
Ministry of Science and Higher Education of the Russian Federation

ITMO University

GRADUATION THESIS

DEVELOPMENT OF DEVICE FOR NAVIGATING PEOPLE WITH

VISUAL IMPAIRMENTS

Author ___Anastasiia Iusupova _______ __
 (full name) (signature)

Subject area ___ 15.04.06 Mechatronics and robotics ___
 (code, name of program track)

Degree level Master ___
(Bachelor, Master)

Thesis supervisor Pavel Kovalenko, associate professor, PhD ______
 (surname, initials, academic title, degree) (signature)

Thesis co-supervisor Dmitry Shvarts, research scientist, PhD _______
 (surname, initials, academic title, degree) (signature)

Partner University Tallinn University of Technology______
(official name of the University)

Approved for defense

Head of program ___________________________ _____________
(surname, initials, academic title, degree) (signature)

“_____”__________________ 20 ____

St. Petersburg, 2020

Student Anastasiia Iusupova__________________________________

 (full name)

Group R42331 Faculty/Institute/Cluster Faculty of Control Systems and Robotics ___

Subject area, program/major 15.04.06 Mechatronics and robotics, Intelligent technology in robotics

Consultant(s):

a) Mikhail Sachkov, senior lecturer, PhD____________ _____________

 (surname, initials, academic title, degree) (signature)

Thesis received “20” May 2020

Originality of thesis: 99 %

Thesis completed with the grade: 5

Date of defense “5” June 2020

Secretary of State Exam Commission Svetlana Perepelkina __________________

 (full name) (signature)

Number of pages 96

Number of supplementary materials/Blueprints 0

Ministry of Science and Higher Education of the Russian Federation

ITMO University

APPROVED

Head of educational program

___________________ ___________

 (Surname, initials) (signature)

«____» «_______________» 20____

OBJECTIVES

FOR A GRADUATION THESIS

Student Anastasiia Iusupova__________________________________

Group R42331 Faculty/Institute/Cluster Faculty of Control Systems and Robotics ___

Degree level ____________________________Master ___

Subject area 15.04.06 Mechatronics and robotics ___

Major _ Intelligent technology in robotics ___

Specialization Biomechatronics_______________________________

Thesis topic Development of Device for Navigating People with Visual Impairments ___

Thesis supervisor Pavel Kovalenko, ITMO University, associate professor, PhD, docent ___

 (full name, place of employment, position, academic degree, academic title)

2 Deadline for submission of complete thesis “20” May 2020

3 Requirements and premise for the thesis

Device is intended for improved navigation of people with visual impairments. The device is a vest

with built-in electronic components such as a microcontroller, ultrasonic sensors, a sound module,

vibration motors, camera, etc. The device must build a map of the surrounding area and recognize

some important objects. During development, it is required to create not only an effective device, but

also convenient to use, including by elderly people and children. Detected objects should be

determined with a probability of >90%, the weight of the device (including the vest) should not

exceed 3 kg; continuous operation of the device should be >3 hours. ___

4 Content of the thesis (list of key issues)

To conduct the research, the following steps will be taken: determination of the concept of the device;

selection of sensors and electronic components; development of a system for processing images and

data from sensors; software development; device design development; assembly and testing of the

prototype. ___

5 List of graphic materials (with a list of required material)

Renders of the 3D models of the prototype; __

Drawings of the prototype bodies; __

Electric schemes, etc __

6 Source materials and publications

For the work, the author selected several of the most relevant literary sources on which the study will

be based:

 Pham, Huy-Hieu & Le, Thi & Vuillerme, Nicolas, “Real-Time Obstacle Detection System in

Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor,” Journal of

Sensors, pp. 1-13, 2016. In this article, authors presented a method for detecting obstacles in

a room, based on the use of Kinect and 3D image processing. For image processing, the PCL

library was used. As a result, with the accuracy of the order of 90%, the developed system

detects walls, doors, stairs and floors. ___

 Perez-Yus, Alejandro & López-Nicolás, Gonzalo & Guerrero, Josechu, “Detection and

Modelling of Staircases Using a Wearable Depth Sensor,” pp. 449-463, 2015. The authors

consider the development of a wearable navigation assistant and the recognition of stairs using

it. To do this, authors used cameras, which determine the location, orientation of the stairs,

the number and size of steps. The system is adapted for real-time operation. ___

 Tunai P. Marques, Fumio Hamano, “Autonomous robot for mapping using ultrasonic

sensors,” IEEE Green Energy and Smart Systems Conference (IGESSC), 2017. This articles

correspondence method for ultrasonic sensor measurements and processing data from it. And

also the mapping design methodology for robot navigation was described. The autonomous

robot described in this paper is capable of autonomously gathering data of a previously

unknown environment. ___

7 Objectives issued on “20” May 2020

Thesis supervisor __________________________

 (signature)

Objectives assumed by ___________________ “20” May 2020

(signature)

Ministry of Science and Higher Education of the Russian Federation

ITMO University

SUMMARY
OF A GRADUATION THESIS

Student Anastasiia Iusupova__________________________________

 (full name)

Title of the thesis Development of Device for Navigating People with Visual Impairments ___

Name of organization ITMO University and Tallinn University of Technology___________

DESCRIPTION OF THE GRADUATION THESIS

1 Research objective is to develop the prototype of the device for navigating people with visual

impairments__

2 Research tasks check the possibility of implementing the construction of a map using ultrasonic

sensors and the recognition of objects surrounding the user_________________________________

3 Number of sources listed in the review section _______________20 ___________ ___

4 Total number of sources used in the thesis __________________28______________ ___

5 Sources by years:
Russian Foreign

In the last 5

years
5 to 10 years More than 10

years
In the last 5

years
5 to 10 years More than

10 years

1 0 0 19 6 2

6 Use of online (internet) resources ___________________________Yes, 8___________________
 (Yes/No, number of items in the list of references)

7 Use of modern computer software suites and technologies (List which ones were used and for which section of the

thesis)

Software suites and technologies Thesis section

Anaconda IDE 3

Solidworks 2016 3

KiCAD 3

Word, Excel 1,2,3

8 Short summary of results/conclusions an algorithm for recognizing given types of objects has been

developed. An algorithm has been developed that reads indicators from ultrasonic sensors and an

accelerometer, as well as an algorithm for constructing a room map. According to certain criteria, the

layout of the device is selected. This work was devoted to the development of a device that facilitates

the qualitative movement of people with visual impairments _ __

9 Grants received while working on the thesis the project was supported by the FASIE and the Grant

for university students located in St. Petersburg, graduate students of universities, industry and

academic institutions located in St. Petersburg_______________________________________ _ __
 (Grant name)

10 Have you produced any publications or conference reports on the topic of the thesis? ____No___
 (Yes, no)

Student Anastasiia Iusupova____ _________________
 (Full name) (signature)

Thesis supervisor___ Pavel Kovalenko___ _________________
 (Full name) (signature)

“20” May 2020

CONTENTS

PREFACE ... 9

LIST OF ABBREVIATIONS AND SYMBOLS ... 10

INTRODUCTION ... 11

Research motivation .. 12

Research objectives ... 12

Thesis structure .. 13

1. LITERATURE REVIEW AND BACKGROUND .. 14

1.1. Literature and existing approaches review ... 14

1.2. Literature and existing approaches analysis ... 18

2. RESEARCH METHODOLOGY .. 20

2.1. Proposing solution ... 20

2.2. Hardware and software selection .. 21

2.2.1. Hardware selection .. 21

2.2.2. Software selection ... 22

2.3. Designing concepts ... 23

3. THE DEVICE DEVELOPING BASED ON THE SELECTED

METHODOLOGY .. 25

3.1. Objects recognition algorithm ... 25

3.1.1 Objects recognition testing analysis ... 31

3.2. Distance measurement and mapping using ultrasonic sensor 38

3.2.1. Distance measurement and mapping analysis ... 46

3.3. Description of the device operation algorithm .. 49

3.3.1. Operation algorithm testing and analysis .. 51

3.4. Electrical scheme developing .. 53

3.4.1. Electric scheme testing results .. 56

3.5. 2D and 3D modelling .. 58

3.5.1. 2D and 3D modelling results analysis... 60

3.6. Device developing summary ... 61

4. DISCUSSION ... 62

4.1. Limitations .. 62

4.2. Future improvements .. 63

SUMMARY .. 64

LIST OF REFERENCES .. 65

APPENDICES ... 68

GRAPHICAL MATERIAL .. 86

PREFACE

The topic of the master thesis is proposed by the author. The main goal of this project

is to develop a prototype of the device that will help people with visual disabilities in

navigation and thereby simplify their lives. The project is the logical completion of a

double-degree program in master studies, the research was carried out with the

participation of Tallinn Technical University, Tallinn, Estonia and the ITMO

University, St. Petersburg, Russia.

This project is a continuation of the bachelor's work of the author and article [1].

However, the master's thesis is devoted not only to the processing of ultrasonic signals

but also to work with images, their processing and improving the device’s design.

The project was supported by the FASIE and the Grant for university students located

in St. Petersburg, graduate students of universities, industry and academic institutions

located in St. Petersburg.

The author would like to express his deepest gratitude to supervisors Dmitry Shvarts

and Pavel Kovalenko for supporting this topic and also consultant Mikhail Sachkov

for helping with research implementation.

A special thanks to my family and friends for moral support.

Keywords: navigation device, image processing, signal processing, people with visual

impairments.

LIST OF ABBREVIATIONS AND SYMBOLS

CAFFE – Convolutional Architecture for Fast Feature Embedding

GPIO – General-Purpose Input/Output

LMDB – Lightning Memory-Mapped Database

PWM – Pulse Width Modulation

UDS – Ultrasonic Distance Sensor

INTRODUCTION

Everyone has the right to receive knowledge, information about the world and

exchange it. A person perceives with the help of vision >70% of the information, but

people with visual impairments should fill this gap with the help of hearing, smell and

touch. Moving around the city for visually impaired people, given the transport, road

conditions, many obstacles, and traffic, is quite problematic. The cane can detect

obstacles from no more than a meter, which imposes greater restrictions. Also, these

people have psychological features and it should be considered that the device should

not distract the user, do not close the auditory canal and it should not allow dangerous

situations.

The aim of the research work is the development of a prototype designed to ensure the

safe movement of visually impaired people in the urban environment and indoors,

analysis of the developed system, writing the algorithm of work. During development,

it is required to create not only an effective device but also convenient to use, including

by elderly people and children.

The relevance of this work is to develop a device with improved technical and

economic parameters in comparison with analogs, improving existing methods. There

is no need to develop devices with already achieved characteristics. The price of the

developing device is also important.

