889
5(Д)	$\alpha_5 = \frac{676 - 563, 14 - 0, 1606(807, 4 - 676)}{3136 - 676}$	0,0373	
			108,764
4	$\alpha_4 = 0,8022 \frac{563,14 - 537,9}{3000,41 - 581}$	0,0084	31,783

3	$\alpha_3 = \frac{0,8022(537,9-337,42) - 0,0091(581-56)}{2960,37-561,5}$	51,5) 0,0670	195,623
2	$\alpha_2 = \frac{0,8022(337,42 - 224,56) - 0,0754(561,5)}{2691,218 - 356}$	-356) 0,0321	111,808
1	$\alpha_1 = 0,6947 \frac{224,56 - 111,8}{2530,268 - 239}$	0,0342	125,843

Приведенный использованный теплоперепад равен:

$$\overline{H_i} = \sum (1 - \sum \alpha) H_{iz} = 1307,274$$
кДж / кг.

4.1.2. Технико-экономические показатели

Из уравнения теплового баланса найдем расход пара в голово утилизационного блока:

$$G_{0}^{'} = \frac{G_{cM}(h_{z}^{UCAoch} - h_{0}^{UHA})}{(h_{0}^{UBAym} - h_{n.sym}) + (1 - \sum_{1}^{2} \alpha_{ym})(h_{0}^{UCAym} - h_{z}^{UBAym})}$$
$$= \frac{284,89 \cdot (3657,81 - 2965)}{(3500 - 1061) + 0,8801 \cdot (3591 - 3158,56)} = 70,002 \ \kappa z \ / c.$$

Мощность утилизационного блока составит:

$$N_{_{92}}^{\Pi T} = G_{_{0}} \overline{H_{_{i}}} \eta_{_{\mathcal{M}}} \eta_{_{9,2}} = 70,002 \cdot 1307,274 \cdot 0,996 \cdot 0,987 = 90 \ MBm.$$

Абсолютный электрический КПД утилизационного блока:

$$\eta_{ip}^{2} = \frac{N_{9}^{IIT2}}{G_{0}^{'}(h_{0}^{UBAym.} - h_{n.e}^{ym}) + (1 - \sum_{1}^{2} \alpha_{ym})(h_{0}^{UCAym} - h_{z}^{UBAym})}$$
$$= \frac{90 \cdot 1000}{70,002 \cdot (3500 - 1061) + 0,8801 \cdot (3591 - 3158,56)} \cdot 100 = 45,58\%$$

Найдем абсолютный электрический КПД высокотемпературного цикла:

$$\eta_{2}^{\text{KOM}6} = \frac{N_{21}^{\Pi T} + N_{22}^{\Pi T}}{G_0 \cdot (h_0^{\text{OCH}} - h_{n.6}^{\text{OCH}})} = \frac{(788 + 90) \cdot 1000}{299,681 \cdot (5920 - 1345)} \cdot 100 = 64,1\%.$$

Результаты расчёта (п. 3.2 и 4.1) представлены в сводной таблице 39.

Гаолица 3	9
-----------	---

Название параметра	Размер- ность	Обозна- чение	Значе- ние
Параметры цикла ПСУ 1:			
Температура свежего пара	°C	t_0	1500
Давление свежего пара перед СК ВД	МПа	p_0	35
Давление пара после ЦСД	МПа	$p_{\pi\pi}$	0,40
Расход свежего пара	кг/с	G_0	299,681
Расход пара, поступающего в конденсатор	кг/с	$G_{ ext{K}}$	202,798
Давление в конденсаторе	кПа	p_{κ}	3,5
Относительные расходы пара, отбираемого в систему регенерации:			
- П1	-	α_1	0,0507
- П2	-	α_2	0,0676
- ПЗ	-	α3	0,0564
- П4	-	$lpha_4$	0,0076
- Д (П5)	-	α5	0,0091
- Пб	-	$lpha_6$	0,0636
- П7	-	α_7	0,0327
- П8	-	α_8	0,0356
Параметры цикла ПСУ 2:			
Температура свежего пара	°C	t_0 '	580
Давление свежего пара перед СК ВД	МПа	p_0 '	24
Температура пара промперегрева	°C	$t_{\Pi\Pi}$ '	580
Давление пара перед ЦСД после промперегрева	МПа	$p_{ m nn}$ '	3,24
Давление пара перед ЦНД	МПа	$p_0^{ m uhd'}$	0,3
Расход свежего пара, поступающий из ЭК	кг/с	G_0	70,002
Расход пара, поступающего на промперегрев	кг/с	$G_{\Pi\Pi}$ '	61,611
Расход пара, поступающего в конденсатор	кг/с	$G_{ ext{K}}$	46,235
Давление в конденсаторе	кПа	рк	3,5
Относительные расходы пара, отбираемого в систему регенерации:			

- П1	-	α_1 '	0,0198	
- П2	-	α_2 '	0,1001	
- ПЗ	-	α_3 '	0,0407	
- П4	-	α4'	0,0373	
- Д (П5)	-	α5'	0,0084	
- Пб	-	α_6'	0,0670	
- П7	-	α7'	0,0321	
- П8	-	α_8'	0,0342	
Технико-экономические показатели всей установки				
Мощность ПСУ 1	МВт	$N_{\mathfrak{I}}^{_{\mathrm{IIT}}}{}_{1}$	789	
Мощность ПСУ 2	МВт	$N_{\mathfrak{I}}^{_{\mathrm{IIT}}}{}_{2}$	90	
Абсолютный электрический КПД брутто ПСУ 1	%	$\eta_{\mathfrak{s}^{\mathrm{ncy}}}$	64,8	
Абсолютный электрический КПД брутто ПСУ 2	%	$\eta_{\mathfrak{s}}^{\mathrm{ncy}}{}_{2}$	45,6	
Абсолютный электрический КПД брутто комбинированного цикла	%	$\eta_{\scriptscriptstyle 3}^{\scriptscriptstyle m KOMG}$	64,1	
Расход кислорода на подогреватель	кг/с	B _{H2}	6,848	
Расход водородного топлива на подогреватель	кг/с	B_{O2}	54,782	
Удельный расход пара на производство электроэнергии	кг/кВт*ч	d	1,5	
Суммарная мощность	МВт	$N_{ m e}$	879	

Стоит отметить, что у данного энергоблока удельный расход электроэнергии составил 1,5 кг/кВт·ч, что почти в 2 раза меньше по сравнению с паровой турбиной на СКД К-800-240 (2,9 кг/кВт·ч).

4.1.3. Технико-экономические показатели высокотемпературного паропарового цикла с учетом охлаждения основной турбины

Приведенный расчет технико-экономических показателей был рассчитан с учетом того, что в турбостроении появится новые материалы способные выдержать высокие температуры длительное время. Поскольку основная паровая турбина высокотемпературного паропарового цикла имеет очень высокую температура пара 1500°С, то возникает трудность создания такой установки в настоящее время без использования системы охлаждения цилиндров высокого и среднего давления. Прототипом системы охлаждения будут являться уже разработанные технологии в газотурбинном строении, где давно достигнуты температуры 1400-1600°С. Самой распространённой системой охлаждения в газовых турбинах с высокими начальными параметрами считается система открытого охлаждения, так для охлаждения деталей ротора и статора газовой турбины используется воздух, который отбирается из компрессора газотурбинной установки. В данном проекте предлагается использовать охлаждение паром, который будет дополнительно генерироваться в энергетическом котле, с параметрами 35 МПа и 540°С. Ниже приведен расчет показателей энергоблока, которые будут достигнуты при охлаждении ЦВД и ЦСД, считая, что количество дополнительного пара генерируемого в котле будет составлять 25% (15% для ЦВД и 10% для ЦСД).

Увеличенный расход тепла в энергетическом котле на выработку дополнительных 25% пара:

$$Q_{av}^{0x7} = 0,25G_0(h_{av} - h_{ne}) = 0,2 \cdot 299,681 \cdot (3178 - 1345) = 137,329 \ MBm.$$

Далее найдем мощности каждого цилиндра основной турбины, используя сработанные теплоперепады из таблицы 30, механический КПД и КПД электрогенератора. Стоит отметить, что пар для охлаждения будет постепенно увеличивать расход пара, протекающий в проточной части. поэтому для нахождения новых мощностей цилиндров принимаем, что расход пара в ЦВД и ЦСД увеличится в среднем на 0,075 и 0.05 (половина от 15% и 10%) соответственно.

Мощность ЦВД основной турбины с учетом охлаждения:

$$N_{_{IBIT}}^{_{OXT}} = 1,075G_0\overline{H}_{_{iz}}^{_{IBJ}}\eta_{_{M}}\eta_{_{3,2}} = 1,075 \cdot 299,681 \cdot 1096,411 \cdot 0,996 \cdot 0,987 = 347,230 \ MBm.$$

Мощность ЦСД основной турбины с учетом охлаждения:

$$N_{\mu c \pi}^{o x \pi} = 1, 2G_0 \overline{H}_{iz}^{\mu c \pi} \eta_{\pi} \eta_{g,z} = 1, 2 \cdot 299, 681 \cdot 974, 474 \cdot 0, 996 \cdot 0, 987 = 344, 498 MBm.$$

Мощность ЦНД основной турбины с учетом охлаждения:

$$N_{i_{lHII}}^{oxn} = 1,2G_0 \overline{H}_{i_z}^{I_{HII}} \eta_{_M} \eta_{_{9,c}} + G_{_{nc}}(h_3 - h_{_{\kappa t}}) \eta_{_{oi}}^{I_{lHII}} \eta_{_M} \eta_{_{9,c}}$$

= 1,25•299,681 · 471,435 · 0,996 · 0,987 + 61,629 · (2965 - 2210) · 0,87 · 0,996 · 0,987 = 213,402 *MBm*

Суммарная электрическая мощность основной турбины с учетом охлаждения:

$$N_{_{31}}^{\alpha\alpha\gamma} = N_{_{\mathcal{U}B\mathcal{I}}}^{\alpha\alpha\gamma} + N_{_{\mathcal{U}C\mathcal{I}}}^{\alpha\alpha\gamma} + N_{_{\mathcal{U}H\mathcal{I}}}^{\alpha\alpha\gamma} = 347,230 + 344,498 + 213,402 = 905,131 \approx 905 MBm.$$

Расход пара в теплообменник утилизационной турбины с учетом охлаждения:

$$G_{cm}^{oxn} = 1,25 \cdot (1 - \sum_{1}^{6} \alpha) \cdot G_{0} + G_{nc} = B_{O_{2}} + B_{T} = 1,25 \cdot (1 - 0,2549) \cdot 299,681 + 61,629 = 340,710 \ \kappa z / c.$$

Расход пара на утилизационную паровую турбину с учетом охлаждения:

$$G_{0}^{\prime oxn} = \frac{G_{zu}^{oxn} (h_{z}^{UCDocn} - h_{0}^{UHD})}{(h_{0}^{UBDym} - h_{n.eym}) + (1 - \sum_{1}^{2} \alpha_{ym})(h_{0}^{UCDym} - h_{z}^{UBDym})}$$
$$= \frac{340,710 \cdot (3657,81 - 2965)}{(3500 - 1061) + 0,8801 \cdot (3591 - 3158,56)} = 83,716 \ \kappa z \ / \ c.$$

Тогда электрическая мощность утилизационного блока с учетом охлаждения составит:

$$N_{_{92}}^{_{0xn}} = G_{_{0}}^{'_{0xn}} \overline{H_{_{i}}} \eta_{_{\mathcal{M}}} \eta_{_{9,c}} = 83,716 \cdot 1307,274 \cdot 0,996 \cdot 0,987 = 107,6 \approx 107 MBm.$$

Абсолютный электрический КПД высокотемпературного цикла с учетом охлаждения:

$$\eta_{2}^{\text{KOMO OX7}} = \frac{N_{21}^{\text{OX7}} + N_{22}^{\text{OX7}}}{G_{0} \cdot (h_{0}^{\text{OCH}} - h_{n.e}^{\text{OCH}}) + Q_{2\kappa}^{\text{OX7}}} = \frac{(905 + 107) \cdot 1000}{299,681 \cdot (5920 - 1345) + 137,329 \cdot 1000} \cdot 100 = 67,13\%.$$

Основные техник-экономические показатели высокотемпературной паровой турбины с учетом охлаждения представлены в таблице 40.

Мощность ПСУ 1	МВт	$N_{\mathfrak{P}}^{\text{охл}}$ 1	905
Мощность ПСУ 2	МВт	$N_{\mathfrak{P}^{0XII}_2}$	107
Абсолютный электрический КПД брутто ПСУ 1	%	$\eta_{\mathfrak{S}}^{\mathrm{ncy}}$	70,87
Абсолютный электрический КПД брутто ПСУ 2	%	$\eta_{\mathfrak{S}}^{\mathrm{ncy}}$	45,6
Абсолютный электрический КПД брутто комбинированного цикла	%	$\eta_{\mathfrak{3}}^{ ext{ комб}}_{ ext{ охл}}$	67,14
Расход водородного топлива на подогреватель	кс/с	B_{H2}	6,848
Расход водородного топлива на подогреватель	кг/с	B_{O2}	54,782
Удельный расход пара на производство электроэнергии	кг/кВт*ч	d	2,4
Суммарная мощность энергоблока	МВт	$N_{\mathfrak{I}}$	1012

Глава 5. Аэродинамический расчет высокотемпературной паровой турбины

В данной главе производится аэродинамический расчет основной (высокотемпературной) паровой турбины, разрабатываемого энергоблока. Определяется количество ступеней в ЦВД, ЦСД, ЦНД, а также длины лопаток каждой ступени, без учета охлаждения ЦВД и ЦСД. Цилиндр высокого давления и цилиндр среднего давления будут выполнены с активным облопачиванием, поскольку данные цилиндры имеют огромные располагаемые теплоперепады, а количество ступеней одного ротора не должно превышать 22 [19].