An expected result of the research is the creation of a prototype device for visually

impaired people, which builds a map of the room around the user, determines the type

of objects and the distance to obstacles. The obstacle here is the signal obtained by one

or more distance sensors and be relevant after post-processing. This signal should

correspond to distances in the range of 10-400 cm.

The prototype should define such types of objects: vehicles (bus, truck, bicycle, car),

living objects (cat, dog, person), household objects (cup, fork, knife, spoon, chair,

dining table, bed, cell phone, microwave, sofa, sink, monitor), and outdoor objects

(traffics light, bench). The device is a multi-layer waterproof vest, inside of which

electronic components and sensors will be located.

The user must receive information about the obstacles described above, the distance to

them, the direction and battery level of the device. Detected objects should be

determined with a probability of >90%, the weight of the device (including the vest)

should not exceed 3 kg (about 3-5% of the person’s weight are the comfortable weight

for frequent wearing without experiencing fatigue, for example, a person weighing 60

kg was chosen); continuous operation of the device should be >3 hours (in big cities

the one-way road is capable to take 1 hour and more, so the device should provide at

least round trip for user).

Research motivation

According to statistics data [2] [3] [4], there are about 36-39 million blind people and

250-285 million people with visual impairments in the world. By 2020, the number of

blind people in the world can increase to 75 million people according to the United

Nation data. All these people need support, training, and devices that improve their

lives. People with visual impairments face difficulties every day, and there is not

always a person nearby who can provide assistance.

Despite the existence of many solutions and devices to help people with visual

impairments, they all have advantages and disadvantages, and every device is aimed at

performing a specific function.

Given the growing number of people with visual impairments around the world, the

development of increasingly advanced assistive devices for them is especially relevant

and in demand.

Research objectives

To conduct the research, the following steps must be taken:

● analyzing current solutions and literature overview;

● determination of the concept of the device;

● selection of sensors and electronic components, selecting software;

● development of a system for processing images and data from sensors, distance,

and mapping algorithm development;

● algorithm of the work development;

● device design development.

Thesis structure

This section describes the chapters’ contents of this thesis.

The introduction provides aims, motivation, and objectives of the research. The

problem to be solved is described here.

Chapter 1 contains a current situation in the selected area, existing solutions, working

approaches and literature overview. Analyzing the background of the solving problem,

it can be possible to justify the methodology of the research.

Chapter 2 describes the methodology of the research, justifies the software and

hardware choice. Also, the device’s design concepts are being formed in this section.

Chapter 3 comprises an explanation of developing a previously formulated approach.

This includes the image recognition algorithm, distance measurement algorithm,

electric scheme development, 3D-modelling and analysis of every obtained result.

Chapter 4 contains a discussion of the research, possible limitations, and future

improvements formulation.

The summary concludes the work is done and notes which goals of the set were

achieved.

1. LITERATURE REVIEW AND BACKGROUND

This chapter describes the current situation in the area of navigation devices for people

with visual impairments. Literature sources, that reflect the methods used in navigation,

object recognition, mapping and measurement using ultrasonic sensors, will be

considered here also.

Also, in this chapter, an analysis of existing analogs will be summarized, their

advantages and disadvantages will be discussed and their properties that can be

improved and used in the developing device below will be noted. Based on the

considered literature sources, the research methodology and the basic principles of the

developing device will be determined.

1.1. Literature and existing approaches review

Literature sources were selected from the following areas: devices for people with

visual impairments, recognition of objects on the street and indoors, building a map

and measurements using ultrasonic sensors.

● Ultrasonic measurements and mapping:

4 articles on this topic were considered that offer various solutions, including the

use of Gray System Theory [5], Uncertainty Calculus [6], preprocessing with

Kalman filter measurement technique [7] and Probabilistic Mapping [8]. Article

[5] considers the use of the theory of Gray Systems to create environmental

maps. The measuring angle of the ultrasonic sensor is 300, and when an object

is detected, it is not known in which part of the sensor’s workspace the object is

located. This option is called uncertainty. The determined algorithm creates an

uncertainty model with the corresponding gray values. With updating the map,

the previous gray values are compared with the current ones, if they coincide -

the weight of this value increases, it is more reliable. The results obtained by this

method are quite “blurred”, since the map does not have clear boundaries, but is

essentially a gradient of values from less to more reliable. The work [7] describes

the most easily implemented method of measuring and constructing a map: the

values obtained from the ultrasonic sensor are first processed by the threshold

method (emissions above a certain threshold value are cut off), then processed

by the Kalman filter. These data are transmitted and stored in the memory of the

microcontroller, individual discrete values are interconnected in a line, and thus

a map is obtained. This method can be used if the object is not moving very fast.

Ilze Andersone it the article [8] represents the implementation of a probabilistic

method of constructing maps. In this algorithm, the leveling of uncertainty

occurs with the help of positive readings (there is an obstacle) and negative

(absence of obstacles). This method gives accurate results and low dispersion of

values; however, it requires a long data accumulation time to build a map. The

work [6] describes 3 methods of uncertainty calculations - probability theory,

fuzzy logic, and fuzzy measures. The authors proved that the probabilistic

approach is error-prone and ejection sensitive. The authors assume that fuzzy

logic is the best method out of those considered. Fuzzy logic uses fuzzy sets,

unlike the probabilistic theory. Fuzzy measures are an improvement on the

previous method, which uses not fuzzy sets, but averaging operators.

● Object recognition for navigation people with visual impairments:

Some approaches for object recognition using a camera were considered. The

article [9] describes methods for stairs and pedestrian crosswalks recognition.

The authors suggest method detecting stairs with 91% accuracy and pedestrian

crosswalks with 95% accuracy. The method contains five steps: edge detection

of an RGB image, Hough transformation calculation, peaks in the Hough

transform matrix calculation, extraction lines, and parallel lines grope detection.

The work [10] discusses walls, doors, stairs and floor real-time recognition using

color-depth data acquired by the Microsoft Kinect sensor. The drawback of this

method is the inability to recognize depth data if light conditions are too strong.

Authors of paper [11] were implemented the real-time algorithm for stair

detection and modeling. This method overcomes the possibility of single-step

detection.

Currently, there are many devices that help people with visual impairments. These

devices are very diverse: some are designed to help in reading documents and books,

some help to identify products in stores, and others contribute to comfortable and safe

movement. Among the devices for comfortable movement, there are also many

differences: types and place of attachment, method of action, range, etc.

Some examples of devices for comfortable and safe movement:

● Cane based devices:

Cane based devices are located on the white cane and usually use simple

ultrasonic distance measurements. [4] [12] [13] [14]

Figure 1 – Cane based navigation device’s appearance [13]

Such devices are limited in range (cane length) and the amount of information

received.

● Vests:

Figure 2 – Vest based device: prototype [4]

Vests based devices are very comfortable to use, it is possible to locate a lot of

sensors using body area. However, all existing developments of such devices are

now only at the prototype stage. [4] [15] [16] [17]

● Hat-based devices:

There are still other examples of this type of device, but they are all quite similar.

The disadvantage of hat-based devices is their size and inconvenience of use. [4]

[18] [19] [20]

● Glasses:

Glasses-based devices are also commonly used. Some use miniature cameras to

detect objects, others use ultrasonic sensors to determine the distance to

obstacles [21]:

● Shoes:

In my opinion, a shoe-based design [4] [22] is the least convenient to use, since

the user must either always wear the same pair or fasten it to another pair before

going out. In addition, such devices should be especially protected from moisture

and dirt.

● Wrist/palm modules:

Figure 3 – wristband device [23]

As in the previous examples, such devices use cameras and ultrasonic sensors.

Devices of this type are inconvenient to use together with a cane (a white cane

is not only providing navigation, but also it is an identification mark of people

with visual impairments), or when used together, both hands will be occupied.

[4] [23]

● Chest devices:

These devices are quite similar to vests, but are more compact and have complex

mounts, for fixing which you may need the help of a sighted person. [4] [24]

1.2. Literature and existing approaches analysis

Using information from the considered sources, the author plans to use some methods

for constructing a map and recognition of objects. The easiest way to implement the

map building process is preprocessing with the Kalman filter measurement technique.

Since this method is quite simple to implement and effective from the point of view of

computer calculations, it can be used in microcontrollers using and mobile devices. If

possible, a probabilistic method will also be tested.

For the developing device, the definition of objects such as stairs, floors, doors,

windows, puddles, and pits is an important property. The methods for recognizing

stairs, doors, and floors, considered in literary sources, will become the basis of the

algorithm of the device being developed, which must be improved to determine another

type of object.

The considered methods have advantages and disadvantages. To evaluate the most

suitable method that should be used in the developing device, the author has evaluated

existing analogs, considering some of their properties:

● The convenience of use. The most convenient to use can be considered vests and

chest-based devices since in this case, the hands remain free. Hat-based, glasses

and smart shoes are limited in use in different weather conditions and seasons;

● The weight. Bracelets (<150 gm), glasses (<300 gm) and devices that are

attached to a cane (<500 gm) have the least weight. As was mentioned earlier

the convenient weight is 3-5% of the user’s weight. So, the device’s weight

should not be more than 3 kg;

● The size. Bracelets (<10 cm2) and (<20 cm2) glasses have the smallest size;

● Identification of obstacles and/or measuring of distance to them. Some devices

can only determine distances to obstacles - cane-based devices, bracelets, shoes.

Glasses are mainly designed to recognize text or objects. Vest-based and chest-

based can combine several functions;

● Ability to arrange multiple sensors and batteries. For the device to perform

several functions, and enough area is required. The greatest functionality can

have vests (area for arranging sensors >0.5 m2) and chest-based device (>0.2

m2);

● The necessity to protect the device from moisture/dust /dirt. All devices must be

protected from moisture, but more prone to failure due to environmental

conditions are hat-based and smart shoe devices;

● The complexity of mount. Visually impaired people are sometimes unable to

cope with complex mounts without someone else's help. So, chest-based and

smart shoe devices may have too complicated mounts.

Summarizing all the above items, it is possible to say that vests have the least number

of drawbacks - they can be made of waterproof materials, have a large surface for

placing sensors, and they can conveniently wear over clothing. However, it is important

to control the weight of such a device.

2. RESEARCH METHODOLOGY

This chapter will focus on selection resources for the device’s development and

explanation of the proposed solution. The first section will explain in detail proposing

a solution for prototype implementation. The second and third sections will cover

hardware and software selection and analysis. The fourth and fifth sections will account

for designing concepts and their analysis. The final section will analyze selected

features from previous sections.