5.1. Расчёт числа ступеней и распределение

теплоперепадов по ступеням турбины части высокого давления высокотемпературной турбины

В табл. 41 представлены основные параметры первой и последней ступеней ЦВД.

Параметр	Формула	Значение
Степень реактивности первой нер. ступени в корне р _к	Принимаем	0,03
Эффективный угол выхода из сопловой решетки α_{13}	Принимаем	12
Коэффициент скорости сопловой решетки ф	Принимаем	0,93
Коэффициент расхода сопловой решетки первой нер. ступени µ	Принимаем	0,96
Перекрыша между высотами первой нер. ступени ∆, м	Принимаем	0,0015
Давление пара за ЦВД p ₁ , МПа	Из расчета	5,5
Внутренний КПД ЦВД η _{оі}	Принимаем	0,88
Средний диаметр первой ступени d ₁ , м	Принимаем	1,05
Энтальпия пара перед первой нерегулируемой ступенью h ₀ , кДж/кг	Из расчета	5920
Давление пара перед первой нерегулируемой ступенью р₀	Из расчета	33,25

Энтропия перед первой ступенью S ₀ , кДж/(кг [.] К)	h,s- диаграмма(h ₀ ,p ₀)	8,143
Температура перед первой ступенью t ₀ , °C	h,s- диаграмма(h ₀ ,p ₀)	1500
Величина обратной веерности θ'=d ₁ /l ₁	Принимаем	29
Степень реактивности на среднем диаметре р	$\rho = \rho_{x} + \frac{1.8}{1.8}$	0,088
Оптимальное значение u/c _ф	$X = \frac{\varphi \cos \alpha_{12}}{2\sqrt{1-\rho}}$	0,476
Располагаемый теплоперепад H ₀₁ *, кДж/кг	$H_{01}^* = 12, 3 \cdot \left(\frac{d_1}{X}\right)^2 \cdot \left(\frac{n}{50}\right)^2$	59,752
Теоретическая энтальпия за первой ступенью h _{2t} , кДж/кг	$h_{2t} = h_0^* - H_{01}^*$	5860,248
Удельный объем пара за первой нер. ступенью при	h,s-	0.02627
изоэнтропийном процессе расширения v2t, м3/кг	диаграмма (S_0,h_{2t})	0,02037
Высота первой нерегулируемой ступени l ₁₁ , м	$l_{11} = \frac{G_0 v_{2r} X}{\pi^2 d_1^2 n \sqrt{1 - \rho \sin \alpha_{12} \mu_1}}$	0,0363
Окончательное значение обратной веерности θ	$\theta = \frac{d_1}{l_1}$	28,916
Погрешность, %	(θ-θ')/θ*100%	-0,289
Высота рабочей лопатки первой нер. ступени l ₂₁ , м	$l_{21} = l_{11} + \Delta$	0,0378
Корневой диаметр ступени d _к , м	$d_{\kappa} = d_1 - l_{21}$	1,012
Параметры пара за последней ступенью ЦВД:		
Энтальпия пара при изоэнтропийном расширении пара в ЦВД h _л , кДж/кг	h,s-диаграмма(по p ₁ и S ₀)	4657
Теоретический перепад на отсек нер. ступеней ЦВД Но*, кЛж/кг	$H_0^*=h_0^*-h_{zt}$	1263
Использованный теплоперепад на отсек нер. ступеней	IDT	
ЦВД Ноі, КДж/кг	H _i =H ₀ *η _{οi} μβμ	1111,440
Энтальпия пара за ЦВД при реальном процессе		1000 - 100
расширения h ₂ , кДж/кг	$n_2 = n_0^* - H_i$	4808,560
Объем за ЦВД u _{2z} , м ³ /кг	h,s-диаграмма(по p ₁ и h ₂)	0,1126
Высота рабочей лопатки последней ступени l ₂₇ при		
линейно изменяющемся удельном объеме и постоянном	$l_{2z}^2 + l_{2z}d_{\kappa} = l_{21}d_{21}\frac{\sigma_{2z}}{\mu}$	0,146
корневом диаметре ЦВД	\mathcal{O}_{2t}	
Средний диаметр последней ступени ЦВД d _{2z} , м	$d_{2z}=d_{\kappa}+l_{2z}$	1,158
Основные параметры первой и последней ступени:		
Обратная веерность θ ₁	$\theta_1 = \frac{l_{21} + d_\kappa}{l_{21}}$	27,769
Обратная веерность θ _z	$\theta_{\varepsilon} = \frac{l_{2\varepsilon} + d_{\kappa}}{l_{2\varepsilon}}$	7,933
Степень реактивности ρ ₁	$\rho_1 = \rho_x + \frac{1.8}{1.8 + \theta_1}$	0,091
Степень реактивности р _z	$\rho_2 = \rho_x + \frac{1,8}{1,8+\theta_2}$	0,215
Оптимальное значение X ₁	$X_1 = \frac{\varphi \cos \alpha_{13}}{2\sqrt{1-\rho_1}}$	0,477
Оптимальное значение X ₂	$X_2 = \frac{\varphi \cos \alpha_{12}}{2\sqrt{1 - \rho_2}}$	0,513

Произведем разбивку теплоперепадов, предположив, что диаметр ступеней и высота лопаток изменяются вдоль ЦВД линейно. Далее определяем по формулам для каждой ступени теплоперепад по статическим параметрам:

$$H_i = 12, 3 \cdot \left(\frac{d_i}{X_i}\right)^2 \cdot \left(\frac{n}{50}\right)^2 K_0,$$

где $K_0=1$ для первой ступени, $K_0=0.95$ для последующих ступеней;

Определяем среднее значение теплоперепадов:

$$H_{0cp} = \frac{\sum_{i=1}^{z} H_i}{z} = 60,945$$
 кДж/кг,

где z=22 – принятое число ступеней.

Коэффициент возврата теплоты:

$$q_{t} = 4.8 \cdot 10^{-4} \cdot \left(1 - \eta_{oi}^{\text{LIB}/2}\right) \cdot H_{0}^{*} \frac{z - 1}{z} = 4.8 \cdot 10^{-4} \cdot \left(1 - 0.88\right) \cdot 1263 \frac{22 - 1}{22} = 0.06944.$$

Новое значение количества ступеней ЦВД:

$$z_{\text{HOBOP}} = \frac{H_0^*(1+q_t)}{H_{0cp}} = \frac{1263(1+0,0694)}{60,945} = 22,163.$$

Следовательно, количество ступеней остается прежним Z=24. Невязка после разбивки теплоперепадов:

$$\Delta = \frac{H_0^*(1+q_t) - \sum_{i=1}^{z} H_i}{z} = 0,447 \quad \text{кДж/ кг.}$$

Уточняем значение теплоперепадов на каждую ступень с учётом невязки:

$$H_i^{\text{HOBOP}} = H_i + \Delta.$$

Результаты расчётов представлены в табл. 42 и на рис. 18-24.

№ ступени	di	li	θ_{i}	ρί	X _i	Ні, кДж/кг	Н _і ^{новое} , кДж/кг
1	1,050	0,0378	27,777	0,091	0,477	59,594	60,041
2	1,055	0,0429	24,571	0,098	0,479	59,689	60,136
3	1,060	0,0481	22,050	0,105	0,481	59,790	60,237
4	1,065	0,0532	20,016	0,113	0,483	59,897	60,344
5	1,071	0,0584	18,340	0,119	0,485	60,009	60,456
6	1,076	0,0635	16,936	0,126	0,487	60,126	60,573
7	1,081	0,0687	15,743	0,133	0,488	60,248	60,695
8	1,086	0,0738	14,715	0,139	0,490	60,375	60,822
9	1,091	0,0789	13,822	0,145	0,492	60,507	60,954
10	1,096	0,0841	13,038	0,151	0,494	60,644	61,091
11	1,101	0,0892	12,344	0,157	0,495	60,785	61,232
12	1,107	0,0944	11,726	0,163	0,497	60,930	61,377
13	1,112	0,0995	11,171	0,169	0,499	61,080	61,527
14	1,117	0,1047	10,671	0,174	0,501	61,234	61,681
15	1,122	0,1098	10,218	0,180	0,502	61,392	61,839
16	1,127	0,1149	9,806	0,185	0,504	61,554	62,001
17	1,132	0,1201	9,429	0,190	0,505	61,720	62,167
18	1,137	0,1252	9,083	0,195	0,507	61,890	62,337
19	1,143	0,1304	8,764	0,200	0,509	62,063	62,510
20	1,148	0,1355	8,469	0,205	0,510	62,240	62,688
21	1,153	0,1407	8,196	0,210	0,512	62,421	62,868
22	1,158	0,1458	7,942	0,215	0,513	62,605	63,052

Рис. 18. Распределение средних диаметров по проточной части ЦВД высокотемпературной турбины

Рис. 19. Распределение длины лопаток по проточной части ЦВД высокотемпературной турбины

Рис. 20. Распределение обратной веерности по проточной части ЦВД высокотемпературной турбины

Рис. 21. Распределение реактивности по проточной части ЦВД высокотемпературной турбины

Рис. 22. Распределение оптимального отношения u/c_ф по проточной части ЦВД высокотемпературной турбины

Рис. 23. Распределение теплоперепадов по проточной части ЦВД высокотемпературной турбины

Рис. 24. Распределение теплоперепадов с учетом невязки по проточной части ЦВД высокотемпературной турбины

Далее был детальный расчет первой нерегулируемой ступени ЦВД на среднем диаметре. Исходными данными послужили параметры за стопорным и регулирующим клапанами и данные, полученные из разбивки ЦВД. Расчёт представлен в таблице 43.

Покозотот	Dom ute		Первая ступень ЦВД	
Показатель	Φομ	мула	Сопловая Рабочая	
Расход пара G, кг/с	Исходны	е данные	299	,681
Параметры пара перед ступенью				
давление p ₀ , МПа	Исходные дан	ные (равно р' ₀)	33,	250
энтальпия h ₀ , кДж/кг	Исходные дан	ные (равно h ₀)	5920	0,000
удельный объем v ₀ , м ³ /кг	по h,s-диаграмме (по p ₀ =18,3	h ₀ =3599,677кДж/кг, 6МПа)	0,02	4850
Кинетическая энергия на входе в	Исхолны	еланные		0
ступень с ₀ ² /2, кДж/кг				
Давление торможения перед ступенью p ₀ *, МПа	$p_0^* = p_0^+ q_0^-$	$c_0^2/(v_0^*2)$	33,	250
Располагаемый теплоперепад от параметров торможения H ₀ *, кДж/кг	Из разбивки		60,041	
Располагаемый теплоперепад от статических параметров H ₀ , кДж/кг	Из разбивки		60,041	
Отношение скоростей u/c _ф	$\left(\frac{u}{c_{\phi}}\right)_{aut} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}}$		0,477	
коэффициент скорости ф	Принимаем -		0,930	-
Фиктивная скорость c_{ϕ} , м/с	$C_{\phi} = \sqrt{2}$	$2H_{0}^{*}$	346,528	
Окружная скорость u_1 ; u_2 , м/с	$u = c_{\phi} \cdot$	$\left(\frac{u}{c_{\phi}}\right)_{opt}$	165	,316
Средний диаметр d ₁ ; d ₂ , м	<i>d</i> =	$\frac{u}{\pi n}$	1,052	
Степень реактивности:				
корневая р _к	Принимаем		0,0)30
средняя р _{со}	Из разбивки		0,091	
периферийная р _п	$ \rho_n = \rho_{cp} + $	<u>1,7</u> <u>1,7+θ</u>	0,1	129
Изоэнтропийный перепад в решетке H _{0c} ; H _{0p} , кДж/кг	$H_{0c}=(1-\rho)H_0^*$	$H_{0p} = \rho H_0 *$	54,577	5,464
Теоретическая скорость на выходе c _{1t} ; w _{2t} , м/с	$c_{\rm lr} = \sqrt{2H_{\rm lc}}$	$w_{2t} = \sqrt{2H_{0p} + w_1^2}$	330,385	190,470