2.1. Proposing solution

As was analyzed in the previous chapter, the most appropriate base form for this type

of device is the waterproof vest with electronic components inside/on it. The main

options of the device are the mass (not more than 3 kg) and the working time (more

than 3 hours). These two parameters should be taken into consideration during design

and algorithm development. The vest should be layered with the waterproof upper layer

to protect electronics inside. The important feature is the mount because it is necessary

to provide easy fixation for the user that can only use their hands without seeing the

mount.

The device has two main tasks: building the map of the indoor environment and

determining the object type that has been mentioned earlier. For building the map

device will use a set of ultrasonic sensors and it is necessary to obtain separate points

from every sensor, collect them, post-process the data, and plot them on. The sensors

are not ideal, every measure has errors and noise. To obtain a correct indoor map it is

necessary to process measurements using filters.

For object recognition, the neural networks, classification methods will be applied. In

this work, the objects to be recognized are vehicles (bus, truck, bicycle, car), living

objects (cat, dog, person), some household objects that might be important for the user

(cup, fork, knife, spoon, chair, dining table, bed, cell phone, microwave, sofa, sink,

monitor), and outdoor objects (traffics light, bench). After recognition of the obstacle,

the device should inform the user about the distance to than obstacle using vibration

and/or audio signal. Thereby, for device designing it is necessary to select appropriate

sensors, controller and other components with sufficient accuracy and performance,

then determine software for algorithm writing, 3D-modelling and testing the developed

model.

2.2. Hardware and software selection

2.2.1. Hardware selection

The hardware part’s base of the developing device is the controller. As it is necessary

to ensure high performance for object recognition, the controller should be powerful

enough. Thereby the Raspberry Pi board computer is the most appropriate choice for

the tasks to be solved.

The next step is the camera selection. There’s no need to use a camera allowing to

make high-quality images since the selected objects haven’t sophisticated form and

exiguous size.

For building the map ultrasonic sensors are needed. For this task, the HC-SR04

ultrasonic ranging module is quite suitable, because of its simplicity, low power

consumption and acceptable accuracy (±1-3 cm).

For the power supply, the Li-Ion accumulator with 5V working voltage will be used,

as the instructions for the controller and camera require this level of the input voltage.

To inform the user about obstacles and objects two types of components are needed:

vibration motors to send vibration signals and/or audio transmitter to send audio

signals.

Figure 4 – main electronic components for developing device (1 – Raspberry Pi, 2 –

USB camera, 3 – ultrasonic sensor HCSR04, 4 – Li-Ion accumulator, 5 – vibration

motor, 6 – audio transmitter)

2.2.2. Software selection

During the development of this project, the software is provided for the development

of 3D models of the device, for electronic circuit development, for modeling and

control algorithm writing.

There are a lot of programs for 3D modeling, drawing and properties analysis, but 3D

models will be produced in “Solidworks 2016” software, as it allows provide the

strength and other analyzes, and the author is well acquainted with this program.

For modeling the electrical board and electrical connections the open-source “KiCad

EDA” program will be used, as this program has a free license and simple interface for

the user with small experience in electrical board design.

And the last necessary type of software is the IDE software for coding in Python

because in this program the Raspberry Pi will be used. Here the open-source

“Anaconda IDE” will be a good choice since it has a lot of included libraries and

packets inside.

2.3. Designing concepts

As was described above, the device is the waterproof vest with electric components

inside and on it. The design should ensure uniform distribution of the electronics along

the body, comfortable wearing, and fastening. It is also important to properly position

the camera and ultrasound sensors to obtain adequate data and capture the entire

workspace. The workspace here is the space in front, on the right and on the left of the

user:

Figure 5 – user’s workspace

As mentioned above, the location of the sensors and the camera should ensure the

capture of the entire working area, so the proposed scheme is as follows:

Figure 6 – main components proposing location (1,2 – audio and vibration modules, 3

– camera, 4 – Raspberry Pi, 5 – ultrasonic modules, 6 – accumulator)

Also, all elements should be located in silicone cases to protect against shock and

liquid, the controller and batteries should be in the inner layer of the vest, and the

camera and ultrasonic rangefinders should partially be on the surface.

2.4. Selected methodology analysis

This chapter was focused on the description of proposing solution including hardware

and software selection, designing concept definition. As a result of the selected options,

the main principles of the algorithm were determined – the mapping using ultrasonic

sensors will be implemented using filtering. The object recognition will be realized

using neural networks, classification and statistics methods.

The software was chosen according to its usability, author’s acquaintance and open

source license possibility. The hardware, in turn, was selected according to its

accuracy, performance, and cost.

In the section about designing concepts, the main options about the device appearance

were described: the workspace, the main electronics’ location and the layered structure

of the vest.

3. THE DEVICE DEVELOPING BASED ON THE SELECTED

METHODOLOGY

This chapter is devoted to developing the device itself. The developing includes the

following topics: object recognition algorithm developing and its analysis, the distance

measurement and indoor mapping algorithm developing and analysis, the 2D and 3D

modelling, the electrical scheme developing and operation time calculation.

Following this chapter, the operational prototype should be realized and the algorithms

mentioned above should be tested on it. The prototype should be based on selected

previously electrical parts.

3.1. Objects recognition algorithm

The most producive and efficacious method for object recognition is using deep

learning algorithms. Deep learning is a technique for machine learning focused on the

examples. Deep learning methods use standard neural network architectures. The

difference between simple neural and deep neural networks is the number of hidden

layers - neural network (NN) usually contains 2-3 of them, and deep NN, in turn, may

have at least 150 hidden layers. [25]

The deep learning models require pre-processing steps, such as data labeling and

network architecture description. In this work, the data labeling means the

differentiation of the dataset by the specific type manually.

One of the most popular types of deep NN is the convolutional neural networks (CNN).

CNN uses 2D convolutional layers that they’re well suited for image recognition. [26]

The usage of the CNNs allows the elimination of the manual feature extraction -

classification of the images. This type of neural network extracts data from the images

directly. The essential point here is that relevant features aren’t pre-trained, they are

learned during the network training. This detail makes deep learning algorithms highly

accurate for machine vision and classification of the objects.

Since the Python programming language has been used for this work, the architecture

can be set using a CAFFE (Convolutional Architecture for Fast Feature Embedding

[27]), deep learning framework which has an interface in Python.

CAFFE works with different types of machine learning, designed for solving the

problems of classification and image segmentation. The CAFFE provides

convolutional neural networks, RCNN, long-term short-term memory, and fully

connected neural networks. At the same time, graphic process systems (GPUs),

supported by CUDA architectures and using the CuDNN library from Nvidia, are used

to accelerate learning. [27]

The main part of the CAFFE’s work are blobs - multidimensional data arrays using in

parallel computing that fit on a CPU or GPU. Training in CNN processed as parallel

multiprocessor computing of blobs from layer to layer.

The recognition process requires the video stream from the camera and detection of the

object type to each frame.

The first step for model training is dataset preparation. The images have been found in

Google Images using simple queries for each necessary object. Then the script in

JavaScript was used to collect the URLs for the observed images:

var script = document.createElement('script');

script.src = "https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js";

document.getElementsByTagName('head')[0].appendChild(script);

var urls =$('.rg_di .rg_meta').map(function(){return JSON.parse($(this).text()).ou; });

var textToSave = urls.toArray().join('\n');

var hiddenElement = document.createElement('a');

hiddenElement.href = 'data:attachment/text,' + encodeURI(textToSave);

hiddenElement.target = '_blank';

hiddenElement.download = 'urls.txt';

hiddenElement.click();

The file with URLs should be processed using the Python script to download images

to the prepared folders. The code for this task can be found in the Appendix.

The second step is preparing the data for the training: to convert the images to the

LMDB (Lightning Memory-Mapped Database) format readable for the Caffe module.

The following bash script has been used for this task:

EXAMPLE=~/scripts/examples/dataset

DATA=~/scripts/data/dataset

TOOLS=build/tools

TRAIN_DATA_ROOT=~/scripts/dataset/train/

VAL_DATA_ROOT=~/scripts/dataset/train/

RESIZE=true

GLOG_logtostderr=1 $TOOLS/convert_imageset \

$EXAMPLE/dataset_train_lmdb

echo "Creating LMDB values..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \

$DATA/text.txt \

$EXAMPLE/dataset_val_lmdb

echo "Ready"

Also, it is necessary to compute the mean image. The purpose of the neural network

learning process is to search the global minimum of the cost function. To make this

process faster, the correct data preparation is needed. One of the methods for data pre-

processing is the data normalization. The data normalization can be implemented by

subtracting the mean value to get a new dataset with mean = 0.

The bash script that has been used for mean image computation is the following:

EXAMPLE=~/scripts/examples/dataset

DATA=~/scripts/data/dataset

TOOLS=build/tools

$TOOLS/compute_image_mean $EXAMPLE/dataset_train_lmdb \

$DATA/dataset_mean.binaryproto

The structure and parameters for the neural network are described in the prototx file.

And the third step is the neural network training that can be implemented using one

command: ./build/tools/caffe train --solver=models/dataset_alexnet/solver.prototxt

As the model is prepared, the script for real-time object recognition can be realized.

The Python code uses a model and prototxt file. During the code execution, the video

stream from the camera connected to the Raspberry Pi is shown inside the frame. The

full code is presented in the Appendix.

The screenshots below show the result of the program execution:

Figure 7 – cars observed by the algorithms

Figure 8 – traffics light is detected

Figure 9 – truck is detected

Figure 10 – person detection has the most level of accuracy (more than 95%)

Figure 11 – sometimes the algorithms shows the wrong results

Figure 12 – the bus is detected correctly

The results of the detecting algorithm will be summarized in the next section.

3.1.1 Objects recognition testing analysis

The graph below shows the ratio of losses to accuracy for training and test classifier

during the training of the neural network described in the previous section.

Figure 13 – the plot describing the training loss and accuracy, epochs (corresponding

to the time in secs) are along the x axis, the levels (the value 1 equals to 100%) of the

training loss and accuracy are shown along the y axis

Training and validation values during the NN learning are shown on the plot above.

The epoch here is the number of cycles, in other words, this value shows how many

times NN reads every example to find the pattern on it. The number of epochs for the

NN learning is equal to 100.

After the learning of the neural network, the theoretical accuracy, as can be seen from

the graph, is 97% for both validation and training sets.

The training of the network was based on the image datasets divided to the training

dataset (70%) and validation dataset (30%). Images for datasets were collected in

Google Images using a search query that matches the type of object (for example, for

the object "person" the request was "person"). The search is conducted according to

the relevance of the results, the number of images in the dataset for each type was at

least 180.