Параметры пара за решеткой				
давление p ₁ ; p ₂ , МПа	по h,s-диаграмме (по h,=5865.423 кЛж/кг.	по h,s-диаграмме (по h ₂ =5859.959 кЛж/кг.	31,110	30,900
удельный объем v_{1t} ; v_{2t} , $M^3/\kappa\Gamma$	S_=8 143 кЛж/кг)	S ₀ =8 143 кЛж/кг)	0,026230	0,026370
Скорость звука а ₁ , а ₂ , м/с	$a_1 = \sqrt{k \cdot p_1 \cdot v_{1t}}$	$a_2 = \sqrt{k \cdot p_2 \cdot v_{2t}}$	1029,961	1029,215
Число Маха M _{1t} ; M _{2t}	$M_{\rm lt} = \frac{c_{\rm lt}}{a_{\rm l}}$	$M_{2r} = \frac{W_{2r}}{a_2}$	0,321	0,185
Предварительный коэффициент расхода µ'1	Принимаем	-	0,960	-
Предварительная площадь решетки F'1: м ²	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	-	0,0248	-
Предварительная высота решетки l' ₁ ; м	$l_1 = \frac{F_1}{\pi d \sin \alpha_1}$	-	0,036	-
Коэффициент расхода µ1; µ2	Определяем	по рис. 3.4.	0,960	0,940
Площадь решетки $F_1; F_2, M^2$	$F_1 = \frac{G \upsilon_{1t}}{\mu_1 c_{1t}}$	$F_2 = \frac{Gv_{2t}}{\mu_2 w_{2t}}$	0,025	0,044
Эффективный угол выхода α _{1э} ; β _{2э} , град	Принимаем	$\beta_2 = \arcsin \frac{F_2}{\pi d_2 l_2}$	12,000	20,823
Тип профиля решетки	Прини	імаем	C-90-12A	P-30-21A
Хорда профиля b ₁ ;b ₂ , м	Принимаем		0,080	0,030
Относительный шаг решетки t_1, t_2	Принимаем		0,740	0,650
Величина перекрыши Δ, м	- Принимаем		-	0,0015
Высота решетки $l_1; l_2$, м	$l_1 = \frac{F_1}{\pi d \sin \alpha_1}$	$l_2=l_1+\Delta$	0,0361	0,0376
Количество лопаток в решетке z ₁ , z ₂ , шт	$z_1 = \frac{\pi d}{b_1 \overline{t}_1}$	$z_2 = \frac{\pi d}{b_1 \bar{t}_2}$	56	170
Относительная высота решетки l ₁ /b ₁ ;	1 ₁ /b ₁	l ₂ /b ₂	0,451	1,252
Отношение d_2/l_2	-	d ₂ /l ₂	-	28,025
Коэффициент скорости ф:у	Принимаем	по рис 2 35	0,960	0.945
Скорость на выходе потока из		no preizioo		
решетки с ₁ ; w ₂ , м/с	c ₁ = ϕ c _{1t}	$w_2 = \psi w_{2t}$	317,170	179,994
Относительная скорость на входе в				
рабочую решетку и абсолютная	$w_1 = \sqrt{c_1^2 + u^2 - 2uc_1 \cos \alpha_1}$	$c_2 = \sqrt{w_2^2 + u^2 - 2uw_2 \cos \beta_2}$	159,221	64,052
скорость на выходе из нее w_1 ; $c_{2,M}/c$				
Углы направления этих скоростей β ₁ ; α ₂ , град	$\beta_1 = \arg \frac{\sin \alpha_1}{\cos \alpha_1 - u/c_1}$	$\alpha_2 = \arctan \frac{\sin \beta_2}{\cos \beta_2 - u/w_2}$	24,467	87,386
Потери энергии в решетке $\Delta H_c; \Delta H_{p,}$ кДж/кг	$\Delta H_{c} = (1 - \phi^{2})c^{2}_{1t}/2$	$\Delta H_{p} = (1 - \psi^{2}) w_{2t}^{2}/2$	4,279	1,940
Потери энергии с выходной	_	$\Delta H = c^2 / 2$	-	2.051

Коэффициент использования потерь энергии с выходной скоростью _{Хв.с}	$\chi_{BC} = S$	$in^2 \alpha_2$	0,9	998	
Располагаемая энергия ступени E ₀ , кДж/кг	E ₀ =H ₀ *-;	57,994			
Относительный лопаточный КПД	$η_{o.π}=(E_0-\Delta H_c-\Delta H)$	$_{p}$ - $\Delta H_{BC}(1-\chi_{BC}))/E_{0}$	0,8	0,893	
диафрагменного и переферийного	$\mu_y F_y \sqrt{z_y}$	$\pi d_{\pi}\delta_{\mathfrak{s}}$	0,00124	0,00137	
зазоров $\mu_{y}F_{y}\sqrt{z_{y}}; \pi d_{\pi}\delta_{3}, 10^{-4} \text{ M}^{2}$					
коэффициент расхода µ _у	Определяем	по рисунку	0,740	-	
площадь зазора уплотнения $\mathrm{F_y},\mathrm{m}^2$	$\pi d_y \delta_y$	-	0,001	-	
число уплотнительных гребешков Z _v	Прини	имаем	8,000	-	
диаметр переферийный d _n , м ²	d+l ₁	d+l ₂	1,088	1,090	
эквивалентный зазор б.	-	Принимаем	-	0,0004	
Потери от утечек $\xi_{y}^{a};\xi_{y}^{6}$	$\xi_{y}^{\partial} = \frac{\mu_{1}\pi d_{y} k_{y} \eta_{o.n}}{\mu_{1} F_{1} \sqrt{z_{y}}}$	$\xi_{y}^{\theta} = \frac{\pi d_{n} \delta_{y} \eta_{o,x}}{F_{1}} \sqrt{\rho_{qp} + 1.8 l_{2} / d_{2}}$	0,013	0,019	
поправочный коэффициент k _y	Определяем по рисунку 3.24	-	1,760	-	
для рабочих лопаток с бандажом	-	$\delta_{g} = \frac{1}{\sqrt{1/(\mu_{a}\delta_{a})^{2} + z/(\mu_{r}\delta_{r})^{2}}}$	-	0,001	
осевой зазор б _а	-	Принимаем	-	0,005	
расход через осевой зазор µ _а	-	Принимаем	-	0,500	
радиальный зазор δ _r	-	Принимаем	-	0,002	
расход через радиальный		Принимаем по		0.740	
зазор μ _r	-	рис.3.22	-	0,740	
количество гребней		Принимаем	_	2	
уплотнения z		принимаем	-	2	
для рабочих лопаток без бандажа	-	$\delta_3 = 0,75\delta_r$	-	-	
Потери от трения диска ξ _{тр}	$\xi_{mp} = \frac{k_{mp}}{e l_1 \sin t}$	$\frac{d}{\ln \alpha_1} \left(\frac{u}{c_{\phi}} \right)^3$	0,00)148	
Абсолютные потери от трения ΔH_{rp} , кДж/кг	ΔH_{rp} =	=ξ _{τp} E ₀	0,08	3605	
Потери от влажности $\xi_{\scriptscriptstyle B\! Л}$	$\xi_{a_{\tau}} = a^{j}$	$\frac{y_0 + y_2}{2}$	(0	
Потери от трения диска, влажности $\xi_{\rm rp} + \xi_{\rm вл}$	$\xi_{rp} + \xi_{BR}$		0,00)148	
Относительный внутренний КПД $\eta_{o,i}$	$\eta_{oi} = \eta_{o.n} - ($	$\xi_y^{\delta} + \xi_y^{\delta} + \xi_{np} \Big)$	0,8	359	
Использованный теплоперепад H _i , кДж/кг	H _i =F	EoNoi	49,	802	
Внутрення мощность N _i , кВт	N;=(GH _i	1492	4,578	
Энтальпия за ступенью h, кДж/кг	h _i =h	₀ -H _i	5870,198		

Расчёт на растяжение:				
Максимальное растягивающее напряжение б _{макс} , МПа	-	$\sigma_{Makc} = \rho \omega^2 r_{cp} l_2$	-	15,310
Плотность р, кг/м ³	-	Принимаем	-	7800,000
Угловая скорость вращения воздуха ω, рад/с	-	ω=2πn	-	314,159
Центробежная сила бандажа С _б , Н	-	$C_{\delta} = \frac{2\pi}{z_2} \rho \left(\omega r_{\delta}\right)^2 f_{\delta}$	-	926,050
Площадь поперечного сечения бандажа f_{δ} , *10 ⁵ м ²	-	$f_6 = h \cdot a$	-	10,800
-высота бандажа h, м	-	Принимаем	-	0,003
-ширина бандажа а, м	-	Принимаем	-	0,036
Дополнительное напряжение в корневом сечении от цбс Δб _δ , МПа	-	$\Delta \mathbf{G}_{0} = \mathbf{C}_{0} / \mathbf{F}_{\mathbf{k}\mathbf{h}}$	-	3,745
Масштаб профиля m		m=bн/bм		1,156
Хорда модельного профиля b _м , м		из атласа профилей МЭИ		0,026
Площадб корневого сечения		$F_{\kappa h}=m^{2}*F_{\kappa m}$	-	2,473
модели лопатки F_{KM} , *10 ⁴ м ²	-	из агласа профилеи МЭИ	-	1,85
Полное растягивающее напряжение	-	$6_{p} = 6_{makc} + \Delta 6_{6}$	-	19,056
		n=6 /6		0.206
Коэффициент запаса прочности п	-	п-О _{д.п} /О _р	-	8,390
Предел длительной прочности б _{п.п} , МПа	-	Принимаем	-	160
Расчёт на изгиб:				
Усилие, действующее на лопатку Р, Н	-	$P = \sqrt{P_z^2 + P_u^2}$	-	564,691
Осевая составляющая усилия P _z , H	-	$\begin{split} P_z &= \frac{G}{z} \big(c_1 \sin \alpha_1 - c_2 \sin \alpha_2 \big) + \\ &+ \big(P_1 - P_2 \big) t_2 l \end{split}$	-	154,401
Шаг лопаток t ₂ , м	-	$t_2 = \pi d_{cp}/z_2$	-	0,01914
Окружная составляющая Р _z , Н	-	$P_{u} = \frac{G}{z} (c_1 \cos \alpha_1 - c_2 \cos \alpha_2)$	-	543,172
Изгибающий момент М _{изг} , Н·м	-	М _{изг} =P·1/2	-	10,603
Изгибающее напряжение б _{изг} , МПа	-	б _{итах} =M _{изг} /W _н	-	33,475
Момент сопротивления				0.217
натурного профиля WH, *10-6 м3	-	W _H =m [°] W _M	-	0,317
Момент сопротивления модельного профиляWм, *10 ⁻⁶ м ³	-	Принимаем модельный из атласа профилей МЭИ,	-	0,205
Коэффициент запаса прочности n	-	n=[б _и]/б _{изг}	-	1,046
Допускаемое изгибающее напряжение [б _и], МПа	-	Принимаем	-	35

5.2. Расчёт числа ступеней и распределение

теплоперепадов по ступеням турбины части среднего давления высокотемпературной турбины

Для определения высоты последней лопатки ЦСД зададимся следующими величинами d_к=1,2 м, ρ =0,35 – корневая степень реактивности, c_{2z} =110 м/с – выходная скорость из последней ступени ЦСД, ϕ =0,97 – коэффициент скорости сопловой решетки.

Запишем уравнение неразрывности для сечения за рабочей решеткой и соотношение для среднего диаметра рабочего колеса последней ступени:

$$\pi c_{az}l_{2z}^2 + \pi d_{\kappa}c_{az}l_{2z} = G_z \upsilon_z,$$

где G_z =242,329 *кг/с* – расход пара перед последней ступенью ЦСД (с учетом отборов).

 $\upsilon_z = 0,9207 \ \text{м}^3 / \kappa z$ (по $p_z = 0,4 \ M\Pi a, S_z = 8,267 \ \kappa \square m / \kappa z$) — удельный объем в конце ЦСД.

Решая квадратное уравнение получаем положительный корень, который определяет значение высоты рабочей лопатки последней ступени ЦСД *l_z*=0,403 м.

Средний диаметр рабочего колеса последней ступени ЦСД:

$$d_{2z} = d_{\kappa} + l_{2z} = 1, 2 + 0, 403 = 1,603 \text{ m.}$$

Окружная скорость на среднем диаметре рабочего колеса последней ступени ЦСД:

$$u_{2z} = \pi d_{2z} n = \pi \cdot 1,603 \cdot 50 = 251,799 \ m/c.$$

Зададимся углом выхода потока из сопловой лопатки $\alpha_1 = 17^\circ$.

Степень реактивности на среднем диаметре последней ступени ЦСД:

$$p_{cp2z} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0,08\right) \left(\frac{1,603}{1,2}\right)^{-2 \cdot 0,97^2 \cos^2 17^\circ} = 0,441.$$

Оптимальное характеристическое отношение определяется по формуле:

$$\left(\frac{u_{cp2}}{c_{\phi}}\right)_{onm} = \varphi \frac{1 - \left(\frac{c_2}{c_{\phi}}\right)^2}{2\cos\alpha_1 \sqrt{1 - \rho_{cp}}}$$

Выразим из этой формулы фиктивную скорость и решим квадратное уравнение:

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot u_{cp2} \cdot \cos \alpha_{1} \sqrt{1 - \rho_{cp}}}{\varphi} - c_{2}^{2} = 0;$$

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot 251,799 \cdot \cos 17^{\circ} \sqrt{1 - 0,441}}{0,97} - 110^{2} = 0;$$

$$c_{\phi}^{2} - 361,068c_{\phi} - 12100 = 0;$$

Корни уравнения: $c_{\phi 1}$ =391,013 м/с, $c_{\phi 2}$ =-30,945 м/с. Выбираем положительный корень $c_{\phi z}$ = $c_{\phi 1}$ =391,013 м/с.

Характеристическое отношение ступени:

$$X = \frac{u_{cp2z}}{c_{dz}} = \frac{251,013}{391,013} = 0,642.$$

Располагаемый теплоперепад на ступень:

$$H_{0z} = \frac{c_{\phi z}^2}{2} = \frac{391,013^2}{2} = 76,446$$
 кДж/кг.

Для нахождения высот лопаток первой ступени ЦСД зададимся следующими параметрами: $d_{\kappa}=1,2$ м (т.к. корневой диаметр не изменяется по проточной части ЦСД), $\rho_{\kappa}=0,08$ – степень реактивности на среднем диаметре, $\alpha_1=17^{\circ}$ – угол входа потока в рабочую решетку первой ступени, $\phi=0,97$ – коэффициент скорости сопловой решетки. В первом приближении примем $d_{1cp}=1,281$ м.