Before training the network, the following images were discarded:

 not relevant;

 with low resolution (less than 600x800 px);

 damaged;

Network training took about 40 minutes, the result after the first training is shown in

the graph above.

The tests in real conditions (outdoor and indoor) for the object recognition algorithm

have been implemented. After the tests, the obtained data have been summarized in the

table below. The test includes real-time indoor/outdoor observation containing ~30

coincidences for each object type:

Table 1 – analysis of the detection for each object type at the street and at home

O
b
je

ct

ty
p
e

S
tr

ee
t

T
ru

e

P
o
si

ti
v
e

(T
P

)
F

al
se

P
o
si

ti
v
e

(F
P

)
F

al
se

N
eg

at
iv

e

(F
N

)
T

ru
e

N
eg

at
iv

e

(T
N

)

H
o
m

e

T
ru

e

P
o
si

ti
v
e

(T
P

)
F

al
se

P
o
si

ti
v
e

(F
P

)
F

al
se

N
eg

at
iv

e

(F
N

)
T

ru
e

N
eg

at
iv

e

(T
N

)
A

ll

b
ed

40 33 2 1 4 0 0 0 0 0 40

b
en

ch

28 19 2 0 7 0 0 0 0 0 28

b
ic

y
cl

e

24 19 1 3 1 0 0 0 0 0 24

b
u
s 38 31 7 0 0 0 0 0 0 0 38

ca
t 30 25 1 1 3 2 2 0 0 0 32

ca
r 41 40 1 0 0 0 0 0 0 0 41

ce
ll

p
h
o
n
e

30 12 1 7 2 6 4 3 4 3 36

ch
ai

r

4 0 4 0 0 33 30 0 1 2 38

cu
p

0 0 0 0 0 29 18 4 5 2 29

d
in

in
g

ta
b
le

1 0 1 0 0 29 28 0 1 0 30

d
o
g

14 11 1 1 1 9 6 1 2 0 23

fo
rk

4 0 3 0 0 31 22 6 0 4 35

k
n
if

e 4 0 2 0 0 22 17 1 5 1 26

m
ic

ro
w

av
e

0 0 0 0 0 24 20 2 1 1 24

p
er

so
n

28 27 1 0 0 16 15 1 0 0 44

si
n
k

0 0 0 0 0 22 14 4 1 3 22

so
fa

1 0 1 0 0 32 28 1 2 1 33

tr
af

fi
c

li
g
h
t

21 16 1 3 1 0 0 0 0 0 21

tv

m
o
n
it

o
r

0 0 0 0 0 30 25 3 0 2 30

M
ea

n

78.319% 80.204%
79.2

6%

Based on the data from the table, I can say that the algorithm for determining object

type recognizing copes with its task in general. On average, it correctly determines the

type of object with an accuracy of 79.26%. The average percent of correctly determined

objects at the street is 78.319%, at home – 80.204%. The difference might be connected

with the number of the observed objects and their size, however, the difference is not

large.

The algorithm shows the best results for those objects that have a large size (car, table,

sofa) and a large amount of training data (person, chair, bed). The detailed analysis is

shown below:

Table 2 – statistical measures of the algorithm performance

Object type
Sensitivity,

TPR

Specificity,

TNR
PPV FNR Accuracy

bed 0.971 0.667 0.943 0.029 0.925

bench 1 0.778 0.905 0 0.929

bicycle 0.864 0.5 0.950 0.136 0.833

bus 1 0 0.816 0 0.816

cat 0.964 0.75 0.964 0.036 0.938

car 1 0 0.976 0 0.976

cell phone 0.593 0.556 0.800 0.407 0.583

chair 0.971 0.5 0.943 0.029 0.921

cup 0.783 0.333 0.818 0.217 0.69

dining table 0.966 0 0.966 0.034 0.933

dog 0.850 0.333 0.895 0.15 0.783

fork 1 0.308 0.710 0 0.743

knife 0.773 0.25 0.850 0.227 0.692

microwave 0.952 0 0.909 0.048 0.87

person 1 0 0.955 0 0.955

sink 0.933 0.429 0.778 0.067 0.773

sofa 0.933 0.333 0.933 0.067 0.879

traffic light 0.842 0.5 0.941 0.158 0.810

tv monitor 1 0.4 0.893 0 0.9

Mean 0.915 0.349 0.892 0.085 0.839

Here, the sensitivity means the proportion of actual positives that are correctly

identified as such or true positive rate (TPR) and calculates as:

TPR =
TP

TP + FN

Specificity or true negative rate (TNR) means the proportion of actual negatives that

are correctly identified as such and can be calculated as:

TNR =
TN

TN + FP

PPV (positive predictive value) or precision here is proportions of positive and negative

results:

PPV =
TP

TP + FP

FNR (false negative rate) shows the probability of falsely detection:

FNR =
FN

FP + TN

And the accuracy shows the closeness of the recognized object to its real type and it’s

calculate as:

ACC =
TP + TN

TP + TN + FP + FN

Figure 14 – sensitivity plots demonstrates that most of the determined objects

correctly recognized and crossed the threshold 80% value

Mean value of the algorithm sensitivity is 91.5% that is very good result. The plot

below shows the specificity of the algorithm:

Figure 15 – specificity plots demonstrates the possibility that values have been

recognized as negative mostly correctly

Here the threshold is 30%, and most of the values crossed this threshold. According to

the plot above, can be concluded that the algorithm should be improved for better

definition of the true false values.

However, the mean (83.9 %) and individual accuracy values are quite high that shows

the high precision of the algorithm. The accuracy might be increased be improving the

algorithm for higher values of the specificity mentioned above.

Comparing theoretical and real accuracy, it’s possible to summarize the real accuracy

is lower. There’s a list of factors causes the accuracy decline:

 training and validation datasets consist of each object separately, i.e. each image

has only one object often without bright background. However, if the images in

the dataset have excess details, it can decrease the pattern recognition itself;

 in real conditions, the picture may contain several objects of different types and

dimensions.

The algorithm has some drawbacks listed above, however, the performance and

accuracy is enough for the first prototype. In the future, it is possible to retrain the

neural network using more voluminous datasets and varied images inside them.

3.2. Distance measurement and mapping using ultrasonic sensor

Determining the distances for objects in rooms is important for people with visual

impairments, as this will reduce the risk of injury and allow them to navigate in space

easier, especially considering the fact that these people spend much more time indoors

than on the street. The following parameters were chosen as the goal for the problem

solved in this chapter: find the beginning and the end of the user’s path, track the path

with an accuracy of 0.5 m, find the correct correspondence to the distance traveled,

find the dimensions of the room with an accuracy of 0.5 m, determine the shape of the

objects’ in the room with an accuracy of 0.5 m.

Ultrasonic sensors emit short, high-frequency sound pulses at regular intervals. These

pulses are transmitted in the air at the velocity of sound. If they strike an object, then

they are reflected back as echo signals to the sensor. The echo signal can be post-

processed to the distance as time-span between emitting the signal and receiving the

echo.

Figure 16 – the description of the ultrasonic sensor working method

An Ultrasonic Distance Sensor (UDS) has 4 pins:

 Vcc is the power pin, requires 5V;

 Trig is transmitting pin (trigger) and it can be triggered with 3.3V;

 Echo is the receiving pin. The output of this pin has 5V;

 Gnd is the ground pin.

Since the Echo pin outputs 5V and the Raspberry can only receive 3.3V maximum, it

is necessary to use a potential divider. The resistance depends on the voltages

mentioned above:

 𝑅2 =
𝑉𝑜𝑢𝑡∗𝑅1

𝑉𝑖𝑛𝑝−𝑉𝑜𝑢𝑡
,

where Vout = 3.3 V is the divider output voltage, Vinp = 5 V is, respectively, divider

input voltage.

If R1 is assumed as 1000 Ω, then R2 will be equal to 1941, 176 Ω. For more

convenience, this value is rounded up: R2 = 2000 Ω.

Figure 17 – the voltage divider

Also, the vibration motor was added to provide feedback for the user: the less distance

to the object – the more frequent vibrations. During the next stages of developing the

device, vibration motor can be replaced by a microphone playing prepared phrases.

Before developing the algorithm, there’s a necessity to describe the calculation of the

parameters:

1. distance:

𝑑 =
𝑣∗𝑡

2
,

where v – ultrasound speed, t – time from transmitting signal and receiving it.

Since signal passes 2 ways – forward and reflected – the distance is divided by

two.

2. vibration intensity:

The vibration motor is controlled by GPIO output using Pulse Width

Modulation (PWM). PWM is described in the gpiozero library and has a rate

between 0 and 1.

𝑣 =
(𝑑 − 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) × (𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒 − 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)

(𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
+ 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒

=
−(𝑑 − 0.1)

(2 − 0.1)
+ 1

Here minDistance = 10 cm, this is the minimum distance for sensor reaction,

maxDistance, accordingly, the maximum distance for reaction, assumed as 2 m.

MinValue and MaxValue correspond to the 0 and 1 PWM values.

3. mean ultrasound speed for temperature rate:

√
𝛾 ∗ 𝑅 ∗ 𝑇

𝑀

where γ is the adiabatic index of air = 1.4, R = 8.3144 is the universal gas

constant, T is the absolute temperature of the air (K), M is the molecular mass

of air (g / mol) = 28.98. The operating temperature range of the sensor is 30 -

80°C, the speed of sound is calculated for them. The mean speed for the

working temperature rate is 343 ms-1.

To obtain the distance values, the Python script has been written. The InputDevice and

the OutputDevice libraries have been used to control the ultrasonic sensor. Functions

in the script use time span for sending and receiving signals according to the sensor’s

documentation:

● The trigger pin transmits ultrasound for 10 μs;

● Then echo pins waits for the reflected signal, its state is active. The pulse time

starts recording;

● After the receiving echo, the echo pin becomes inactive, the pulse time interval

is obtained;

● Then the sensor “sleeps” for 6 ms.

Then it is necessary to add another 2 sensors and write data to the file. Since the data

from the sensors include errors, noise, it is necessary to pre-process them. Firstly, the

signal was limited to “bottom” and “top” - negative values and values corresponding

to distances greater than 400 cm were discarded. Secondly, the data was processed

using the median filter. The plots below show the data from ultrasonic sensors with

and without filtering:

Figure 18 – data from ultrasonic sensors before filtering

Figure 19 – data from ultrasonic sensors after median filtering with kernel = 3

Figure 20 – data from ultrasonic sensors after median filtering with kernel = 5

As can be seen from the plots above, the median filter allows achieving more smooth

lines with less number of peaks. The kernel size increasing leads to the smoother curve.

Also, ultrasonic sensors are located at an angle of 40 degrees, to cover a larger area of

space and non-intersection of signals.

The full code in Python can be found in the Appendix. The photo of the prototype for

algorithm testing is described below:

Figure 21 – the prototype used for testing

The important part for mapping is tracking the user’s path, due to the necessity to set

obstacles according to the user’s position. This feature has been realized using the

gyroscope/accelerometer sensor GY-521.

To create a map, the following steps are needed:

● read the accelerations from the gyroscope/accelerometer sensor;

● read distances to the obstacles using ultrasonic sensors, process this data;

● write the data both from the gyroscope/accelerometer and ultrasonic sensors to

the file;

● read the file and pre-process the angles and acceleration using the Butterworth

filter;

● integrate them twice to obtain the coordinates;

● plot the data to obtain a path and a map.

The GY-521 should be connected to the Raspberry Pi board over the I2C interface. To

work with the sensor, it is necessary to connect 4 GY-521 pins (VCC, GNS, SCL,

SDA) to the Raspberry GPIO pins as it described in the picture above:

Figure 22 – the gyro accelerometer connection

It is necessary to configure the I2C communication protocol in Raspberry Pi and find

the bus address of the connected sensor using the following command in the terminal:

sudo i2cdetect -y 1.

Figure 23 – the detection of the register of the GY521 connection

Now the algorithm can be written using this address. The full code for obtaining the

angles and accelerations data can be found in the Appendix.

The next step is obstacle detection. After obtaining data from all sensors it is necessary

to write them into file for further processing.

The code for writing the data for sensors into the file is places below:

def write_csv(data):

 with open('/home/pi/Desktop/data2.csv', 'a') as outfile:

writer = csv.writer(outfile, delimiter=',')

writer.writerow(data)

x = datetime.datetime.now()

data = [x, acceleration_xout_skaled, acceleration_yout_skaled,

acceleration_zout_skaled, distance1, distance2, distance3]

write_csv(data)

Then it’s necessary to read accelerations from the file and process data using

Butterworth filter to remove noise. The code below describes Butterworth filtering:

N = 2 # Filter order

Wn = 0.001 # Cutoff frequency 0 < Wn < 1

B, A = signal.butter(N, Wn, output = 'ba')

xAcc[:] = signal.filtfilt(B, A, xAcc[:])

yAcc[:] = signal.filtfilt(B, A, yAcc[:])

To obtain coordinates, it’s necessary to integrate the accelerations twice using

scipy.integrate.cumtrapz function. This method not accurate, due to the quality of

accelerometer data and errors. However, it should be enough to obtain not accurate

path to make a general map.

The last step is, respectively, plotting the data using the processed data from the

sensors. The plot below shows the obtained map of the room:

Figure 24 – the path and the room outlines

Figure 25 – the outlines of the room and objects in the room are highlighted, the noise

values are placed in circles

The constructed map fairly accurately shows the size and shape of the room, although

the result is not ideal. It can be noted that the left wall of the room is practically not

marked, this was due to the small amount of data (the map was built after one circle).

It is not difficult to improve the map by collecting more data.

3.2.1. Distance measurement and mapping analysis

The following tasks were set as a goal for the room map:

 Track the path of a person with an accuracy of 0.5 m (turns, beginning, and end

of the path, correspondence to the distance travelled);

 Determine the dimensions of the room with an accuracy of 0.5 m;

 Determine the shape of large objects in the room with an accuracy of 0.5 m.

According to the received map of the room described above, it’s possible to say that

the tasks were completed. The real room dimensions were 3x7 m, the map shows

dimensions 2.3x7 m, this is the satisfied result.

As for tracking the path, the tasks set in this direction were also fulfilled: the beginning

and end of the path correspond to the actual path, the distance traveled also corresponds

to the real one with an accuracy of less than 0.5 m.

The plots below show the accelerations, velocities, and the path obtained by

accelerometer:

Figure 26 – the accelerations obtained by accelerometer

Figure 27 – the velocities calculated from accelerations

Figure 28 – the position in 2D calculated from the velocities

As a conclusion for mapping and distance measurement, it’s possible to say that all

tasks were completed. However, the result can be improved by using more data. As

mentioned above, this result was obtained after one walk around the room, with an

increase in the aisles it’s possible to obtain a more detailed map.

3.3. Description of the device operation algorithm

The operation algorithm should combine several scripts mentioned above and provide

the work of the whole device.

Operation algorithm should solve the following tasks:

 run the script for the device after turning on;

 control the sensors;

 run the script for map designing;

 inform the user about obstacles;

 inform the user about the battery discharging.

Figure 29 – the operation algorithm description

Figure 30 – the main script description

To run scripts after boot it is needed to modify the .bashrc file in the /home/pi/

directory. In this file 2 lines should be added in the end of the file, where starting.py is

the file with the main operation algorithm:

echo Running at boot

sudo python /home/pi/starting.py

The starting.py code is the following:

#!/usr/bin/python

import subprocess

import time

code1 = 'python sensors.py' #code for record data from sensors

code2 = 'python object_detection.py' # code for object detection

code3 = 'python map.py' #code for mapping

data_file = open("/home/pi/Desktop/data.csv", "rw+")

def mapping_buffer(seconds): #run mapping for 10 minutes

start = time.time()

 time.clock()

 elapsed = 0

 while elapsed < seconds:

 elapsed = time.time() - start

 script_3 = subprocess.Popen(code3, stdout=subprocess.PIPE, shell=True)

def main():

 while True:

script_1 = subprocess.Popen(code1, stdout=subprocess.PIPE, shell=True) #run first

script

script_2 = subprocess.Popen(code2, stdout=subprocess.PIPE, shell=True) #run second

script

time.sleep(60) #wait for data collection

mapping_buffer(600) #run mapping for 10 minutes

 data_file.truncate() #clear file with data to restart the map

The code above has been successfully executed, the algorithm runs all necessary

scripts.

3.3.1. Operation algorithm testing and analysis

For the working algorithm, the tasks described in the previous section were set. In

general, the working algorithm should start after turning on the device and run all other

scripts necessary for work.

The most important indicator of a working algorithm is its ability to run in real

conditions. The parameter that should be also taken into account is the algorithm

performance.

Regarding the ability to work in real conditions, it is possible to say that this purpose

has been achieved. The algorithm has been tested indoors (for example, the mapping

section describes indoor testing) and outdoors (the section about the object detection

shows the results).

However, it should be mentioned that the current scripts have some issues. The object

detection part is the most “loading” part since this script uses functions and libraries

that are most demanding on the CPU usage. The execution of the main code causes 98-

99% CPU utilization. This fact causes the limitations and warnings:

1. There’s no possibility to add other features;

2. The high constant load of the CPU causes the board overheating, and

subsequently can damage it.

To overcome the issue with high CPU usage, it is possible to split up the solving task

between separate boards. For instance, connect an external small-scale Arduino Nano

or Raspberry Pi Zero board and execute part of the scripts there (for example, the

recording data from the sensors).

Additionally, to prevent overheating, the Raspberry Pi board should be placed in a

special case providing ventilation and cooling. The resolution of this task is described

in the modelling section.

3.4. Electrical scheme developing

The electrical scheme should ensure the correct connection of the selected electronic

components. Also, it should describe the power connection.

The requirements set for power source are the following:

 It should provide the necessary voltage level for the components;

 The power source must ensure the operation of the device for at least three hours.

So, the first step before the scheme developing is the calculation of current and voltage

consumed by electronic components, and the selection of a battery based on it.

The total power consumption can be calculated as a sum of average consumable power

and current:

Table 3 – power characteristics of the module components:

Component Average consumable

power

Average consumable

current

Raspberry Pi Model B+ 3.5 W 700 mA

Ultrasonic module HC-

SR04

0.75 W 15 mA

Vibration motor 1030 0.1914 W 58 mA

Audio module

HPM14A

0.005 W 1 mA

USB camera 2 W 500 mA

Gyro accelerometer

GY-521

0.013 W 3.9 mA

Average power consumption and current, respectively:

𝑊∑ 𝑎𝑣 = 3.5 + 0.75 ∗ 3 + 0.1914 + 0.005 + 2 + 0.013 = 7.9594 𝑊

I∑ av = 700 + 15 ∗ 3 + 58 + 1 + 500 + 3.9 = 1 307.9 mA

To power, the device, lithium-polymer batteries with a built-in protection board and an

MCP73833 charge controller with an lM27313 DC-DC converter were selected.

Output voltage is 5V (suitable to power the Raspberry Pi board), capacity - 2000 mA/h.

Based on the above data, the device’s battery life [28]:

𝑇 =
𝑈𝑎𝑐𝑐 ∗ 𝐶𝑎𝑐𝑐 ∗ 𝐾 ∗ 𝐾𝑑𝑑 ∗ 𝐾𝑎𝑐

𝑊∑ 𝑎𝑣
=

5 ∗ 2 ∗ 0.8 ∗ 0.85 ∗ 0.8

7.9594
= 0.683 (ℎ𝑜𝑢𝑟𝑠)

where 𝐶𝑎𝑐𝑐 is the capacity of the battery (Ah), 𝑈𝑎𝑐𝑐 is the supply voltage of the battery

(V), 𝑊∑ 𝑎𝑣 is the average power consumption (W), 𝐾 is the inverter efficiency equal to

80%, 𝐾𝑑𝑑 = 0.85 is the coefficient depth of discharge, 𝐾𝑎𝑐 = 0.8 - coefficient of

available capacity.

Thus, one battery is not enough to ensure the operation time of the device for 3 hours,

it is necessary to use 5 accumulators connected using the parallel method. Then the

total capacity of the batteries 𝐶𝑎𝑐𝑐 = 10000 mA/h, the supply voltage of the batteries

remains the same. In this case:

𝑇 =
𝑈𝑎𝑐𝑐 ∗ 𝐶𝑎𝑐𝑐 ∗ 𝐾 ∗ 𝐾𝑑𝑑 ∗ 𝐾𝑎𝑐

𝑊∑ 𝑎𝑣
=

5 ∗ 10 ∗ 0.8 ∗ 0.85 ∗ 0.8

7.9594
= 3.417 (ℎ𝑜𝑢𝑟𝑠)

So, it is necessary to use 5 batteries connected in parallel to provide the operation for

3 hours.

The electrical scheme damage in KiCAD software. Some parts of the scheme are

described below:

Figure 31 – The Raspberry Pi connecting ports

The Raspberry Pi ports are taken from the board datasheet. As shown in the picture

above, Raspberry has outputs for powering the sensors. The sensors can be powered

either from Raspberry or common accumulators.