Степень реактивности на среднем диаметре последней ступени ЦСД:

$$p_{cp21} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0,08\right) \left(\frac{1,281}{1,2}\right)^{-2 \cdot 0,97^2 \cos^2 17^\circ} = 0,178.$$

Характеристическое отношение скоростей и/сф первой ступени ЦСД:

$$X = \frac{u}{c_{\phi}} = \frac{\varphi \cos \alpha_1}{2\sqrt{1 - \rho_{cp}}} = \frac{0.97 \cos 17^{\circ}}{2\sqrt{1 - 0.178}} = 0.511,$$

Окружная скорость на среднем диаметре первой ступени ЦСД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 1,281 \cdot 50 = 201,219 \ \text{m/c}.$$

Фиктивная скорость первой ступени ЦСД:

$$c_{\phi 1} = \frac{u_1}{X} = \frac{201,219}{0,512} = 393,383 \text{ m/c}.$$

Располагаемый теплоперепад на первую ступень ЦСД:

$$H_{01} = \frac{c_{\phi 1}^2}{2} = \frac{393,383^2}{2} = 77,375 \ \kappa \square \mathcal{H}$$
ж / кг.

Теплоперепад на сопловой аппарат первой ступени ЦСД:

$$H_{0c1} = (1 - \rho)H_{01} = (1 - 0,178) \cdot 77,375 = 63,616 \ \kappa \square \mathcal{H} / \kappa \mathcal{E}.$$

Теоретическая абсолютная скорость на выходе из соплового аппарата:

$$c_{1t} = \sqrt{2H_{c01}} = \sqrt{2 \cdot 63,616} = 356,697 \ \text{m/c}.$$

Энтальпия пара за сопловым аппаратом при изоэнтропийном расширении:

$$h_{1t} = h_{nn} - H_{0c1} = 4808,56 - 63,616 = 4744,944 \ \kappa \square \mathcal{H} / \kappa \mathcal{E},$$

где $h_{nn}-$ энтальпия пара перед ЦСД (по предварительному расчету).

Удельный объем за сопловым аппаратом $v_{1t} = f(h_{1t}, S_{nn}) = 0,1248 \frac{M^3}{\kappa^2}.$

Зададим коэффициент расхода для соплового аппарата первой ступени ЦСД $\mu_1 = 0,97$.

Длина сопловой лопатки первой ступени ЦСД:

$$l_1 = \frac{G_1 \upsilon_{1t}}{\mu_1 c_{1t} \pi d_1 \sin \alpha_1} = \frac{264,234 \cdot 0,1248}{0,97 \cdot 356,697 \cdot \pi \cdot 1,281 \cdot \sin 17} = 0,081 \ \text{M},$$

где G_1 =264,149 *кг/с* – расход пара перед первой ступенью ЦСД.

Средний диаметр первой нерегулируемый ступени для соплового аппарата:

$$d_1 = d_{\kappa} + l_1 = 1, 2 + 0,081 = 1,281$$
 м.

Средние диаметры совпали, так как расхождения составляет менее 1% следовательно высота лопатки найдена правильно.

Перекрыша в ступени ∆=3 мм.

Длина рабочей лопатки первой ступени ЦСД:

$$l_2 = l_1 + \Delta = 0,081 + 0,003 = 0,084$$
 м.

Средний диаметр совпал с принятым, значит перерасчет не требуется.

Известно, что изменение среднего диаметра в части ЦСД происходит по показательному закону в конце цилиндра. Таким образом, зададим кривую распределения теплоперепадов по ступеням в ЦСД. Изменение среднего диаметра по проточной части ЦНД представлено на рис.25, принимая, что у нас Z=18 ступеней в ЦНД.

Рис. 25. Изменение среднего диаметра в ЦСД высокотемпературной турбины Исходя из этого распределения, средний диаметр каждой ступени представлен в таблице 44.

л⁰ Ступени	Среднии диаметр ступени, м
1	d ₁ =1,284
2	d ₂ =1,294
3	d ₃ =1,303
4	d ₄ =1,313
5	d ₅ =1,323
6	d ₆ =1,332
7	d ₇ =1,342
8	d ₈ =1,352
9	d ₉ =1,361
10	d ₁₀ =1,371
11	d ₁₁ =1,381
12	d ₁₂ =1,392
13	d ₁₃ =1,405
14	d ₁₄ =1,425
15	d ₁₅ =1,45
16	d ₁₆ =1,485
17	d ₁₇ =1,53
18	d ₁₈ =1,603

Таблица	44
---------	----

Определим распределение характеристического отношения u/c_{ϕ} в ЦСД. Известно, что это распределение происходит по показательному закону в конце ЦСД. Число разбития участков 17, число ступеней в ЦСД Z=18. На рис. 26 представлено предварительное распределение u/c_{ϕ} по ступеням в ЦСД.

Рис. 26. Распределение и/сф в ЦСД

Исходя из графика найдем значение u/c_{ϕ} каждой ступени. Значения представлены в таблице 45.

№ Ступени	Характеристическое отношение u/c _ф
1	0,512
2	0,518
3	0,525
4	0,531
5	0,537
6	0,544
7	0,550
8	0,556
9	0,563

10	0,569
11	0,576
12	0,582
13	0,588
14	0,595
15	0,601
16	0,607
17	0,614
18	0,620

Для каждой ступени определим располагаемый теплоперепад по формуле:

$$H_{oi} = \frac{u_i^2}{2(u / c_{\phi})_i} = \frac{\pi d_i n}{2(u / c_{\phi})_i}.$$

Величина располагаемого теплоперепада каждой ступени представлены в таблице 46.

Γ

Таблица 46

1

№ Ступени	Располагаемый телоперепад на ступень H ₀ , кДж/кг
1	77,585
2	76,839
3	76,114
4	75,410
5	74,726
6	74,061
7	73,414
8	72,785
9	72,173
10	71,576
11	71,033

12	70,602
13	70,382
14	70,861
15	71,826
16	73,767
17	76,693
18	82,470

Определим средний теплоперепад на ступень в ЦСД:

$$H_{0cp} = \frac{\sum_{i=1}^{16} H_{0i}}{17} = 74,018 \ \kappa \square \mathcal{H} / \kappa \mathcal{P}.$$

Зададим внутренний относительный КПД ступени ЦСД $\eta_{0i}^{cm} = 0,91$. Определим коэффициент возврата теплоты в ЦСД:

$$q_T = K_T (1 - \eta_{oi}^{cm}) H_{0 \downarrow C \downarrow} \frac{Z - 1}{Z} = 4,8 \cdot 10^{-4} \cdot (1 - 0,91) \cdot 1264,56 \frac{18 - 1}{18} = 0,0516,$$

где $K_T = 4,8 \cdot 10^{-4}$ - коэффициент при перегретом паре;

 $H_{0\mathcal{UCA}} = 4808,56 - 3544 = 1264,56 \ \kappa \mathcal{DH} / \kappa^2$ - располагаемый

теплоперепад на ЦСД.

Число ступеней с учетом возврата теплоты:

$$z = \frac{H_{0UCU}(1+q_T)}{H_{0cp}} = \frac{1264,56(1+0,0516)}{74,018} = 17,996.$$

Округляем до ближайшего целого числа Z=18.

Общая величина невязки теплоперепадов:

_

$$\Delta = \frac{H_{0UCA}(1+q_t) - \sum_{i=1}^{z} H_i}{z} = \frac{1264,56(1+0,0516) - 1332,319}{18} = -0,1397 \quad \kappa \square \mathcal{H} / \kappa \mathcal{I}.$$

Теплоперепад на каждую ступень с учетом невязки:

$$H_{0i} = H_{0i} + \Delta;$$

Значения теплоперепадов с учетом невязки представлены в таблице 47.

Таблица 47

№ Ступени	Располагаемый телоперепад на ступень с учетом невязки H ₀ , кДж/кг
1	77,445
2	76,699
3	75,975
4	75,271
5	74,587
6	73,922
7	73,275
8	72,645
9	72,033
10	71,437
11	70,894
12	70,462
13	70,242
14	70,721
15	71,686
16	73,628
17	76,553
18	82,330

На рис. 27 представлено распределение теплоперепадов по ступеням в ЦСД с учетом невязки.

Рис. 27. Распределение располагаемых теплоперепадов с учетом неязки в ЦСД высокотемпературной турбины

Далее был детальный расчет первой нерегулируемой ступени ЦСД на среднем диаметре. Исходными данными послужили параметры после ЦВД и данные, полученные из разбивки ЦСД. Расчёт представлен в таблице 48.

Покаратели	Формула		Первая ступень ЦСД	
Показатель			Сопловая	Рабочая
Расход пара G, кг/с	Исходны	е данные	264	,234
Параметры пара перед				
ступенью:				
давление p ₀ , МПа	Исходны	е данные	5,390	
энтальпия h ₀ , кДж/кг	Исходны	е данные	4808,560	
удельный объем υ_0 , м $^3/кг$	по h,s-ди	аграмме	0,114900	
Кинетическая энергия на входе в ступень с ₀ ² /2, кДж/кг	Исходные данные		0	
Давление торможения перед ступенью p ₀ *, МПа	$p_0^* = p_0^+ c_0^-$	$e_0^2/(v_0^*2)$	4808	8,560
Располагаемый теплоперепад от параметров торможения H ₀ *, кДж/кг	Из разбивки		77,445	
Располагаемый теплоперепад от статических параметров Н ₀ , кДж/кг	Из разбивки		77,455	
Отношение скоростей u/c_{φ}	$\left(\frac{u}{c_{\phi}}\right)_{opt} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}}$		0,512	
коэффициент скорости ф	Принимаем	-	0,970	-
Фиктивная скорость с_ ϕ , м/с	$C_{\phi} = \sqrt{2}$	$2H_0^*$	393,561	
Окружная скорость u ₁ ; u ₂ , м/с	$u = c_{\phi} \cdot \left(\frac{u}{c_{\phi}}\right)_{opt}$		201,332	
Средний диаметр d ₁ ; d ₂ , м	$d = \frac{u}{\pi n}$		1,282	
Степень реактивности:				
корневая р _к	Принимаем		0,080	
средняя ρ_{cp}	Из разбивки		0,178	
периферийная р _п	$\rho_n = \rho_{cp} + \frac{1,7}{1,7+\theta}$		0,275	
Изоэнтропийный перепад в решетке Н _{0c} ; Н _{0p} , кДж/кг	H _{0c} =(1-p)H ₀ *	H _{0p} =ρH ₀ *	63,660	13,785
Теоретическая скорость на выходе c _{1t} ; w _{2t} , м/с	$c_{\rm lr} = \sqrt{2H_{\rm loc}}$	$w_{2t} = \sqrt{2H_{0p} + w_1^2}$	356,819	228,713

Параметры пара за решеткой				
давление p ₁ ; p ₂ , МПа	по h,s-диаграмме (по	по h,s-диаграмме (по	4,869	4,759
удельный объем v _{1t} ; v _{2t} , м ³ /кг	h ₁ =4744,09 кДж/кг, S ₀ =8,267 кДж/кг)	h ₂ =4731,115 кДж/кг, S ₀ =8,267 кДж/кг)	0,125	0,127
Скорость звука а1, а2, м/с	$a_1 = \sqrt{k \cdot p_1 \cdot v_{1t}}$	$a_2 = \sqrt{k \cdot p_2 \cdot v_{2t}}$	888,789	886,752
Число Маха M _{1t} ; M _{2t}	$M_{1t} = \frac{c_{1t}}{a_1}$	$M_{2t} = \frac{W_{2t}}{a_2}$	0,401	0,258
Предварительный коэффициент расхода µ'1	Принимаем	-	0,970	-
Предварительная площадь решетки F',: м ²	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	-	0,0953	-
Предварительная высота решетки l' ₁ ; м	$l_1 = \frac{F_1'}{\pi d \sin \alpha_1}$	-	0,081	-
Коэффициент расхода µ ₁ ; µ ₂	Определяем	по рис. 3.4.	0,970	0,945
Площадь решетки $F_1; F_2$, M^2	$F_1 = \frac{Gv_{1t}}{\mu_1 c_{1t}}$	$F_2 = \frac{Gv_{2t}}{\mu_2 w_{2t}}$	0,0953	0,1554
Эффективный угол выхода α ₁₃ ; β ₂₃ , град	Принимаем	$\beta_2 = \arcsin \frac{F_2}{\pi d_2 l_2}$	17	27,373
Тип профиля решетки	Прини	имаем	C-90-18A	P-35-25A
Хорда профиля b ₁ ;b ₂ , м	Принимаем		0,065	0,040
Относительный шаг решетки	Принимаем		0,760	0,650
Высота решетки $l_1; l_2$, м	$l_1 = \frac{F_1}{\pi d \sin \alpha_1}$	$l_2 = l_1 + \Delta$	0,081	0,084
Количество лопаток в решетке z ₁ , z ₂ , шт	$z_1 = \frac{\pi d}{b_1 \overline{t}_1}$	$z_2 = \frac{\pi d}{b_2 \bar{t}_2}$	82	155
Относительная высота решетки l ₁ /b ₁ ; l ₂ /b ₂	l_1/b_1	l ₂ /b ₂	1,245	2,098
Отношение d ₂ /l ₂	-	d_2/l_2	-	15,271
Коэффициент скорости φ;ψ	Рис. 2.35	Рис. 2.35	0,970	0,955
Скорость на выходе потока из решетки с ₁ ; w ₂ , м/с	c ₁ = ϕ c _{1t}	w ₂ =ψw _{2t}	346,114	218,421
Относительная скорость на входе в рабочую решетку и абсолютная скорость на выходе из нее w ₁ ; с _{2.} м/с	$w_1 = \sqrt{c_1^2 + u^2 - 2uc_1 \cos \alpha_1}$	$c_2 = \sqrt{w_2^2 + u^2 - 2uw_2 \cos \beta_2}$	164,473	100,697
Углы направления этих скоростей β ₁ ; α ₂ , град	$\beta_1 = arctg \frac{\sin\alpha_1}{\cos\alpha_1 - u/c_1}$	$\alpha_2 = \arctan \frac{\sin \beta_2}{\cos \beta_2 - u/w_2}$	37,971	94,196
Потери энергии в решетке ΔH _c ; ΔH _p кДж/кг	$\Delta H_{c} = (1-\phi^{2})c^{2}_{1t}/2$	$\Delta H_p = (1 - \psi^2) w_{2t}^2/2$	3,762	2,301
Потери энергии с выходной скоростью $\Delta H_{B.c}$, кДж/кг	-	$\Delta H_{B.c} = c_2^2/2$	-	5,070