Figure 32 – The GY-521 gyro accelerometer’s and HCSR04 ultrasonic sensor’s ports

The gyro accelerometer has been connected to the 3.3 V power source and I2C ports

of the Raspberry Pi board. The connection can be seen in the picture below:

Figure 33 – the connection between Raspberry Pi and GY521

The ultrasonic sensors are connected to the GPIO pins, and as the echo pins output the

5V signal, which can cause the Raspberry Pi damage), it should be connected through

the voltage divider:

Figure 34 – the connection between Raspberry Pi and HCSR04 sensors

The full scheme can be found in the Appendix.

3.4.1. Electric scheme testing results

The electronic components connected according to the scheme described above fulfill

their task. However, as it was noticed in the previous sections the electronic part

requires cooling and moisture protection, which will be taken into account in the next

section.

The operating time was also checked, the prototype was connected to 5 batteries and

left to work, every 5 minutes the battery charge was taken. The graph of the decrease

in charge can be seen below:

Figure 35 – plot describing the accumulators discharging

As can be seen from this graph, the device can work for 3 hours. However, the

theoretical operation time was equal to 3.4 hours, but in practice, the operation time

span is 3.1-3.2 hours.

The operation time can be increased by using more number of accumulators or be using

the accumulators with more capacity.

3

3.5

4

4.5

5

5.5

0 50 100 150 200

O
u
tp

u
t

v
o
lt
a
g
e
 (

V
)

Time (min)

Battery Discharge Graph

3.5. 2D and 3D modelling

This section is intended for 2D and 3D modelling of the developing device. As a result

of this section the following tasks have been set:

 Developing of the bodies for the Raspberry Pi and ultrasonic sensors;

 The vest should include mountings;

 The placing of the electronic components should be realized correctly, some

components should be placed on the vest and some of them inside the vest layers;

 Ventilation and cable management should be taken into account.

Firstly, the body for the Raspberry Pi was developed. The body has holes for the cables

and cooling the board. This body should be placed inside the vest. The 3D model can

be seen below:

Figure 36 – the body for the Raspberry Pi

The drawing for the body was made in accordance with the requirements of GOST,

which is required by the terms of the grant “UMNIK”, under which this work is carried

out. The drawing can be viewed in the Appendix.

Secondly, the mountings and the body were modelled for ultrasonic sensors. These

sensors should be placed at an angle of 40 degrees. Sensors should be located on the

vest. The 3D model is as follows:

Figure 37 – ultrasonic sensors in the body

The drawing can be found in the Appendix.

The last part is the assembling of the components. The assembling looks as follows:

Figure 38 – the prototype of the device

This vest has mounts on the sides so that it is possible to place the camera and sensors

on the front in the center. The camera and ultrasonic sensors are located in the front.

The holes under the camera has been implemented for better Raspberry Pi board

cooling. The accumulators are placed in the back, the audio modules and vibration

motors are located near the shoulders for better receptivity.

The wires can be easily integrated into the internal layers of the vest. The bodies can

be printed using a standard 3D printer.

Also, the weight of the vest is important, as it was defined in the Proposing solution

section it should be no more than 3 kg. The vest used as a base for the assembling is

made from neoprene and has weight 2 kg. With all electronics, the weight of the vest

shown above is about 2.5-2.6 kg, that less than a set maximum.

3.5.1. 2D and 3D modelling results analysis

To model the device, several important tasks were posed: the vest should have

convenient fastenings that any user can handle; vest weight should be less than 3 kg;

all electronic components must be placed so that their correct performance is ensured,

and at the same time they should be protected from moisture and the heat excessing

must be conducted.

All of the above factors were taken into account in the simulated prototype shown in

the previous section.

Also, as noted above, the body elements can be printed on a 3D printer to simplify the

manufacture of the prototype or made by casting for a complete device.

The basis, type, material, and fastening of lifejackets were used. Such vests are usually

made of lightweight materials (neoprene), have convenient fastenings, and do not

constrain movement. For the prototype, you can use a life jacket, converted for the

required task.

Thereby, it’s possible to say that all the tasks for prototype modeling were completed.

3.6. Device developing summary

This chapter was devoted to the development and testing of a prototype device. For

development, electronic components and programs were selected.

As was analyzed in the previous chapter, the most appropriate base form for this type

of device is the waterproof vest with electronic components inside/on it. As a base, the

type and material of the life vest was used, which has convenient fastenings,

lightweight and is comfortable to wear. The developed model shows that taking into

account all electronic components, the weight of the vest is less than 3 kg.

Also, the device must be able to work for at least three hours. For this, a circuit for

connecting electronic components was developed and on their basis, the theoretical

operating time and the number of batteries capable of providing it were calculated.

According to theoretical calculations, 5 batteries should ensure the operation of all

electronics for the planned time, which was confirmed experimentally.

Also in the chapter, algorithms were developed and tested for recognizing a number of

objects in real-time and obtaining a room map by determining the distance to objects

using ultrasonic sensors and tracking the user's path using an accelerometer. Object

recognition is performed in real-time using a camera connected to the Raspberry Pi,

the algorithm uses data from a pre-trained neural network.

3 ultrasonic sensors located at an angle of 40 ° determine obstacles in front, to the right

and to the left of the user and cover a distance of 400 mm in front of him. At the same

time, the accelerometer tracks movement and turns when walking. Then these data are

processed and based on them, a room map is constructed with the outlines of objects

inside the room. The size of the room is determined with an accuracy of less than 0.5

m.

Thus, it is possible to conclude that all the tasks were completed.

4. DISCUSSION

This chapter is intended for discussion about project results. The limitations that the

author encountered while performing the work will be considered. Further steps that

can improve current results and possible new features will also be described.

4.1. Limitations

There were few limitations encountered during the implementation of the project. They

are listed below:

 The CPU of the Raspberry Pi. As noted earlier, the Raspberry Pi CPU is 98-99%

loaded, so you need to use an additional controller to separate tasks between

them and reduce the load on one board;

 Operation time. Operating time is very limited, and with its increase, the number

of batteries should increase also, which affects the weight of the device and ease

of use;

 Real-time work. If the object type recognition algorithm is capable of working

in real-time, then the map building algorithm needs separate scripts for reading

data from sensors and a separate algorithm for building a map since data from

sensors must be pre-processed;

 Object type. The type of recognizable objects is limited by the parameters of a

trained neural network. In order to expand the list of objects, the neural network

must be retrained;

 Object recognition. The quality of object recognition depends on the quality and

quantity of data used to train the neural network. As can be seen from the results

obtained during the testing of the algorithm, some types of objects have a high

level of recognition errors (> 20%). This error level can be reduced by increasing

the data in the dataset for the required type of object;

 Path tracking. The accuracy level of tracking the user’s path is limited by the

accuracy of one sensor, the data from which include noise and measurement

errors.

4.2. Future improvements

As noted above, the developed prototype has several limitations. Some of them may

be allowed in the future. There are also some functions that were not implemented in

this work, but might be added in the future.

 Separation of tasks between multiple controllers;

 Adding the ability to notify the user both using the speaker and using

headphones;

 Increasing the number of accelerometers for more accurate data on the

movement of the user;

 Ability to build maps outside the premises, save them and export to tactile

screens;

 Ability to use ready-made databases containing environmental information (for

example, the user can use Google Maps and information from them to notify the

user about objects nearby).

SUMMARY

This work was devoted to the development of a device that facilitates the qualitative

movement of people with visual impairments.

In the first chapter, an analysis of existing solutions was carried out, the advantages

and disadvantages of modern developments were noted. The goal of the study and its

objectives. The concept of the device is determined and the relevance of development

at the present time is confirmed.

Based on a certain concept, components were selected for the implementation of the

module. An algorithm for recognizing given types of objects has been developed. An

algorithm has been developed that reads indicators from ultrasonic sensors and an

accelerometer, as well as an algorithm for constructing a room map.

According to certain criteria, the layout of the device is selected. The operation time

for the device is about 3 hours.

Summing up the work, it’s possible to say that it fully complied with the requirements

of the technical specifications.

LIST OF REFERENCES

[1] Sachkov M., Yusupova A., "Filtration algorithms of ultrasound sensor signals

for obstacle detection devices," Scientific and Technical Journal of

Information Technologies, Mechanics and Optics, vol. 19, no. 2, pp. 326-332,

2019.

[2] Fricke, TR, Tahhan N, Resnikoff S, Papas E, Burnett A, Suit MH, Naduvilath

T, Naidoo K, "Global Prevalence of Presbyopia and Vision Impairment from

Uncorrected Presbyopia: Systematic Review, Meta-analysis, and Modelling,"

Ophthalmology, 9 May 2018.

[3] Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et

al., "Magnitude, temporal trends, and projections of the global prevalence of

blindness and distance and near vision impairment: a systematic review and

meta-analysis," Lancet Glob Health, 5 September 2017.

[4] E. K. Elmannai W., "Sensor-Based Assistive Devices for Visually-Impaired.

Review," Sensors, 10 March 2017.

[5] L. J. Z. D. W. L. W. X. Pei Xuming, "IEEE International Conference on

Mechatronics and Automation," in A Robot Ultrasonic Mapping Method

based on the Gray System Theory, 2010.

[6] O. G. U. G. Gambino F., "A comparison of three uncertainty calculus

techniques for ultrasonic map building," Proceedings of SPIE - The

International Society for Optical Engineering, January 2015.

[7] F. H. Tunai P. Marques, "IEEE Green Energy and Smart Systems Conference

(IGESSC)," in Autonomous robot for mapping using ultrasonic sensors, 2017.

[8] I. Andersone, "Probabilistic Mapping with Ultrasonic Distance Sensors,"

Procedia Computer Science, no. 104, p. 362 – 368, 2017.

[9] Y. T. Shuihua Wang, "IEEE International Conference on Bioinformatics and

Biomedicine Workshops (BIBMW)," in Detecting stairs and pedestrian

crosswalks for the blind by RGBD camera, 2012.

[10] T.-L. L. N. V. Huy-Hieu Pham, "Real-Time Obstacle Detection System in

Indoor Environment for the Visually Impaired Using Microsoft Kinect

Sensor," Journal of Sensors, pp. 1-13, November 2016.

[11] L.-N. G. G. J. Perez-Yus A., "European Conference on Computer Vision," in

Detection and Modelling of Staircases Using a Wearable Depth Sensor, 2015.

[12] "Obstacle Sensing Stick for Visually Impaired Persons," 26 October 2015.

[Online]. Available: http://digital-

wizard.net/pic_projects/smart_stick_for_visually_impaired.

[13] Saaid, M.F. et. al., "Smart cane with range notification for blind people," IEEE

International Conference on Automation Control and Intelligent Systems

(I2CACIS), pp. 225-229, 2016.

[14] Manikanta, K., et. al., "Implementation and Design of Smart Blind Stick for

Obstacle Detection and Navigation System," International Journal of

Engineering science and Computing, August 2018.

[15] L. Shin Byeong-Seok and Cheol-Su, "Obstacle Detection and Avoidance

System for Visually Impaired People," Haptic and Audio Interaction Design,

pp. 78-85, 2007.

[16] T. Lewis, "Vibrating Clothes Could Help Blind People Navigate," January

2014. [Online]. Available: : https://www.livescience.com/46236-vibrating-

clothes-help-blind-navigate.html.

[17] D. Eagleman, "VEST: A Sensory Substitution Neuroscience Project [Online].

Available," March 2016. [Online]. Available:

https://www.kickstarter.com/projects/324375300/vest-a-sensory-substitution-

neuroscience-project?ref=category_featured.

[18] K. Rosmino, "Replacing white sticks with electronic devices: new

technologies for the visually impaired," 26 July 2019. [Online]. Available:

https://www.euronews.com/2019/07/22/replacing-white-sticks-with-

electronic-devices-new-technologies-for-the-visually-impaired.

[19] Brilhault, A.; Kammoun, S.; Gutierrez, O.; Truillet, P.; Jouffrais, C, "In

Proceedings of the 4th IFIP International Conference on New Technologies,

Mobility and Security (NTMS)," in Fusion of artificial vision and GPS to

improve blind pedestrian positioning, Paris, 2011.

[20] C. Liuyuan, "SensCap is a device that guides the visually impaired around

obstacles," August 2009. [Online]. Available:

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/zb34_

lc465/zb34_lc465/index.html.

[21] M. McBride, "Sonar Glasses Obstacle Detection Device for Blind and

Visually Impaired," 13 July 2016. [Online]. Available: https://www.disabled-

world.com/assistivedevices/visual/sonar-glasses.php.

[22] L. Hardesty, "Avoiding stumbles, from spacewalks to sidewalks," 22 July

2016. [Online]. Available: http://news.mit.edu/2016/vibrating-footwear-

astronauts-visually-impaired-0722.

[23] A. P. J. Petsiuk, "Low-Cost Open Source Ultrasound-Sensing Based

Navigational Support for the Visually Impaired," Sensors, July 2019.

[24] L. Hardesty, "Wearable system helps visually impaired users navigate," 31

May 2017. [Online]. Available: http://news.mit.edu/2017/wearable-visually-

impaired-users-navigate-0531.

[25] M. Nielsen, “Neural Networks and Deep Learning”, 12 September 2018.

[Online]. Available:

http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.

pdf.

[26] “What Is Deep Learning?”, December 2018. [Online]. Available:

https://www.mathworks.com/discovery/deep-learning.html

[27] Jia Yangqing, et. al., “Caffe: Convolutional architecture for fast feature

embedding”, Proceedings of the 22nd ACM international conference on

Multimedia, March 2014.

[28] Kyung-Wook N. “Vibration Pattern for the Implementation of Haptic

Joystick”, 6th International Conference, Proceedings, Part I, 2013.

http://news.mit.edu/2017/wearable-visually-impaired-users-navigate-0531
http://news.mit.edu/2017/wearable-visually-impaired-users-navigate-0531
http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://www.mathworks.com/discovery/deep-learning.html

APPENDICES

1. JavaScript code for collecting the URLs for dataset images:

var script = document.createElement('script');

script.src = "https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js";

document.getElementsByTagName('head')[0].appendChild(script);

var urls = $('.rg_di .rg_meta').map(function() { return JSON.parse($(this).text()).ou;

});

var textToSave = urls.toArray().join('\n');

var hiddenElement = document.createElement('a');

hiddenElement.href = 'data:attachment/text,' + encodeURI(textToSave);

hiddenElement.target = '_blank';

hiddenElement.download = 'urls.txt';

hiddenElement.click();

2. Python script for the dataset images downloading:

from imutils import paths

import argparse

import requests

import cv2

import os

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument("-u", "--urls", required=True,

 help="path to file containing image URLs")

ap.add_argument("-o", "--output", required=True,

 help="path to output directory of images")

args = vars(ap.parse_args())

collect the list of URLs from the file, then find the number of images should be

#downloaded

rows = open(args["urls"]).read().strip().split("\n")

total = 0

https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js

loop

for url in rows:

 try:

 # try to download the image

 r = requests.get(url, timeout=60)

 # save the image to disk

 p = os.path.sep.join([args["output"], "{}.jpg".format(

 str(total).zfill(8))])

 f = open(p, "wb")

 f.write(r.content)

 f.close()

 print("[INFO] downloaded: {}".format(p))

 total += 1

 # if something went wrong

 except:

 print("[INFO] error downloading {}...skipping".format(p))

loop over the image paths we just downloaded

for imagePath in paths.list_images(args["output"]):

 # initialize if the image should be deleted or not

 delete = False

 # try to load the image

 try:

 image = cv2.imread(imagePath)

 # if the image can be opened

 if image is None:

 print("None")

 delete = True

 except:

 print("Except")

 delete = True

 # check to see if the image should be deleted

 if delete:

 print("[INFO] deleting {}".format(imagePath))

 os.remove(imagePath)

3. Python script for real-time object recognition

import the necessary packages

from imutils.video import VideoStream

from imutils.video import FPS

import numpy as np

import argparse

import imutils

import time

import cv2

construct the argument parse and parse the arguments

arg = argparse.ArgumentParser()

arg.add_argument("-p", "--prototxt", required=True,

 help=" ptototxt")

arg.add_argument("-m", "--model", required=True,

 help=" caffe")

args = vars(ap.parse_args())

initialize the list objects should be detected

CLASSES = ["bus", "truck", "bicycle", "bench", "cup",

 "fork", "knife", "car", "cat", "chair", "spoon", "diningtable",

 "dog", "bed", "cell phone", "person", "microwave", "traffic light",

 "sofa", "sink", "tvmonitor"]

COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

load the model

print("[INFO] loading model...")

net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])

start a video stream

print("[INFO] starting video stream...")

vs = VideoStream(src=0).start()

vs = VideoStream(usePiCamera=True).start()

time.sleep(2.0)

fps = FPS().start()

loop over the frames from the video stream

while True:

 # grab the frame from the threaded video stream and resize it

 # to have a maximum width of 400 pixels

 frame = vs.read()

 frame = imutils.resize(frame, width=600)

 (h, w) = frame.shape[:2]

 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),

 0.007843, (300, 300), 127.5)

 # pass the frame over the network and obtain the detections

 net.setInput(blob)

 detections = net.forward()

 # loop over the detections

 for i in np.arange(0, detections.shape[2]):

 # extract the confidence (i.e., probability) associated with

 # the prediction

 confidence = detections[0, 0, i, 2]

 # show the output frame

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1) & 0xFF

 # if the `q` key was pressed, break from the loop

 if key == ord("q"):

 break

do a cleanup

cv2.destroyAllWindows()

vs.stop()

4. Script for UDS:

#!/usr/bin/python

from gpiozero import InputDevice, OutputDevice, PWMOutputDevice

import time

from time import sleep

import numpy as np

import csv

import math

import datetime

from multiprocessing import Process

Ports

trig1 = OutputDevice(4)

trig2 = OutputDevice(21)

trig3 = OutputDevice(25)

echo1 = InputDevice(17)

echo2 = InputDevice(22)

echo3 = InputDevice(8)

motor = PWMOutputDevice(14)

#calculate the time span between sending and obtaining impulse for 3 sensors

def get_pulse_time_3():

 trig3.on()

 sleep(0.00001)

 trig3.off()

 timeout = 0

 #start recording when signal is sent, stop recording when signal is received

 try:

 while (echo3.is_active) == False:

 pulse_start3 = time.time()

 while (echo3.is_active) and (timeout < 50) == True:

 timeout += 1

 pulse_end3 = time.time()

 timeout = 0

 sleep(0.06)

 #is something went wrong return the minimum time span

 return pulse_end3 - pulse_start3

 except:

 return 0.02

def get_pulse_time_2():

 trig2.on()

 sleep(0.00001)

 trig2.off()

 timeout = 0

 try:

 while (echo2.is_active) == False:

 pulse_start2 = time.time()

 while (echo2.is_active) and (timeout < 50) == True:

 timeout += 1

 pulse_end2 = time.time()

 timeout = 0

 sleep(0.06)

 return pulse_end2 - pulse_start2

 except:

 return 0.02

def get_pulse_time_1():

 trig1.on()

 sleep(0.00001)

 trig1.off()

 timeout = 0

 try:

 while (echo1.is_active) == False:

 pulse_start1 = time.time()

 while (echo1.is_active) and (timeout < 50) == True:

 timeout += 1

 pulse_end1 = time.time()

 timeout = 0

 sleep(0.06)

 return pulse_end1 - pulse_start1

 except:

 return 0.02

#the distance calculation using a time span and speed of air, the distance is calculated

#in cm

def calculate_distance(duration):

 distance = duration * 17160.5 #to cm

 distance = round(distance, 2)

 #discard wrong results

 if distance > 400:

 distance = 400

 if distance < 0:

 distance = 0

 return distance

write to file

def write_csv(data):

 with open('/home/pi/Desktop/data.csv', 'a') as outfile:

 writer = csv.writer(outfile, delimiter=',')

 writer.writerow(data)

Main cycle

while (True):

 distance1 = calculate_distance(get_pulse_time_1())

 distance2 = calculate_distance(get_pulse_time_2())

 distance3 = calculate_distance(get_pulse_time_3())

 print("Dist1: ", distance1)

 print("Dist2: ", distance2)

 print("Dist3: ", distance3)

 print

 x = datetime.datetime.now()

 #write distances to the file using a sensors’ angles)

 data = [x, distance1*cos(-0,698132), distance2, distance3*cos(0,698132)]

 write_csv(data)

5. Python script for gyro accelerometer:

#!/usr/bin/python

import time

import numpy as np

import csv

import smbus

import math

import datetime

Register

power_mgmt_1 = 0x6b

power_mgmt_2 = 0x6c

#read the data

def read_byte(reg):

 return bus.read_byte_data(address, reg)

#read high and low 16-bits data

def read_word(reg):

 h = bus.read_byte_data(address, reg)

 l = bus.read_byte_data(address, reg+1)

 #concatenate them

 value = (h << 8) + l

 return value

def read_word_2c(reg):

 val = read_word(reg)