Коэффициент использования потерь энергии с выходной скоростью _{дв.с}	$\chi_{\tt BC} = \sin^2 \alpha_2$		0,995	
Располагаемая энергия ступени Е ₀ , кДж/кг	$E_0 = H_0 * - \chi_{B.c} \Delta H_{B.c}$		72,402	
Относительный лопаточный КПД η _{о.л}	$\eta_{o.\pi}=(E_0-\Delta H_c-\Delta H)$	$_{p}$ - $\Delta H_{BC}(1-\chi_{BC}))/E_{0}$	0,916	
Эквивалетные площади диафрагменного и переферийного зазоров $\mu_v F_v \sqrt{z_v}$; $\pi d_n \delta_3$, 10 ⁻⁴ м ²	$\mu_y F_y \sqrt{z_y}$ $\pi d_n \delta_s$		0,02357	0,00172
коэффициент расхода ц.,	Опрелеляем	по рисунку	0 740	-
площадь зазора уплотнения F _v , м ²	πd _y δ _y	-	0,011	-
число уплотнительных гребешков z _v	Прин	имаем	8,000	-
диаметр периферийный d _п , м ²	d+l1	d+l ₂	1,363	1,366
эквивалентный зазор δ ₃	-	Принимаем	-	0,0004
Потери от утечек ξ_{y}^{π} ; ξ_{y}^{6}	$\xi_{y}^{\partial} = \frac{\mu_{y}\pi d_{y}k_{y}\eta_{o.\pi}}{\mu_{1}F_{1}\sqrt{z_{y}}}$	$\xi_{y}^{\phi} = \frac{\pi d_{n} \delta_{y} \eta_{o.x}}{F_{1}} \sqrt{\rho_{cp} + 1.8 l_{2} / d_{2}}$	0,005	0,004
поправочный	Определяем по		1.500	
коэффициент k _y	рисунку 3.24	-	1,500	-
диаметр уплотнения d _y	d _y ≈d _κ	-	1,201	-
для рабочих лопаток с бандажом	-	$\delta_{g} = \frac{1}{\sqrt{1/(\mu_{a}\delta_{a})^{2} + z/(\mu_{r}\delta_{r})^{2}}}$	-	0,001
осевой зазор δ_a	-	Принимаем	-	0,004
расход через осевой зазор µ _а	-	Принимаем	-	0,500
радиальный зазор б _г	-	Принимаем	-	0,001
расход через	_	Принимаем по		0.740
радиальный зазор µ _r	-	рис.3.22	-	0,740
количество гребней уплотнения z		Принимаем	-	2
для рабочих лопаток без бандажа	-	$\delta_3=0,75\delta_r$	-	-
Потери от влажности ξ _{вл}	$\xi_{\rm ter} = a \frac{y_0 + y_2}{2}$		()
Потери от трения диска, парциальности, влажности ξ _{пр} +ξ _п +ξ _{вл}	$\xi_{rp} + \xi_{a} + \xi_{a\pi}$		0	
Относительный внутренний КПЛ n _o :	$\eta_{oi} = \eta_{o.n} - \left(\xi_y^{\partial} + \xi_y^{\sigma} + \xi_{mp}\right)$		0,90626	
Использованный				
теплоперепад H _i , кДж/кг	H _i =F	$E_0 \eta_{oi}$	65,	615
Внутрення мощность N _i , кВт	Ni=	GH _i	17337,764	
Энтальпия за ступенью h, кДж/кг	$h_i = h_0 - H_i$		4742,945	

Расчёт на растяжение:				
Максимальное				
растягивающее напряжение	-	$\sigma_{Makc} = \rho \omega^2 r_{cp} l_2$	-	41,672
б _{макс} , МПа				
Плотность ρ , кг/м ³	-	Принимаем	-	7800,000
Угловая скорость		<i>ω</i> −2πn		214 150
вращения воздуха ω , рад/с	-	ω-2/m	-	514,159
Центробежная сила бандажа		$C = \frac{2\pi}{2\pi} (cm)^2 f$		00.45.00.6
С _б , Н	-	$C_{\delta} = \frac{-\rho(\omega r_{\delta})}{z_2} f_{\delta}$	-	2347,036
Площадь поперечного		C 1		10000
сечения бандажа f_{6} ,*10 ⁵ м ²	-	ı ₆ =n∙a	-	16,000
-высота бандажа h, м	-	Принимаем	-	0,005
-ширина банлажа а м	-	Принимаем	-	0.032
				0,052
Дополнительное напряжение				10 (07
в корневом сечении от цос	-	$\Delta \Theta_6 = C_6 / F_K$	-	12,687
$\Delta \Theta_6$, MIIa				
Площадь корневого	-	из атласа профилей	-	1,85
сечения лопатки F_{k} , *10 ⁺ м ²		МЭИ		-
Полное растягивающее	-	$6_{n} = 6_{\text{Make}} + \Delta 6_{6}$	-	54,359
напряжение б _р , МПа		p make 0		
Коэффициент запаса	-	$n = 6_{\pi\pi} / 6_{n}$	-	3,679
прочности п		д р		-
Предел текучести 6 _{t0.2} ,	-	Принимаем	-	200
Мпа		_		
Расчет на изгио:		,		
лопатку P, H	-	$P = \sqrt{P_z^2 + P_u^2}$	-	625,711
Осевая составляющая		$P_{z} = \frac{G}{z} (c_1 \sin \alpha_1 - c_2 \sin \alpha_2) +$		241 346
усилия Р _z , Н	-	$+(P_1 - P_2)t_2l$	-	241,540
Шаг лопаток t ₂ , м	-	$t_2 = \pi d_{cp}/z_2$	-	0,026
Окружная составляющая		- <i>G</i>		
P _z , H	-	$P_u = -\frac{1}{z} (c_1 \cos \alpha_1 - c_2 \cos \alpha_2)$	-	577,292
Изгибающий момент М _{изг} ,		N D 1/2		26.250
Н∙м	-	$M_{\rm H3T} = P \cdot 1/2$	-	26,258
Изгибающее напряжение				29.766
б _{изг} , МПа	-	$O_{umax} - M_{u3r} / W_x$	-	28,700
Момент сопротивления		TT (1 (1) ³ TT		0.010
W_x , *10 ⁻⁶ M^3	-	$WX = (b_H/b_M)^2 W_{XM}$	-	0,913
Модельная хорда b _м , м	-	По атласу профилей МЭИ	-	0,0254
Модельный момент		По атласу профилей		
сопротивления W _v . см ³	-	МЭИ	-	0,234
Коэффициент запаса				
прочности п	-	$n = [G_u]/G_{u_{3r}}$	-	1,217
Допускаемое изгибающее напряжение [б _и], МПа	-	Принимаем	-	35

5.3. Расчёт числа ступеней и распределение

теплоперепадов по ступеням турбины части низкого давления

давления высокотемпературной турбины

Ранее в разделе 3.2.2 при расчете тепловой схемы высокотемпературного паропарового цикла при определении техникоэкономических показателей основной турбины был определен расход пара в конденсатор $G'_{\nu} = 264,427 \ \kappa c$.

Для определения высоты последней лопатки ЦНД зададимся следующими величинами d_к=1,8 м – корневой диаметр ЦНД (постоянный), $\rho_{\text{кz}}$ =0,15 – корневая степень реактивности, c_{2z}=255 м/с – выходная скорость из последней ступени, φ =0,97 – коэффициент скорости сопловой решетки.

Запишем уравнение неразрывности для сечения за рабочей решеткой и соотношение для среднего диаметра рабочего колеса последней ступени:

$$\pi c_{az} l_{2z}^{2} + \pi d_{\kappa} c_{az} l_{2z} = G_{k} \upsilon_{k},$$

где $G_k = 264,427/4 = 66,107 \kappa c/c$ – расход пара перед последней ступенью ЦНД, т.к. используем два двухпоточных ЦНД делим на 4;

 $v_k = 35,56 \ m^3 / \kappa c$ (по $p_\kappa = 3,5 \ \kappa \Pi a., h_\kappa = 2308,15 \ \kappa \Pi \kappa c/\kappa c$) — удельный объем в конце ЦНД.

Решая квадратное уравнение, получаем положительный корень, который определяет значение высоты рабочей лопатки последней ступени ЦНД l_z =1,035 *м*. Длина лопатки не предельная и позволяет в случае увеличения расхода в проточной части основной турбины на 20-30% при охлаждении паром иметь запас для увеличения последний ступени до 1200-1400 мм.

Средний диаметр рабочего колеса последней ступени ЦНД:

$$d_{2z} = d_{\kappa} + l_{2z} = 1,8 + 1,035 = 2,835$$
 м.

Окружная скорость на среднем диаметре рабочего колеса последней ступени ЦНД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 2,835 \cdot 50 = 445,321 \ \text{m} / c.$$

Зададимся углом выхода потока из сопловой лопатки $\alpha_1 = 15^{\circ}$.

Степень реактивности на среднем диаметре последней ступени ЦНД:

$$p_{cp2z} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0.15\right) \left(\frac{2.835}{1.8}\right)^{-2 \cdot 0.97^2 \cos^2 15^\circ} = 0.617.$$

Оптимальное характеристическое отношение определяется по формуле:

$$\left(\frac{u_{cp2}}{c_{\phi}}\right)_{onm} = \varphi \frac{1 - \left(\frac{c_2}{c_{\phi}}\right)^2}{2\cos\alpha_1 \sqrt{1 - \rho_{cp}}}.$$

Выразим из этой формулы фиктивную скорость и решим квадратное уравнение:

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot u_{cp2} \cdot \cos \alpha_{1} \sqrt{1 - \rho_{cp}}}{\varphi} - c_{2}^{2} = 0;$$

$$c_{\phi}^{2} - c_{\phi} \frac{2 \cdot 445,321 \cdot \cos 15^{\circ} \sqrt{1 - 0,617}}{0,97} - 255^{2} = 0;$$

$$c_{\phi}^{2} - 549,033c_{\phi} - 65025 = 0;$$

Корни уравнения: $c_{\phi 1}$ =649,195 м/с, $c_{\phi 2}$ =-100,162 м/с. Выбираем положительный корень $c_{\phi z}$ = $c_{\phi 1}$ =649,195 м/с.

Характеристическое отношение ступени:

$$X = \frac{u_{cp2z}}{c_{\phi z}} = \frac{445,321}{649,195} = 0,686.$$

Располагаемый теплоперепад на ступень:

$$H_{0z} = \frac{c_{\phi z}^2}{2} = \frac{649,195^2}{2} = 210,727$$
 кДж/кг.

Расход пара перед ЦНД основной турбины:

$$G'_{1 \downarrow I H J I} = (1 - \sum_{2}^{8})G_{0} + G_{nc} = (1 - 0, 2549) \cdot 299, 681 + 61, 629 = 284, 894 \kappa c / c.$$

Тогда в один поток расход пара перед ЦНД составит 71,224 кг/с.

Для нахождения высот лопаток первой ступени ЦНД зададимся следующими параметрами: $d_{\kappa}=1,8$ м (т.к. корневой диаметр не изменяется по проточной части ЦНД, $\rho_{\kappa z}=0,3$ – корневая степень реактивности, $\alpha_1=12^{\circ}$ – угол входа потока в рабочую решетку первой ступени, $\varphi=0,97$ – коэффициент скорости сопловой решетки. В первом приближении примем $d_{1cp}=1,917$ м.

Степень реактивности на среднем диаметре первой ступени:

$$p_{cp2} = 1 - \left(1 - \rho_{\kappa}\right) \left(\frac{d_{cp2}}{d_{\kappa}}\right)^{-2 \cdot \varphi^2 \cos^2 \alpha_1} = 1 - \left(1 - 0, 3\right) \left(\frac{1,979}{1,8}\right)^{-2 \cdot 0,97^2 \cos^2 12^\circ} = 0,375.$$

Характеристическое отношение скоростей и/сф первой ступени ЦНД:

$$X = \frac{u}{c_{\phi}} = \frac{\varphi \cos \alpha_1}{2\sqrt{1-\rho}} = \frac{0.97 \cos 12}{2\sqrt{1-0.375}} = 0.6,$$

Окружная скорость на среднем диаметре первой ступени ЦНД:

$$u_{2z} = \pi d_{2z} n = 3,14 \cdot 1,917 \cdot 50 = 301,122 \ \text{m/c}.$$

Фиктивная скорость первой ступени ЦНД:

$$c_{\phi^1} = \frac{u_1}{X} = \frac{301,122}{0,6} = 501,792 \ \text{m/c}.$$

Располагаемый теплоперепад на первую ступень ЦНД:

$$H_{01} = \frac{c_{\phi 1}^2}{2} = \frac{501,792^2}{2} = 125,898 \ \kappa \square \mathcal{H} \mathcal{H} \ / \kappa \mathcal{E}.$$

Теплоперепад на сопловой аппарат первой ступени ЦНД:

$$H_{0c1} = (1 - \rho)H_{01} = (1 - 0.375) \cdot 125,898 = 78,682$$
кДж / кг.
Теоритическая абсолютная скорость на выходе из соплового аппарата:

$$c_{1t} = \sqrt{2H_{c01}} = \sqrt{2 \cdot 78,682} = 396,691 \ \text{m/c}.$$

Энтальпия пара за сопловым аппаратом при изоэнтропийном расширении:

$$h_{1t} = h_3 - H_{0c1} = 2965 - 78,682 = 2886,318 \ \kappa \square \mathcal{H} / \kappa \mathcal{P},$$

где h₃ – энтальпия пара перед ЦНД (по предварительному расчету).

Удельный объем за сопловым аппаратом $v_{1t} = f(h_{1t}, S_3) = 0,7906 \frac{M^3}{\kappa^2}$.

Зададим коэффициент расхода для соплового аппарата первой ступени ЦНД $\mu_1 = 0.97$.

Длина сопловой лопатки первой ступени ЦНД:

$$l_{1} = \frac{G_{1,\underline{l},\underline{l},\underline{l},\underline{l}}}{\mu_{1}c_{1t}\pi d_{1}\sin\alpha_{1}} = \frac{71,224\cdot0,7781}{0,97\cdot396,691\cdot\pi\cdot1,917\cdot\sin12} = 0,117 \text{ m},$$

Средний диаметр первой нерегулируемый ступени для соплового аппарата:

$$d_1 = d_{\kappa} + l_1 = 1,8 + 0,117 = 1,917$$
 m.

Средние диаметры совпали, следовательно, высота лопатки найдена правильно.

Перекрыша в ступени ∆=8 *мм*.

Длина рабочей лопатки первой ступени ЦНД:

$$l_2 = l_1 + \Delta = 0,117 + 0,008 = 0,125$$
 m.

Известно, что изменение среднего диаметра в части ЦНД происходит по показательному закону. Таким образом, зададим кривую распределения теплоперепадов по ступеням в ЦНД. Изменение среднего диаметра по проточной части ЦНД представлено на рис.28, принимая, что у нас 5 ступеней в ЦНД.

Рис. 28. Изменение среднего диаметра в ЦНД высокотемпературной турбины Исходя из этого распределения, средний диаметр каждой ступени будет иметь следующее значение:

$$d_1 = 1,925 \text{ M.}$$

 $d_2 = 2,000 \text{ M.}$
 $d_3 = 2,115 \text{ M.}$
 $d_4 = 2,35 \text{ M.}$
 $d_5 = 2,835 \text{ M.}$

Определим распределение характеристического отношения u/c_{ϕ} в ЦНД. Известно, что это распределение происходит по показательному закону. Число разбития участков 4, число ступеней в ЦНД Z=5. На рис. 29 представлено предварительное распределение u/c_{ϕ} по ступеням в ЦНД.

Рис. 29. Распределение u/c_ф высокотемпературной турбины в ЦНД

$$X_1 = \frac{u_{cp1}}{c_{\phi1}} = 0, 6;$$

$$X_2 = \frac{u_{cp2}}{c_{\phi2}} = 0,622;$$

$$X_3 = \frac{u_{cp3}}{c_{\phi3}} = 0,644;$$

$$X_{4} = \frac{u_{cp4}}{c_{\phi4}} = 0,666;$$

$$X_5 = \frac{u_{cp5}}{c_{\phi5}} = 0,686;$$

Для каждой ступени определим располагаемый теплоперепад по формуле:

$$H_{oi} = \frac{u_i^2}{2(u / c_{\phi})_i} = \frac{\pi^2 d_i^2 n^2}{2(u / c_{\phi})_i}.$$

Располагаемые теплоперепады в каждой ступени представлены в таблице 49. Для 4 ступени представлены значения для нижнего яруса.

Таблица 49

№ ступени	Средний диаметр d, м	Характеристическое отношение u/c _ф	Располагаемый Теплоперепад Н _{оі} , кДж/кг
1	1,925	0,6	126,990
2	2	0,622	127,553
3	2,115	0,644	133,063
4	2,35	0,666	153,602
5	2,835	0,686	210,702

Определим средний теплоперепад на ступень в ЦНД:

$$H_{0cp} = \frac{\sum_{i=1}^{5} H_{0i}}{5} = 150,382 \ \kappa Дж / \kappa 2.$$

Определим коэффициент возврата теплоты в ЦНД:

$$q_T = K_T (1 - \eta_{oi}^{cm}) H_{0 \downarrow H J \downarrow} \frac{Z - 1}{Z} = 3, 2 \cdot 10^{-4} \cdot (1 - 0, 87) \cdot 755 \frac{5 - 1}{5} = 0,02513,$$

где $K_T = 3, 2 \cdot 10^{-4}$ - коэффициент при перегретом и влажном паре;

$$H_{_{0 \amalg H \amalg}} = 2965 - 2210 = 755 \ \kappa \square \mathcal{H} \mathcal{H}$$
- располагаемый теплоперепад на

ЦНД. Зададим внутренний относительный КПД ступени ЦНД $\eta_{0i}^{cm} = 0.87$.

Число ступеней с учетом возврата теплоты:

$$z = \frac{H_{0\mathcal{I}\mathcal{H}\mathcal{I}\mathcal{I}}(1+q_T)}{H_{0cp}} = \frac{755(1+0,02513)}{150,382} = 5,146.$$

Округляем до ближайшего целого числа Z=5.

Общая величина невязки теплоперепадов:

$$\Delta = \frac{H_{0\mathcal{I}\mathcal{H}\mathcal{I}\mathcal{I}}\left(1+q_{t}\right)-\sum_{i=1}^{z}H_{i}}{z} = \frac{755(1+0,02513)-751,909}{5} = 4,412 \ \kappa \mathcal{I}\mathcal{H}\mathcal{H} / \kappa \mathcal{I}.$$

Теплоперепад на каждую ступень с учетом невязки

$$H_{0i} = H_{0i} + \Delta;$$

Значения теплоперепадов с учетом невязки приведены в таблице 50.

Таблица 50

№ ступе ни	Средн ий диамет р d, м	Характеристиче ское отношение u/c _ф	РасполагаемыйТеплопе репад Н _{оі} , кДж/кг	Располагае мый
				теплоперепа
				д с учетом
				невязки H _{oi} ,
				кДж/кг
1	1,925	0,6	126,990	131,402
2	2	0,622	127,553	131,965
3	2,115	0,644	133,063	137,476
4	2,35	0,666	153,602	158,014
5	2,835	0,686	210,702	215,114

На рис. 30 представлено распределение теплоперепадов по ступеням в ЦНД с учетом невязки.

Рис. 30. График распределения располагаемых теплоперепадов в ЦНД высокотемпературной турбины с учетом невязки

На рис. 31 представлен продольный разрез турбины основной (высокотемпературной) паровой турбины.

Высокотемпературная паровая турбина спроектирована на частоту вращения 3000 об/мин и является одновальным агрегатом. Турбина рассчитана на начальное давление и температуру свежего пара 35 МПа и 1500°С, промежуточный перегрев пара отсутствует, абсолютное давление в конденсаторе составляет 3,5 кПа.

Паровая турбина выполнена в четырех цилиндровом исполнении. Один цилиндр высокого давления, один цилиндр среднего давления и два цилиндра низкого давления.

Свежий пар поступает в проточную часть высокого давления из выносного блока с сопловым парораспределением (см. п 6.2).

ЦВД исполнен по петлевой схеме, для уменьшения длины установки. Проточная часть ЦВД выполнена с активным облопачиванием и состоит из двадцати двух ступеней давления. Первые одиннадцать диафрагм установлены во внутреннем корпусе, вторая половина установлена в обоймы. Ротор ЦВД – цельнокованый. Концевые уплотнения ЦВД – безвтулочного типа: на концах вала выточены кольцевые канавки, а уплотнительные сегменты установлены в обоймах и удерживаются плоскими пружинами.

Для охлаждения ЦВД используется дополнительный пар из котла. Пар подводится к концевым уплотнениям цилиндра, далее через зазор между ротором и уплотнением поступает в центральное отверстие ротора, затем направляется в радиальные отверстия рабочего колеса каждой ступени к рабочим лопаткам и выдувается через перо рабочей лопатки в проточную часть цилиндра высокого давления. Охлаждение сопловых лопаток происходит при помощи подачи охлаждающего пара между диафрагмой и внутреннем корпусе или обоймы, далее пар направляется к сопловой лопатке, где происходит охлаждение пера и выдув пара в проточную часть. Охлаждение ЦСД происходит аналогичным образом.

Цилиндр среднего давления состоит из восемнадцати ступеней давления. Диафрагмы закрепляются в пяти обоймах. Переднее концевое уплотнение безвтулочное; подвод пара для охлаждения происходит через переднее уплотнение.

Пар с давлением 0,38 МПа и температурой 250°С после паропарового теплообменника подводится к центральной части ЦНД и разветвляется на два потока. Каждый поток содержит пять ступеней давления.

Корпус ЦНД состоит из трех разъемных частей: средняя часть литая, а выпускные патрубки сварные. Десять дисков ротора низкого давления насажены сваренных между собой. Концевые уплотнения втулочного типа. Втулки насажены на вал в горячем состоянии. Перед сопловыми аппаратами последних ступеней установлены распределительные решетки (см. п. 6.2) согласно патенту [24].

Роторы высокого, среднего и низкого давления лежат на 7 опорных подшипниках: ротор низкого давления – на двух, а роторы высокого и среднего давления – на трех. Роторы высокого и среднего давления соединены жесткой муфтой. Роторы ЦСД и ЦНД, а также роторы ЦНД и генератора соединены полугибкими муфтами.

Рис. 31. Продольный разрез высокотемпературной паровой турбины (показан один ЦНД)

Глава 6. Новые технические решения при создании паровых турбин следующего поколения

6.1. Сопловое парораспределение с выносной камерой смешения

При использовании соплового парораспределения возникают следующие недостатки [20]:

- конструктивная сложность соплового парораспределения, увеличивающая металлоемкость и стоимость турбины;

- очень большая неравномерность поля скоростей пара при входе в сопловой аппарат первой нерегулируемой ступени, уменьшающая экономичность первых ступеней в цилиндрах высокого давления;

 большая окружная неравномерность полей температур в камере регулирующей ступени, ухудшающая маневренность турбины и снижающая ресурс работы турбины;

 снижение вибрационной надежности ротора турбины в связи с неравномерным распределением в окружном направлении массового расхода пара и появления в этом случае неуравновешенных поперечных сил;

- предельно низкий КПД регулирующей ступени, как при частичных нагрузках турбины, так и на расчетном режиме работы турбины.

В спроектированных турбинах использована система соплового парораспределения с выносным блоком регулирующих клапанов и внешней камерой смешения, выполненная в соответствии с патентом [21] Лавырёвым И.П.

При использовании подобной системы парораспределения полностью устраняются все недостатки соплового парораспределения и сохраняются преимущества дроссельного парораспределения.

На рисунке 32 продемонстрирован эскизный чертеж нового единого блока парораспределения.

Рис. 32. Эскизный чертеж нового единого блока парораспределения

Корпус блока состоит из двух цилиндрических камер 1 и 2, разделенных перегородкой 3, в которую запрессовано четыре диффузорных седла 4 для четырех регулирующих клапанов 5, 6 (позиции 7, 8 – на рисунке 4а не показаны), установленных на периферии, съемной верхней крышки 9 корпуса блока. В центре крышки 9 установлен стопорный клапан 10, а к корпусу этого клапана подведен паропровод 11 свежего пара. Все 5 клапанов комплектуются индивидуальными сервомоторами (на рисунке 46 отсутствуют). При этом стопорный клапан выполнен в соответствии с патентом №0002648800 [22].

Поскольку происходит смешение пара в цилиндрической камере 2 удаётся устранить неравномерность поля скоростей и окружную неравномерность полей температур в камере регулирующей ступени. А отсутствие регулирующей ступени позволяет повысить экономичность цилиндра высокого давления и всей установки в целом.

На рис. 33-34 представлена 3D модель выносного блока соплового парораспределения, выполненная в программной среде Autodesk Inventor Professional 2020.

Рис. 33. 3D модель выносного блока соплового парораспределения

Рис. 34. 3D модель выносного блока соплового парораспределения в разрезе

На рис. 35-36 продемонстрирована 3D модель стопорного клапана, который используется в выносном блоке. Отличительная особенность данного клапана заключается в уменьшении загромождения клапанной коробки телом клапана за счет новых конструктивных решений.

На рис. 37-38 продемонстрирована 3D модель регулирующего, который используется в выносном блоке. Регулирующие клапаны выполнены поворотными, при движении штока вверх происходит передача вращательного движения на поворотную муфту, которая позволяет открыть окна для протечки пара в трубопроводы к турбине. Всего в клапане 4 окна и необходимо произвести поворот на 45 градусов для полного открытия клапана, что уменьшает ход штока.

Рис. 37. 3D модель регулирующего клапана (закрыт) Рис. 38. 3D модель регулирующего клапана (открыт)

6.2. Цилиндр низкого давления с полуторным выхлопом на базе двухъярусной вильчатой рабочей лопатки

Как известно, предельная мощность конденсационных паровых турбин определяется максимально возможным пропуском пара через ЦНД в конденсатор, то проблема увеличения расхода пара через этот однопоточный цилиндр без сомнений можно назвать актуальной. При заданной мощности увеличение расхода через один поток ЦНД ведет к уменьшению количества цилиндров мощных энергетических турбин, либо к увеличению предельной единичной мощности одновальных паровых турбин.

В настоящее время для решения указанной проблемы существуют следующие пути: увеличение длины рабочих лопаток последних ступеней мощных конденсационных паровых турбин, при котором возникают сложности с решением сложных аэродинамических задач, поскольку с ростом длины лопатки увеличиваются потери от веерности и больших перекрыш, и задач по прочности длинных лопаток для надежной работы на всех режимах работы паровой турбины.

Альтернативное решение рассматриваемой проблемы находится в использовании полуторного выхлопа, суть которого состоит в сбросе части пара в конденсатор паровой турбины при выходе из предпоследней ступени цилиндра низкого давления. Именно этот вариант является предметом рассмотрения в базовой высокотемпературной турбине, цель которой продемонстрировать, что при устранении недостатков, присущих этому решению. ЦНД с полуторным выхлопом может быть вполне на одном уровне экономичности с ЦНД с более длинными лопатками последней ступени мощной конденсационной турбины. При использовании в качестве предпоследней ступени ЦНД ступени Баумана, как например в первых моделях К-200-130, существует следующие недостатки, отмеченные в [23]:

- теплоперепад верхнего яруса предпоследней ступени равен сумме теплоперепадов нижнего яруса и последней ступени ЦНД, в результате чего верхний ярус работает при отношении скоростей u/c_ф значительно меньше оптимального значения;
- профилирование решеток без учета особенностей сверхзвукового характера течения в верхнем ярусе;
- повышенная утечка пара из нижнего яруса в конденсатор;
- увеличение концевых потерь в верхнем и нижнем ярусе в связи с уменьшением длин лопаток.

В разделе 2.2.5 для реализации полуторного выхлопа вместо ступени Баумана используется двухъярусная ступень на базе вильчатой лопатки, выполненная в соответствии с патентом РФ №0002685162 БИ №11 16.04.2019 [24], у которой на одном пере нижнего яруса располагаются две рабочие лопатки верхнего яруса [25,26]. Преимущества двухъярусных ступеней:

- практическое исключение потерь от веерности;
- уменьшены потери от влажности;
- устойчивость ступени к переменным режимам работы;
- уменьшение хорд профилей лопаток в верхнем ярусе.

При этом в работе [25] рассчитана на прочность двухъярусная рабочая лопатка длиной 1155 мм, коэффициент запаса прочности составил 2,8. В спроектированной турбине с начальной температурой пара 650°С и давлением 30 МПа длина двухъярусной рабочей лопатки достигает 1056 мм, поэтому запас по прочности разработанной лопатки будет больше.

3D модель используемой двухъярусной вильчатой рабочей лопатки представлена на рис. 39, на рис. 40 представлено двухъярусное рабочее колесо. Модели выполнены в системе трехмерного твердотельного и поверхностного параметрического проектирования (САПР) – Autodesk Inventor Professional 2020.

Рис. 39. 3D модель двухъярусной вильчатой рабочей лопатки длиной 1056 мм

Рис. 40. 3D модель двухъярусного рабочего колеса

6.3. Принципиальная схема системы охлаждения цилиндра высокого и среднего давления высокотемпературной паровой турбины

Ранее в разделе 4.1.3 говорилось, о том, что для создания новой высокотемпературной паровой турбины с начальной температурой пара 1500°С необходимы либо новые жаростойкие и жаропрочные материалы, которые сейчас в современной большой энергетики отсутствуют. Поэтому было принято решение использовать охлаждение цилиндра высокого и среднего давления [27]. Прототипом системы охлаждения будут являться уже разработанные технологии в газотурбинном строении, где давно достигнуты температуры 1400-1600°С. В газовых турбинах используется система открытого охлаждения, так для охлаждения деталей ротора и статора газовой турбины используется воздух, который отбирается из компрессора газотурбинной установки. Отличительной особенностью охлаждения высокотемпературной турбины будет использование для охлаждения дополнительного пара, генерирующего в энергетическом котле, с параметрами 35 МПа и 540°С. Пар подводится к концевым уплотнениям цилиндра, далее через зазор между ротором и уплотнением поступает в центральное отверстие ротора, затем направляется в радиальные отверстия рабочего колеса каждой ступени к рабочим лопаткам и выдувается через перо рабочей лопатки в проточную часть цилиндра высокого давления. Охлаждение сопловых лопаток происходит при помощи подачи охлаждающего пара между диафрагмой и внутреннем корпусе или обоймы, далее пар направляется к сопловой лопатке, где происходит охлаждение пера и выдув пара в проточную часть.

Глава 7. Оценка эффективности использования нового паропаровой установки на ТЭС нового поколения

7.1. Расчет экономической эффективности паропаровго блока с начальной температурой пара t₀=1500°C без охлаждения

Сравним сроки окупаемости блока К-880-240 на СКД и блока 880 МВт с начальной температурой 1500°С

Рассчитаем стоимость строительства К-820-240:

$$C_{cmp} = c_{cmp}^{CKJ} \cdot N_{2}^{K-880-240} = 78 / 1000 \cdot 880 = 68,64$$
 mird. pyG,

где c_{cmp}^{CKA} =1200 \$/кВт= 78 млн. руб/МВт – стоимость строительства единицы установленной мощности для блока СКД, в которую заложены затраты на производство, монтаж, пуско-наладочные работы.

Удельный расход условного топлива на выработку э/э на новый блок:

$$b_{y_{CR}} = \frac{123}{\eta_{\kappa-880-240}} = \frac{123}{45} = 273,333 \ z \ y.m. / (\kappa Bm \cdot u),$$

где $\eta_{\kappa-880-240}$ =45% - абсолютный электрический КПД «брутто» К-880-240.

Количество топлива, затрачиваемого в год на блок (всё приведено к газу):

$$B_{cm} = \frac{b_{yc\pi}}{10^3} \cdot N_{_{9}}^{K-880-240} \cdot \frac{\tau_{pa\delta}}{K_{_{2a3}}} = \frac{273,333}{10^3} \cdot 880 \cdot \frac{6000}{1,657} = 940195 \ m = 940,195 \ m \text{bic.m},$$

где $\tau_{pa\delta}$ =6000 ч (принимаем) – количество часов работы блока в год с учетом остановов блока на планово-предупредительный ремонт;

*К*_{газ}=1,535 – коэффициент перехода от условного топлива к газу (исходя из низшей теплоты сгорания топлив – условного и природного газа).

Стоимость затрат на топлива на станцию в год:

$$C_{B} = \mathcal{U}_{2a3} \cdot B_{cm} = \frac{4000 \cdot 940,195}{10^{6}} = 3,761$$
 млрд. руб,

где U_{2a3} =4000 *руб/m* – цена на газ в Московской обл. на 2020 год.

Прибыль за отпущенную э/э в год:

$$\Pi_{_{9/9}} = \coprod_{_{9/9}} \cdot N_{_9}^{_{K-880-240}} \cdot \frac{\tau_{_{pa\delta}}}{10^9} \cdot K_{_{CH}} = 1200 \cdot 880 \cdot \frac{6000}{10^9} \cdot 0,95 = 6,019 \text{ mnpd.py6},$$

где $\mu_{3/3}=1200 \ py \delta/MBm$ – цена 3/3, по которой продает станция;

К_{СН}=0,95 – коэффициент, учитывающий, что часть э/э отбирается на СН блока.

Прибыль за установленную мощность в год:

$$\Pi_{N} = \frac{\prod_{N} \cdot N_{9}^{K-880-240}}{10^{9}} = \frac{1800000 \cdot 880}{10^{9}} = 1,584 \text{ mnpd.py6},$$

где ЦN=1 800 000 руб/(МВт·год) – цена установленной мощности за МВт в год для станции, не участвующей в программе ДПМ.

Окупаемость блока К-880-240:

$$O = \frac{C_{cmp}}{\left(\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}\right)} = \frac{68,64}{\left(6,019 + 1,584 - 3,761\right)} = 17,86 \text{ nem} \approx 18 \text{ nem}.$$

Таким образом, блок К-880-240 окупится за 18 лет. Далее станция будет получать прибыль в размере:

$$\Pi = (\Pi_{_{3/_{9}}} + \Pi_{_{N}} - C_{_{B}}) = (6,019 + 1,584 - 3,761) = 3,842 \text{ млрд. руб / год.}$$

Рассчитаем стоимость строительства блока 880 МВт, где 790 МВтмощность осинового блока с начальной температурой пара 1500°С, а 90 МВт – мощность присоединённого (утилизационного) блока с начальными параметрами 12,8 МПа и 560°С/560°С :

Удельный расход условного топлива на выработку э/э на новый блок:

$$b_{ycn} = \frac{123}{\eta_{\kappa o M \delta}} = \frac{123}{64,1} = 192 \ z \ y.m. / (\kappa Bm \cdot u),$$

где $\eta_{\kappa o m \delta}$ =64,1% - абсолютный электрический КПД «брутто» комбинированного цикла.

Количество топлива, затрачиваемого в год на блок (всё приведено к газу):

$$B_{cm} = \frac{b_{yc\pi}}{10^3} \cdot (N_{_9}^I + N_{_9}^{II}) \cdot \frac{\tau_{pa\delta}}{K_{_{za3}}} = \frac{192}{10^3} \cdot 880 \cdot \frac{6000}{1,535} = 660043 \ m = 660,043 \ m \text{bic.m},$$

где $\tau_{pa\delta}$ =6000 ч (принимаем) – количество часов работы блока в год с учетом остановов блока на планово-предупредительный ремонт;

К_{газ}=1,535 – коэффициент перехода от условного топлива к газу (исходя из низшей теплоты сгорания топлив – условного и природного газа).

Стоимость затрат на топлива на станцию в год:

$$C_{B} = \mathcal{U}_{cas} \cdot B_{cm} = \frac{4000 \cdot 660,043}{10^{6}} = 2,640 \text{ млрд. руб,}$$

где U_{2a3} =4000 *руб/m* – цена на газ в Московской обл. на 2020 год.

Прибыль за отпущенную э/э в год:

$$\Pi_{_{9/9}} = \coprod_{_{9/9}} \cdot (N_{_9}^{I} + N_{_9}^{II}) \cdot \frac{\tau_{_{pa\delta}}}{10^9} \cdot K_{_{CH}} = 1200 \cdot 880 \cdot \frac{6000}{10^9} \cdot 0,93 = 5,892 \text{ mnpd.pyb},$$

где $\prod_{3/3} = 1200 \ py \delta / MBm$ – цена 3/3, по которой продает станция;

К_{СН}=0,93 – коэффициент, учитывающий, что часть э/э отбирается на СН блока.

Прибыль за установленную мощность в год:

$$\Pi_{N} = \frac{\Pi_{N} \cdot (N_{2}^{I} + N_{2}^{II})}{10^{9}} = \frac{1800000 \cdot 880}{10^{9}} = 1,584 \text{ mnpd.py6},$$

где ЦN=1 800 000 руб/(МВт·год) – цена установленной мощности за МВт в год для станции, не участвующей в программе ДПМ.

Окупаемость нового блока 880 МВт:

$$O = \frac{C_{cmp}}{\left(\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}\right)} = \frac{89,18}{\left(5,892 + 1,584 - 2,640\right)} = 18,44 \text{ nem} \approx 18 \text{ nem}.$$

Таким образом, блок 880 МВт с начальной температурой 1500°С окупится за 18 лет. Далее станция будет получать прибыль в размере:

 $\Pi = (\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}) = (5,892 + 1,584 - 2,640) = 4,836 \text{ млрд. руб / год.}$

При этом удельный расход топлива снижается на:

$$\Delta b = 273,33 - 192 = 81,45 \ c \ y.m. / (\kappa Bm \cdot u).$$

И, соответственно, затраты на стоимость топлива в год на блоке мощностью 880 МВт снижаются на:

$$\Delta C_{B} = 3,761 - 2,640 = 1,121$$
 млрд. руб.

7.2. Расчет экономической эффективности паропаровго блока с начальной температурой пара t₀=1500°C с охлаждением

Сравним сроки окупаемости блока К-1000-240 на СКД и блока 1000 МВт с начальной температурой 1500°С с охлаждением ЦВД и ЦСД

Рассчитаем стоимость строительства К-1000-240:

$$C_{cmp} = c_{cmp}^{CKJ} \cdot N_{2}^{K-1000-240} = 78 / 1000 \cdot 1000 = 78$$
 млрд. руб,

где c_{cmp}^{CKA} =1200 \$/кВт= 78 млн. руб/МВт – стоимость строительства единицы установленной мощности для блока СКД, в которую заложены затраты на производство, монтаж, пуско-наладочные работы.

Удельный расход условного топлива на выработку э/э на новый блок:

$$b_{y_{CT}} = \frac{123}{\eta_{\kappa-920-240}} = \frac{123}{45} = 273,333 \ z \ y.m. / (\kappa Bm \cdot u),$$

где $\eta_{\kappa-1000-240}$ =45% - абсолютный электрический КПД «брутто» блоков с СКД.

Количество топлива, затрачиваемого в год на блок (всё приведено к газу):

$$B_{cm} = \frac{b_{yc\pi}}{10^3} \cdot N_{_{9}}^{K-1000-240} \cdot \frac{\tau_{pa\delta}}{K_{_{2a3}}} = \frac{273,333}{10^3} \cdot 1000 \cdot \frac{6000}{1,535} = 1068403 \ m = 1068,403 \ m \text{bic.m},$$

где $\tau_{pa\delta}$ =6000 ч (принимаем) – количество часов работы блока в год с учетом остановов блока на планово-предупредительный ремонт;

*К*_{газ}=1,535 – коэффициент перехода от условного топлива к газу (исходя из низшей теплоты сгорания топлив – условного и природного газа).

Стоимость затрат на топлива на станцию в год:

$$C_{B} = \mathcal{U}_{2a3} \cdot B_{cm} = \frac{4000 \cdot 1068, 403}{10^{6}} = 4,274$$
 млрд. руб,

где U_{2a3} =4000 *руб/m* – цена на газ в Московской обл. на 2020 год.

Прибыль за отпущенную э/э в год:

$$\Pi_{_{9/9}} = \coprod_{_{9/9}} \cdot N_{_9}^{_{K-1000-240}} \cdot \frac{\tau_{_{pa\delta}}}{10^9} \cdot K_{_{CH}} = 1200 \cdot 1000 \cdot \frac{6000}{10^9} \cdot 0,95 = 6,84 \text{ mnpd.pyb},$$

где *Ц*_{э/э}=1200 *руб/МВт* – цена э/э, по которой продает станция;

К_{СН}=0,95 – коэффициент, учитывающий, что часть э/э отбирается на СН блока.

Прибыль за установленную мощность в год:

$$\Pi_{N} = \frac{\prod_{N} \cdot N_{9}^{K-1000-240}}{10^{9}} = \frac{1800000 \cdot 1000}{10^{9}} = 1.8 \text{ mnpd.pyb},$$

где ЦN=1 800 000 руб/(МВт·год) – цена установленной мощности за МВт в год для станции, не участвующей в программе ДПМ.

Окупаемость блока К-1000-240:

$$O = \frac{C_{cmp}}{\left(\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}\right)} = \frac{78}{\left(6,84 + 1,8 - 4,274\right)} = 17,86 \text{ nem} \approx 18 \text{ nem}.$$

Таким образом, блок К-1000-240 окупится за 18 лет. Далее станция будет получать прибыль в размере:

$$\Pi = (\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}) = (6,84 + 1,8 - 4,274) = 4,366 \text{ млрд. руб / год.}$$

Рассчитаем стоимость строительства блока 1000 МВт, где 900 МВтмощность осинового блока с начальной температурой пара 1500°С, а 100 МВт – мощность присоединённого (утилизационного) блока с начальными параметрами 12,8 МПа и 560°С/560°С :

$$C_{cmp} = c_{cmp}^{VCK\Pi} \cdot N_{\scriptscriptstyle 9}^{I} + c_{cmp}^{CK\Pi} \cdot N_{\scriptscriptstyle 9}^{I} = 87,75 / 1000 \cdot 830 + 78 / 1000 \cdot 90 = 79,85 \text{ mnpd. py6}, py6,$$

где *с_{стр}^{УСКП}*=1500 \$/кВт= 97,5 млн. руб/МВт – стоимость строительства единицы установленной мощности для блока на 1500°С, в которую заложены затраты на производство, монтаж, пуско-наладочные работы.

Удельный расход условного топлива на выработку э/э на новый блок:

$$b_{ycn} = \frac{123}{\eta_{\kappa o m \delta}} = \frac{123}{67,14} = 183,19 \ c \ y.m. / (\kappa Bm \cdot u),$$

где $\eta_{\kappa o m \delta}$ =67,14% - абсолютный электрический КПД «брутто» комбинированного цикла.

Количество топлива, затрачиваемого в год на блок (всё приведено к газу):

$$B_{cm} = \frac{b_{ycn}}{10^3} \cdot (N_{_9}^I + N_{_9}^{II}) \cdot \frac{\tau_{pa\delta}}{K_{_{za3}}} = \frac{183,19}{10^3} \cdot 1000 \cdot \frac{6000}{1,535} = 716088 \ m = 716,088 \ m \text{bic.m},$$

где $\tau_{pa\delta}$ =6000 ч (принимаем) – количество часов работы блока в год с учетом остановов блока на планово-предупредительный ремонт;

*К*_{газ}=1,535 – коэффициент перехода от условного топлива к газу (исходя из низшей теплоты сгорания топлив – условного и природного газа).

Стоимость затрат на топлива на станцию в год:

$$C_B = I_{2a3} \cdot B_{cm} = \frac{4000 \cdot 716,088}{10^6} = 2,864 \text{ млр}\partial. \text{ руб},$$

где U_{2a3} =4000 *руб/m* – цена на газ в Московской обл. на 2020 год.

Прибыль за отпущенную э/э в год:

$$\Pi_{_{9/9}} = \mathcal{I}_{_{9/9}} \cdot (N_{_9}^{I} + N_{_9}^{II}) \cdot \frac{\tau_{_{pa\delta}}}{10^9} \cdot K_{_{CH}} = 1200 \cdot 1000 \cdot \frac{6000}{10^9} \cdot 0,93 = 6,696 \text{ mnpd.pyb},$$

где $U_{3/3}=1200 \ py \delta/MBm$ – цена 3/3, по которой продает станция;

К_{СН}=0,93 – коэффициент, учитывающий, что часть э/э отбирается на СН блока.

Прибыль за установленную мощность в год:

$$\Pi_{N} = \frac{\underline{\mu}_{N} \cdot (N_{2}^{I} + N_{2}^{II})}{10^{9}} = \frac{1800000 \cdot 1000}{10^{9}} = 1.8 \text{ млр} \partial.py \delta,$$

где ЦN=1 800 000 руб/(МВт·год) – цена установленной мощности за МВт в год для станции, не участвующей в программе ДПМ.

Окупаемость нового блока 1000 MBт:

$$O = \frac{C_{cmp}}{\left(\Pi_{3/9} + \Pi_N - C_B\right)} = \frac{95,55}{\left(6,686 + 1,8 - 2,864\right)} = 16,96 \text{ nem} \approx 17 \text{ nem}.$$

Таким образом, блок 1000 МВт с начальной температурой 1500°С окупится за 17 лет. Далее станция будет получать прибыль в размере:

$$\Pi = (\Pi_{_{9/9}} + \Pi_{_N} - C_{_B}) = (6,686 + 1,8 - 2,864) = 5,632 \text{ млрд. руб / год.}$$

При этом удельный расход топлива снижается на:

$$\Delta b = 273,33 - 183,19 = 90,14 \ c \ y.m. / (\kappa Bm \cdot u).$$

И, соответственно, затраты на стоимость топлива в год на блоке мощностью 1000 МВт снижаются на:

$$\Delta C_{B} = 4,274 - 2,864 = 1,409$$
 млрд. руб.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ

- 1. Для качественной оценки эффективности перехода к более высоким начальным температурам пара проведен расчет тепловой схемы высокотемпературного паротурбинного блока, и выполнен эскизный чертеж продольного разреза спроектированной паровой турбины с использованием ряда новых решений, позволивших на 3% увеличить её КПД по сравнению с зарубежными аналогами, что дало возможность в итоге поднять КПД нового блока до 49,8%.
- 2. Разработан ЦНД с полуторным выхлопом пара в конденсатор на базе двухъярусной вильчатой лопатки высокотемпературной турбины с использованием специальных кольцевых решеток, установленных перед сопловыми аппаратами четвертой и пятой ступени, обеспечивающих равномерное распределение пара при его входе в СА, что позволило создать ЦНД с КПД равным 87,5% при существенном снижении металлоемкости.
- 3. Для преодоления температурного порога в традиционном цикле Ренкина была использована и рассчитана новая паропаровая тепловая схема А.Е. Зарянкина, исключающая ограничение по уровню начальных температур пара в результате введения в эту схему добавочного утилизационного паротурбинного блока, что позволило увеличить КПД указанного паропарового блока до 64-67% при начальной температуре пара равной 1500°С.
- 4. В конструктивном плане разработан вариант ультрасверхвысокотемпературной турбины в четырех корпусном исполнении с выносной системой соплового парораспределения, позволяющей существенно упростить конструкцию ЦВД и обеспечить высокоэкономичную работу этого цилиндра не только на расчетном, но и на переменных режимах работы турбины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Трухний А.Д., Макаров А.А., Клименко В.В. «Основы современной энергетики. Часть 1.» М.: Издательство МЭИ, 2002.
- Тугов А.Н., Шварц А. Л., Котлер В.Р. Отечественные котельные установки на повышенные параметры пара: состояние и перспективы // Электрические станции. - 2014. - №1. - С. 9 - 13.
- 3. Рябов Г.А., Авруцкий Г.Д., Зыков А.М., Шмиголь И.Н., Лазарев М.В., Долгушин И.А., Щелоков В.И., Кудрявцев А.Н., Жученко Л.А. Разработка угольной ТЭЦ нового поколения // Использование твёрдых топлив для эффективного и экологически чистого производства электроэнергии и тепла. II международная научно-техническая конференция. - 2015. - С. 80 - 88.
- Тумановский А.Г., Алтухов М.Ю., Шварц А.Л., Авруцкий Г.Д., Вербовецкий Э.Х., Туголуков Е.А., Смышляев А. А., Хомёнок Л. А., Скоробогатых А.Н. Разработка пылеугольного энергоблока на суперкритические параметры пара мощностью 660 МВт // Электрические станции 2010. № 1. С. 18 27.
- 5. Сомова Е.В., Шварц А.Л., Вербовецкий Э.Х. Создание пылеугольного энергоблока на ультрасверхкритические параметры пара в рамках проекта AD-700 // Энергетик. 2015. № 2. С. 39 43.
- 6. Костюк А.Г., Грибин В.Г., Трухний А.Д. Концепция паровых турбин но-России. Часть 1. вого поколения для угольной энергетики // Экономическое техническое обоснование концепции И Теплоэнергетика. - 2010. - № 12. - С. 23 - 31.
- Костюк А.Г., Грибин В.Г., Трухний А.Д. Концепция паровых турбин нового поколения для угольной энергетики России. Часть 2. Обоснование длительной прочности высокотемпературных роторов паровой турбины // Теплоэнергетика. 2011. № 1. С. 55 58.

- Дорохов Е.В., Седлов А.С. Тепловая схема энергоблока с суперкритическими параметрами и двумя промежуточными перегревами мощностью 600 МВт // Труды конференции «Повышение надёжности и эффективности эксплуатации электрических станций и энергетических систем». МЭИ. - 2010, - Том 1. - С. 64 - 66.
- Седлов А.С., Рогалёв Н.Д., Комаров И.И., Гаранин И.В., Рогалёв А.Н. Высокотемпературные технологии производства электроэнергии на паротурбинных установках угольных электростанций // Новое в российской электроэнергетике. - 2016. - № 9. - С. 6 - 22.
- 10.Елисеев Ю.В., Ноздренко Г.В., Шепель В.С. Перспективные экологичные энергоблоки ТЭС на твёрдом топливе // VIII Всероссийская конференция с международным участием «Горение твёрдого топлива». -2012. - С. 42.1 - 42.7.
- 11.Ноздренко Г.В., Русских Е.Е., Шепель В.С. Технико-экономические показатели перспективных энергоблоков ТЭС суперкритических параметров с системами серо- и азотоочистки // Проблемы энергетики. -2011. - № 1 - 2. - С. 28 - 37.
- 12.Разработка перспективного блока СКД 1000 МВт в Южной Корее // Энергетика за рубежом. - 2008. - № 3. - С. 17 - 23.
- 13.Новейший в Германии энергоблок ультраСКД // Энергетика за рубежом. 2011. № 2. С. 3 8.
- 14. Саламов А.А. О программе Европейского Союза по освоению в тепловой энергетике параметров пара 35-37,5 МПа, 700-720 оС // Энергетик. 2009. № 6. С. 27 30.
- 15.Сомова Е.В., Шварц А.Л., Вербовецкий Э.Х. Создание пылеугольного энергоблока на ультрасверхкритические параметры пара в рамках проекта AD-700 // Энергетик. 2015. № 2. С. 39 43.
- Совершенствование турбоустановок методами математического и физического моделирования. Сборник научных трудов. – Харьков, 2007. – с.14-15.

- 17.Богомолова, Т.В. Последние ступени паровых турбин: учебное пособие/ Т.В. Богомолова. – М.: Издательский дом МЭИ, 2007. – 80 с.
- 18. Трухний, А.Д. Парогазовые установки электростанций// А.Д. Трухний// Учебное пособие для вузов – М.: Издательство МЭИ, 2017.
- 19.Паровые и газовые турбины для электростанций, Костюк А.Г., Фролов В.В., Булкин А.Е., Трухний А.Д., 2016
- 20.Зарянкин А.Е., Б.П. Симонов. Регулирующие и стопорно-регулирующие клапаны паровых турбин // Москва : изд-во МЭИ, 2005. 359 с.
- 21.Зарянкин А.Е. «Устройство соплового парораспределения с выносной камерой смешения» Патент РФ №0002673362 БИ №33 20.11.2018.
- 22. Зарянкин А.Е., Зарянкин В.А., Лавырев И.П. «Разгруженный регулирующий клапан» Патент РФ №0002648800 БИ №10 28.03.2018.
- 23. Дейч М.Е., Трояновский Б.М. Исследование и расчеты ступеней осевых турбин. М.: Машиностроение, 1964.
- 24.Зарянкин А.Е. и др. «Двухъярусная ступень с неразъемной вильчатой лопаткой» Патент РФ №0002685162 БИ №11 16.04.2019
- 25.Седлов А.С., Зарянкин, А.Е. Технические решения создания новых двухъярусных ступеней для цилиндров низкого давления с повышенной пропускной способностью / А.С. Седлов, А.Е. Зарянкин, А.Н. Рогалев, Е.Ю. Григорьев, И.В. Гаранин, С.К. Осипов// Вестник ИГЭУ. -2016, №3 С. 27-34.
- 26.Седлов А.С., Зарянкин, А.Е. Перспективы применения двухъярусных проточных частей в цилиндрах низкого давления мощных паровых турбин / А.С. Седлов, А.Е. Зарянкин, А.Н. Рогалев, Е.Ю. Григорьев, И.В. Гаранин, С.К. Осипов// Вестник ИГЭУ. -2016, №2 – С. 1-8.
- 27.Разработка научных основ проектирования электростанций с высокотемпературными паровыми турбинами: Сборник статей. – М.: Издательство МГТУ им. Баумана, 2009. – 300 с.