 #get a sigh

 if (val >= 0x8000):

 return -((65535 - val) + 1)

 else:

 return val

def dist(a,b):

 return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):

 radians = math.atan2(x, dist(y,z))

 return -math.degrees(radians)

def get_x_rotation(x,y,z):

 radians = math.atan2(y, dist(x,z))

 return math.degrees(radians)

def get_z_rotation(x,y,z):

 radians = math.atan2(z, dist(x,y))

 return math.degrees(radians)

bus = smbus.SMBus(0) # bus = smbus.SMBus(0) for Raspberry Pi version B

address = 0x68 # via i2cdetect

write to file

def write_csv(data):

 with open('/home/pi/Desktop/data2.csv', 'a') as outfile:

 writer = csv.writer(outfile)

 writer.writerow(data)

Main cycle

while (True):

 gyro_xout = read_word_2c(0x43)

 gyro_yout = read_word_2c(0x45)

 gyro_zout = read_word_2c(0x47)

 acceleration_xout = read_word_2c(0x3b)

 acceleration_yout = read_word_2c(0x3d)

 gyro_zout = read_word_2c(0x47)

 acceleration_xout = read_word_2c(0x3b)

 acceleration_yout = read_word_2c(0x3d)

 acceleration_zout = read_word_2c(0x3f)

 acceleration_xout_skaled = acceleration_xout / 16384.0

 acceleration_yout_skaled = acceleration_yout / 16384.0

 acceleration_zout_skaled = acceleration_zout / 16384.0

 x = datetime.datetime.now()

 data = [x, acceleration_xout_skaled, acceleration_yout_skaled,

acceleration_zout_skaled]

 write_csv(data)

6. Python script for plot and process the values and mapping:

import os

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy.integrate as it

import scipy.signal as signal

from mpl_toolkits import mplot3d

from mpl_toolkits.mplot3d import Axes3D

from datetime import datetime

from array import array

File under analysis.

filename = '/home/pi/Desktop/data.csv'

Data preparation

allData = pd.read_csv(filename)

xAcc = allData.iloc[:, 1].values

yAcc = allData.iloc[:, 2].values

zAcc = allData.iloc[:, 3].values

Dist_1 = allData.iloc[:, 4].values

Dist_2 = allData.iloc[:, 5].values

Dist_3 = allData.iloc[:, 6].values

time = allData.iloc[:, 0].values

#set an epochs for easier calculations below

epoch = np.zeros(len(xAcc))

for i in range(len(xAcc)):

 if i == 0:

 epoch[0] = 0.000

 else:

 epoch[i] = epoch[i-1] + 1

 xAcc[i] = float(xAcc[i])

 yAcc[i] = float(yAcc[i])

 zAcc[i] = float(zAcc[i])

 Dist_all[i] = float(Dist_all[i])

epoch1 = np.zeros(len(Dist_1))

for i in range(len(Dist_1)):

 if i == 0:

 epoch1[0] = 0.000

 else:

 epoch1[i] = epoch1[i-1] + 1

 Dist_1[i] = float(Dist_1[i])

 Dist_2[i] = float(Dist_2[i])

 Dist_2[i] = float(Dist_2[i])

ultrasonic data before filtering

plt.figure(figsize = (10, 6))

plt.plot(epoch1, Dist_1, label = '1', color = 'r', linewidth = 1, alpha = 0.6)

plt.plot(epoch1, Dist_2, label = '2', color = 'g', linewidth = 1, alpha = 0.6)

plt.plot(epoch1, Dist_3, label = '3', color = 'b', linewidth = 2, alpha = 0.6)

plt.title('Ultrasonic sensors data before filtering')

plt.legend(loc = 'upper left')

plt.xlabel('Time (s)')

plt.ylabel('Distance (cm)')

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

#filtering data using median filter with kernel = 5

Dist_1 = signal.medfilt(Dist_1, 5)

Dist_2 = signal.medfilt(Dist_2, 5)

Dist_3 = signal.medfilt(Dist_3, 5)

ultrasonic data after filtering

plt.figure(figsize = (10, 6))

plt.plot(epoch1, Dist_1, label = '1', color = 'r', linewidth = 1, alpha = 0.6)

plt.plot(epoch1, Dist_2, label = '2', color = 'g', linewidth = 1, alpha = 0.6)

plt.plot(epoch1, Dist_3, label = '3', color = 'b', linewidth = 2, alpha = 0.6)

plt.title('Ultrasonic sensors data before filtering')

plt.legend(loc = 'upper left')

plt.xlabel('Time (s)')

plt.ylabel('Distance (cm)')

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

Plotting X Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, label = 'X', color = 'r', linewidth = 1)

plt.title('X Acceleration')

plt.ylabel('Acceleration (g)')

plt.xlabel('Time (s)')

plt.xlim()

plt.ylim(-1, 1)

plt.grid()

plt.show()

Plotting Y Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, yAcc, color = 'g', linewidth = 1)

plt.title('Y Acceleration')

plt.ylabel('Acceleration (g)')

plt.xlabel('Time (s)')

plt.xlim()

plt.ylim(-1, 1)

plt.grid()

plt.show()

Plotting Z Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, zAcc, color = 'b', linewidth = 1)

plt.title('Z Acceleration')

plt.ylabel('Acceleration (g)')

plt.xlabel('Time (s)')

plt.xlim()

plt.ylim(-1, 2)

plt.grid()

plt.show()

Plotting all accelerations

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, label = 'X', color = 'r', linewidth = 1, alpha = 0.6)

plt.plot(epoch, yAcc, label = 'Y', color = 'g', linewidth = 1, alpha = 0.6)

plt.plot(epoch, zAcc, label = 'Z', color = 'b', linewidth = 2, alpha = 0.6)

plt.title('X, Y, and Z Acceleration')

plt.legend(loc = 'upper left')

plt.xlabel('Time (s)')

plt.ylabel('Acceleration (g)')

plt.xlim()

plt.ylim(-1, 2)

plt.grid()

plt.show()

Butterworth Filtering X and Y Acceleration

N = 2 # Filter order

Wn = 0.9 # Cutoff frequency 0 < Wn < 1

B, A = signal.butter(N, Wn, output = 'ba')

xAcc = signal.filtfilt(B, A, xAcc)

yAcc = signal.filtfilt(B, A, yAcc)

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, linewidth = 1, color = 'r')

plt.plot(epoch, yAcc, linewidth = 1, color = 'g')

plt.title('X and Y Acceleration Denoised')

plt.xlabel('Time (s)')

plt.ylabel('Acceleration (g)')

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

plt.show()

First integration: generating velocity

xVel = it.cumtrapz(xAcc, epoch)

yVel = it.cumtrapz(yAcc, epoch)

zVel = it.cumtrapz(zAcc, epoch)

Plotting the velocities

plt.figure(figsize = (10, 6))

epoch = np.delete(epoch, -1)

plt.plot(epoch, xVel, linewidth = 2, alpha = 0.7, label = 'X', color = 'r')

plt.plot(epoch, yVel, linewidth = 2, alpha = 0.7, label = 'Y', color = 'g')

plt.plot(epoch, zVel, linewidth = 2, alpha = 0.7, label = 'Z', color = 'b')

plt.title('X, Y, and Z Velocities')

plt.xlabel('Time (s)')

plt.ylabel('Velocity (cm/s)')

plt.legend(loc = 'upper left')

plt.grid()

plt.show()

Second integration: generating path

xDis = it.cumtrapz(xVel, epoch)

yDis = it.cumtrapz(yVel, epoch)

zDis = it.cumtrapz(zVel, epoch)

3D Trajectory Plotting

plt.figure(num = None, figsize=(10, 8), dpi=80, facecolor = 'w', edgecolor='b')

ax = plt.axes(projection = '3d')

ax.plot3D(xDis, yDis, zDis, 'red', label = 'Trajectory', linewidth = 2)

ax.set_xlabel('X DISTANCE [cm]', fontsize = 12)

ax.set_ylabel('Y DISTANCE [cm]', fontsize = 12)

ax.set_zlabel('Z DISTANCE [cm]', fontsize = 12)

ax.set_xlim3d()

ax.set_ylim3d()

ax.set_zlim3d()

plt.legend(loc = 'upper left')

plt.title('Location Trajectory (Accelerometer)')

plt.show()

fig = plt.figure()

ax = fig.gca(projection='3d')

Plot a sin curve using the x and y axes.

x = xDis

y = yDis

ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)')

#ax.plot3D(xDis, yDis, zDis, 'red', label = 'Trajectory', linewidth = 2)

By using zdir='z', the y value of these points is fixed to the zs value 0

and the (x,y) points are plotted on the x and y axes.

ax.scatter(x, Dist_all-100, zs=0, zdir='z', label='points in (x,y)')

Make legend, set axes limits and labels

ax.legend()

ax.set_xlim()

ax.set_ylim()

ax.set_zlim()

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

Customize the view angle so it's easier to see that the scatter points lie

on the plane y=0

ax.view_init(elev=20., azim=-35)

plt.show()

2D Trajectory Plotting

plt.figure(figsize = (10, 6))

plt.scatter(xDis, yDis, linewidth = 0.1, alpha = 0.7, label = 'XY Coord.', color = 'r')

plt.title('2D Trajectory ((X, Y) Coordinates))')

plt.xlabel('X Distance (cm)')

plt.ylabel('Y Distance (cm)')

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

7. Python starting script

#!/usr/bin/python

import subprocess

import time

code1 = 'python sensors.py' #code for record data from sensors

code2 = 'python object_detection.py' # code for object detection

code3 = 'python map.py' #code for mapping

data_file = open("/home/pi/Desktop/data.csv", "rw+")

def mapping_buffer(seconds): #run mapping for 10 minutes

start = time.time()

 time.clock()

 elapsed = 0

 while elapsed < seconds:

 elapsed = time.time() - start

script_3 = subprocess.Popen(code3, stdout=subprocess.PIPE, shell=True)

def main():

 while True:

script_1 = subprocess.Popen(code1, stdout=subprocess.PIPE, shell=True) #run first

script

script_2 = subprocess.Popen(code2, stdout=subprocess.PIPE, shell=True) #run second

script

time.sleep(60) #wait for data collection

mapping_buffer(600) #run mapping for 10 minutes

 data_file.truncate() #clear file with data to restart the map

GRAPHICAL MATERIAL

The electronics connection scheme:

The drawing of the Raspberry Pi body, the bottom part:

The drawing of the Raspberry Pi body, the top part:

The drawing of the back case for the ultrasonic body:

The drawing of the protecting ring for the ultrasonic body:

The drawing of the top case for the ultrasonic body:

The drawing of the front case for the ultrasonic body:

The drawing of the overlay case for the ultrasonic body:

The drawing of the assembled case for the ultrasonic body:

The rendering of the vest prototype, front:

The rendering of the vest prototype, back:

