Ministry of Science and Higher Education of the Russian Federation

ITMO University

GRADUATION THESIS

DEVELOPMENT OF DEVICE FOR NAVIGATING PEOPLE WITH
VISUAL IMPAIRMENTS

Author Anastasiia lusupova
(full name) (signature)
Subject area 15.04.06 Mechatronics and robotics

(code, name of program track)

Degree level Master
(Bachelor, Master)

Thesis supervisor Pavel Kovalenko, associate professor, PhD
(surname, initials, academic title, degree) (signature)

Thesis co-supervisor Dmitry Shvarts, research scientist, PhD

(surname, initials, academic title, degree) (signature)

Partner University Tallinn University of Technology

(official name of the University)

Approved for defense

Head of program

(surname, initials, academic title, degree) (signature)

(13 2 20

St. Petersburg, 2020

Student Anastasiia lusupova

(full name)

Group R42331 Faculty/Institute/Cluster Faculty of Control Systems and Robotics

Subject area, program/major 15.04.06 Mechatronics and robotics, Intelligent technology in robotics

Consultant(s):

a) Mikhail Sachkov, senior lecturer, PhD

(surname, initials, academic title, degree) (signature)

Thesis received “20” May 2020

Originality of thesis: 99 %
Thesis completed with the grade: 5
Date of defense “5” June 2020

Secretary of State Exam Commission Svetlana Perepelkina

(full name) (signature)

Number of pages 96

Number of supplementary materials/Blueprints 0

Ministry of Science and Higher Education of the Russian Federation
ITMO University

APPROVED
Head of educational program

(Surname, initials) (signature)
« » « » 20
OBJECTIVES

FOR A GRADUATION THESIS

Student Anastasiia lusupova

Group R42331 Faculty/Institute/Cluster Faculty of Control Systems and Robotics
Degree level Master

Subject area 15.04.06 Mechatronics and robotics

Major Intelligent technology in robotics

Specialization Biomechatronics

Thesis topic Development of Device for Navigating People with Visual Impairments

Thesis supervisor __Pavel Kovalenko, ITMO University, associate professor, PhD, docent

(full name, place of employment, position, academic degree, academic title)

2 Deadline for submission of complete thesis “20” May 2020

3 Requirements and premise for the thesis

Device is intended for improved navigation of people with visual impairments. The device is a vest

with built-in electronic components such as a microcontroller, ultrasonic sensors, a sound module,

vibration motors, camera, etc. The device must build a map of the surrounding area and recognize

some important objects. During development, it is required to create not only an effective device, but

also convenient to use, including by elderly people and children. Detected objects should be

determined with a probability of >90%, the weight of the device (including the vest) should not

exceed 3 kg; continuous operation of the device should be >3 hours.

4 Content of the thesis (list of key issues)
To conduct the research, the following steps will be taken: determination of the concept of the device;

selection of sensors and electronic components; development of a system for processing images and

data from sensors; software development; device design development; assembly and testing of the

prototype.

5 List of graphic materials (with a list of required material)

Renders of the 3D models of the prototype;

Drawings of the prototype bodies:

Electric schemes, etc

6 Source materials and publications

For the work, the author selected several of the most relevant literary sources on which the study will

be based:

Pham, Huy-Hieu & Le, Thi & Vuillerme, Nicolas, “Real-Time Obstacle Detection System in

Indoor Environment for the Visually Impaired Using Microsoft Kinect Sensor,” Journal of

Sensors, pp. 1-13, 2016. In this article, authors presented a method for detecting obstacles in

a room, hased on the use of Kinect and 3D image processing. For image processing, the PCL

library was used. As a result, with the accuracy of the order of 90%, the developed system

detects walls, doors, stairs and floors.

Perez-Yus, Alejandro & Loépez-Nicolds, Gonzalo & Guerrero, Josechu, “Detection and

Modelling of Staircases Using a Wearable Depth Sensor,” pp. 449-463, 2015. The authors

consider the development of a wearable navigation assistant and the recognition of stairs using

it. To do this, authors used cameras, which determine the location, orientation of the stairs,

the number and size of steps. The system is adapted for real-time operation.

Tunai P. Marques, Fumio Hamano, “Autonomous robot for mapping using ultrasonic

sensors,” IEEE Green Energy and Smart Systems Conference (IGESSC), 2017. This articles

correspondence method for ultrasonic sensor measurements and processing data from it. And

also the mapping design methodology for robot navigation was described. The autonomous

robot described in this paper is capable of autonomously gathering data of a previously

unknown environment.

7 Objectives issued on “20” May 2020

Thesis supervisor

(signature)

Obijectives assumed by “20” May 2020

(signature)

Ministry of Science and Higher Education of the Russian Federation
ITMO University

Student

SUMMARY

OF A GRADUATION THESIS

Anastasiia lusupova

Title of the thesis

Name of organization

(full name)

Development of Device for Navigating People with Visual Impairments

ITMO University and Tallinn University of Technology

DESCRIPTION OF THE GRADUATION THESIS

1 Research objective is to develop the prototype of the device for navigating people with visual

impairments

2 Research tasks check the possibility of implementing the construction of a map using ultrasonic
sensors and the recognition of objects surrounding the user

3 Number of sources listed in the review section
4 Total number of sources used in the thesis
5 Sources by years:

20

Russian Foreign
In the last 5 5to 10 years More than 10 In the last 5 5 to 10 years More than
years years years 10 years
1 0 0 19 6 2
6 Use of online (internet) resources Yes, 8

(Yes/No, number of items in the list of references)

7 Use of modern computer software suites and technologies (List which ones were used and for which section of the
thesis)

Software suites and technologies Thesis section
Anaconda IDE 3
Solidworks 2016 3
KiCAD 3
Word, Excel 1,2,3

8 Short summary of results/conclusions an algorithm for recognizing given types of objects has been
developed. An algorithm has been developed that reads indicators from ultrasonic sensors and an
accelerometer, as well as an algorithm for constructing a room map. According to certain criteria, the
layout of the device is selected. This work was devoted to the development of a device that facilitates
the qualitative movement of people with visual impairments

9 Grants received while working on the thesis the project was supported by the FASIE and the Grant
for university students located in St. Petersburg, graduate students of universities, industry and
academic institutions located in St. Petersburg

(Grant name)

10 Have you produced any publications or conference reports on the topic of the thesis? No
(Yes, no)

Student Anastasiia lusupova

(Full name) (signature)

Thesis supervisor____Pavel Kovalenko

(Full name) (signature)

“20” May 2020

CONTENTS

PREFACE ... oottt sttt ettt e s besbeereeneeneenee e 9
LIST OF ABBREVIATIONS AND SYMBOLS ..o 10
INTRODUGCTION.ottt e e et e e e st e e e st e e e anneeeennes 11
RESEArCN MOTIVALIONoviiiie i 12
RESEAICH ODJECLIVES ...t sree e 12
THESIS STTUCTUIR. ...ttt sre et re et e aneenre e 13
1. LITERATURE REVIEW AND BACKGROUNDcccccviiiieiiieec e 14
1.1. Literature and existing approaches reVIEWccccvveveeiiiesiieeneeseesee e 14
1.2. Literature and existing approaches analysiscccccccevievieiiiinineninesee e 18
2. RESEARCH METHODOLOGYccoiiiiiiiiitiit e 20
2.1, PropoSing SOIULION........ccuiiieiie i 20
2.2. Hardware and software SEleCtIONcccocveiiiiiii i 21
2.2.1. Hardware SEIECHIONoiiiii e 21
2.2.2. SOTtWArE SEIECHIONc.eee it 22
2.3, DESIgNING CONCEPLS ...vveeviiieieciee ettt ettt et et e e nreereens 23

3. THE DEVICE DEVELOPING BASED ON THE SELECTED

METHODOLOGY ..ottt sttt 25
3.1. Objects recognition algorithm...........cccovviiiiiieiie e 25
3.1.1 Objects recognition tesSting aNalYSIS........cccovveiiiiiereiiinieee e 31
3.2. Distance measurement and mapping using ultrasonic SeNSor............cc.ccevenee.. 38
3.2.1. Distance measurement and mapping analysiS..........ccccvererienrerieeresienneseenennn, 46
3.3. Description of the device operation algorithm.............ccooooviiiiiiiniee, 49

3.3.1. Operation algorithm testing and analysSiS..........cccccvivrrierienieeieiiere e, 51

3.4. Electrical scheme developing........ccccocieiieiiiiiecie e 53

3.4.1. Electric scheme teSting rESUILSoovveiieiiiiiieee s 56
3.5. 2D and 3D MOAEHINGeoiieiieieceece s 58
3.5.1. 2D and 3D modelling results analysiS.........cccoovevieiirieiiiie e 60
3.6. Device developing SUMMAIYccoveiieiieiieeie e see e e et 61
N B T 1 @10 1] [\ ST 62
A1, LIMITALIONS ..ottt bbbttt 62
4.2, FULUIE IMPIOVEMENTS ...ooivieiiieiieeieesieesieesite e ste et e e enee e e sraesreesnaeeseesreesree e 63
SUMMEOARY ..ottt sttt bbbttt bttt e b e 64
LIST OF REFERENCES ...t e e 65
APPENDICESot e e e e e na e e e s nnae e e snaeeeannee e 68

GRAPHICAL MATERIAL ..o 86

PREFACE
The topic of the master thesis is proposed by the author. The main goal of this project
is to develop a prototype of the device that will help people with visual disabilities in
navigation and thereby simplify their lives. The project is the logical completion of a
double-degree program in master studies, the research was carried out with the
participation of Tallinn Technical University, Tallinn, Estonia and the ITMO

University, St. Petersburg, Russia.

This project is a continuation of the bachelor's work of the author and article [1].
However, the master's thesis is devoted not only to the processing of ultrasonic signals

but also to work with images, their processing and improving the device’s design.

The project was supported by the FASIE and the Grant for university students located
in St. Petersburg, graduate students of universities, industry and academic institutions

located in St. Petersburg.

The author would like to express his deepest gratitude to supervisors Dmitry Shvarts
and Pavel Kovalenko for supporting this topic and also consultant Mikhail Sachkov

for helping with research implementation.
A special thanks to my family and friends for moral support.

Keywords: navigation device, image processing, signal processing, people with visual

impairments.

LIST OF ABBREVIATIONS AND SYMBOLS

CAFFE — Convolutional Architecture for Fast Feature Embedding
GPIO — General-Purpose Input/Output

LMDB — Lightning Memory-Mapped Database

PWM — Pulse Width Modulation

UDS — Ultrasonic Distance Sensor

INTRODUCTION

Everyone has the right to receive knowledge, information about the world and
exchange it. A person perceives with the help of vision >70% of the information, but
people with visual impairments should fill this gap with the help of hearing, smell and
touch. Moving around the city for visually impaired people, given the transport, road
conditions, many obstacles, and traffic, is quite problematic. The cane can detect
obstacles from no more than a meter, which imposes greater restrictions. Also, these
people have psychological features and it should be considered that the device should
not distract the user, do not close the auditory canal and it should not allow dangerous
situations.

The aim of the research work is the development of a prototype designed to ensure the
safe movement of visually impaired people in the urban environment and indoors,
analysis of the developed system, writing the algorithm of work. During development,
it is required to create not only an effective device but also convenient to use, including
by elderly people and children.

The relevance of this work is to develop a device with improved technical and
economic parameters in comparison with analogs, improving existing methods. There
is no need to develop devices with already achieved characteristics. The price of the
developing device is also important.

An expected result of the research is the creation of a prototype device for visually
impaired people, which builds a map of the room around the user, determines the type
of objects and the distance to obstacles. The obstacle here is the signal obtained by one
or more distance sensors and be relevant after post-processing. This signal should
correspond to distances in the range of 10-400 cm.

The prototype should define such types of objects: vehicles (bus, truck, bicycle, car),
living objects (cat, dog, person), household objects (cup, fork, knife, spoon, chair,
dining table, bed, cell phone, microwave, sofa, sink, monitor), and outdoor objects
(traffics light, bench). The device is a multi-layer waterproof vest, inside of which

electronic components and sensors will be located.

The user must receive information about the obstacles described above, the distance to
them, the direction and battery level of the device. Detected objects should be
determined with a probability of >90%, the weight of the device (including the vest)
should not exceed 3 kg (about 3-5% of the person’s weight are the comfortable weight
for frequent wearing without experiencing fatigue, for example, a person weighing 60
kg was chosen); continuous operation of the device should be >3 hours (in big cities
the one-way road is capable to take 1 hour and more, so the device should provide at

least round trip for user).

Research motivation

According to statistics data [2] [3] [4], there are about 36-39 million blind people and
250-285 million people with visual impairments in the world. By 2020, the number of
blind people in the world can increase to 75 million people according to the United
Nation data. All these people need support, training, and devices that improve their
lives. People with visual impairments face difficulties every day, and there is not
always a person nearby who can provide assistance.

Despite the existence of many solutions and devices to help people with visual
impairments, they all have advantages and disadvantages, and every device is aimed at
performing a specific function.

Given the growing number of people with visual impairments around the world, the
development of increasingly advanced assistive devices for them is especially relevant

and in demand.

Research objectives

To conduct the research, the following steps must be taken:
« analyzing current solutions and literature overview;

« determination of the concept of the device;

« selection of sensors and electronic components, selecting software;

o development of a system for processing images and data from sensors, distance,
and mapping algorithm development;

« algorithm of the work development;

« device design development.

Thesis structure

This section describes the chapters’ contents of this thesis.

The introduction provides aims, motivation, and objectives of the research. The
problem to be solved is described here.

Chapter 1 contains a current situation in the selected area, existing solutions, working
approaches and literature overview. Analyzing the background of the solving problem,
it can be possible to justify the methodology of the research.

Chapter 2 describes the methodology of the research, justifies the software and
hardware choice. Also, the device’s design concepts are being formed in this section.
Chapter 3 comprises an explanation of developing a previously formulated approach.
This includes the image recognition algorithm, distance measurement algorithm,
electric scheme development, 3D-modelling and analysis of every obtained result.
Chapter 4 contains a discussion of the research, possible limitations, and future
improvements formulation.

The summary concludes the work is done and notes which goals of the set were

achieved.

1. LITERATURE REVIEW AND BACKGROUND

This chapter describes the current situation in the area of navigation devices for people
with visual impairments. Literature sources, that reflect the methods used in navigation,
object recognition, mapping and measurement using ultrasonic sensors, will be
considered here also.

Also, in this chapter, an analysis of existing analogs will be summarized, their
advantages and disadvantages will be discussed and their properties that can be
improved and used in the developing device below will be noted. Based on the
considered literature sources, the research methodology and the basic principles of the

developing device will be determined.

1.1. Literature and existing approaches review

Literature sources were selected from the following areas: devices for people with

visual impairments, recognition of objects on the street and indoors, building a map

and measurements using ultrasonic sensors.

« Ultrasonic measurements and mapping:

4 articles on this topic were considered that offer various solutions, including the
use of Gray System Theory [5], Uncertainty Calculus [6], preprocessing with
Kalman filter measurement technique [7] and Probabilistic Mapping [8]. Article
[5] considers the use of the theory of Gray Systems to create environmental
maps. The measuring angle of the ultrasonic sensor is 30°, and when an object
1s detected, it is not known in which part of the sensor’s workspace the object is
located. This option is called uncertainty. The determined algorithm creates an
uncertainty model with the corresponding gray values. With updating the map,
the previous gray values are compared with the current ones, if they coincide -
the weight of this value increases, it is more reliable. The results obtained by this
method are quite “blurred”, since the map does not have clear boundaries, but is

essentially a gradient of values from less to more reliable. The work [7] describes

the most easily implemented method of measuring and constructing a map: the
values obtained from the ultrasonic sensor are first processed by the threshold
method (emissions above a certain threshold value are cut off), then processed
by the Kalman filter. These data are transmitted and stored in the memory of the
microcontroller, individual discrete values are interconnected in a line, and thus
a map is obtained. This method can be used if the object is not moving very fast.
I1ze Andersone it the article [8] represents the implementation of a probabilistic
method of constructing maps. In this algorithm, the leveling of uncertainty
occurs with the help of positive readings (there is an obstacle) and negative
(absence of obstacles). This method gives accurate results and low dispersion of
values; however, it requires a long data accumulation time to build a map. The
work [6] describes 3 methods of uncertainty calculations - probability theory,
fuzzy logic, and fuzzy measures. The authors proved that the probabilistic
approach is error-prone and ejection sensitive. The authors assume that fuzzy
logic is the best method out of those considered. Fuzzy logic uses fuzzy sets,
unlike the probabilistic theory. Fuzzy measures are an improvement on the
previous method, which uses not fuzzy sets, but averaging operators.

Object recognition for navigation people with visual impairments:

Some approaches for object recognition using a camera were considered. The
article [9] describes methods for stairs and pedestrian crosswalks recognition.
The authors suggest method detecting stairs with 91% accuracy and pedestrian
crosswalks with 95% accuracy. The method contains five steps: edge detection
of an RGB image, Hough transformation calculation, peaks in the Hough
transform matrix calculation, extraction lines, and parallel lines grope detection.
The work [10] discusses walls, doors, stairs and floor real-time recognition using
color-depth data acquired by the Microsoft Kinect sensor. The drawback of this
method is the inability to recognize depth data if light conditions are too strong.
Authors of paper [11] were implemented the real-time algorithm for stair
detection and modeling. This method overcomes the possibility of single-step

detection.

Currently, there are many devices that help people with visual impairments. These
devices are very diverse: some are designed to help in reading documents and books,
some help to identify products in stores, and others contribute to comfortable and safe
movement. Among the devices for comfortable movement, there are also many
differences: types and place of attachment, method of action, range, etc.
Some examples of devices for comfortable and safe movement:
o Cane based devices:
Cane based devices are located on the white cane and usually use simple
ultrasonic distance measurements. [4] [12] [13] [14]

Figure 1 — Cane based navigation device’s appearance [13]
Such devices are limited in range (cane length) and the amount of information
received.

e Vests:

Figure 2 — Vest based device: prototype [4]

Vests based devices are very comfortable to use, it is possible to locate a lot of
sensors using body area. However, all existing developments of such devices are
now only at the prototype stage. [4] [15] [16] [17]

Hat-based devices:

There are still other examples of this type of device, but they are all quite similar.
The disadvantage of hat-based devices is their size and inconvenience of use. [4]
[18] [19] [20]

Glasses:

Glasses-based devices are also commonly used. Some use miniature cameras to
detect objects, others use ultrasonic sensors to determine the distance to
obstacles [21]:

Shoes:

In my opinion, a shoe-based design [4] [22] is the least convenient to use, since
the user must either always wear the same pair or fasten it to another pair before
going out. In addition, such devices should be especially protected from moisture
and dirt.

Wrist/palm modules:

Figure 3 — wristband device [23]

As in the previous examples, such devices use cameras and ultrasonic sensors.
Devices of this type are inconvenient to use together with a cane (a white cane
is not only providing navigation, but also it is an identification mark of people
with visual impairments), or when used together, both hands will be occupied.
[4] [23]

o Chest devices:
These devices are quite similar to vests, but are more compact and have complex

mounts, for fixing which you may need the help of a sighted person. [4] [24]

1.2. Literature and existing approaches analysis

Using information from the considered sources, the author plans to use some methods
for constructing a map and recognition of objects. The easiest way to implement the
map building process is preprocessing with the Kalman filter measurement technique.
Since this method is quite simple to implement and effective from the point of view of
computer calculations, it can be used in microcontrollers using and mobile devices. If
possible, a probabilistic method will also be tested.

For the developing device, the definition of objects such as stairs, floors, doors,
windows, puddles, and pits is an important property. The methods for recognizing
stairs, doors, and floors, considered in literary sources, will become the basis of the
algorithm of the device being developed, which must be improved to determine another

type of object.

The considered methods have advantages and disadvantages. To evaluate the most

suitable method that should be used in the developing device, the author has evaluated

existing analogs, considering some of their properties:

The convenience of use. The most convenient to use can be considered vests and
chest-based devices since in this case, the hands remain free. Hat-based, glasses
and smart shoes are limited in use in different weather conditions and seasons;
The weight. Bracelets (<150 gm), glasses (<300 gm) and devices that are
attached to a cane (<500 gm) have the least weight. As was mentioned earlier
the convenient weight is 3-5% of the user’s weight. So, the device’s weight
should not be more than 3 kg;

The size. Bracelets (<10 cm?) and (<20 cm?) glasses have the smallest size;
Identification of obstacles and/or measuring of distance to them. Some devices
can only determine distances to obstacles - cane-based devices, bracelets, shoes.
Glasses are mainly designed to recognize text or objects. Vest-based and chest-
based can combine several functions;

Ability to arrange multiple sensors and batteries. For the device to perform
several functions, and enough area is required. The greatest functionality can
have vests (area for arranging sensors >0.5 m?) and chest-based device (>0.2
m2);

The necessity to protect the device from moisture/dust /dirt. All devices must be
protected from moisture, but more prone to failure due to environmental
conditions are hat-based and smart shoe devices;

The complexity of mount. Visually impaired people are sometimes unable to
cope with complex mounts without someone else's help. So, chest-based and

smart shoe devices may have too complicated mounts.

Summarizing all the above items, it is possible to say that vests have the least number

of drawbacks - they can be made of waterproof materials, have a large surface for

placing sensors, and they can conveniently wear over clothing. However, it is important

to control the weight of such a device.

2. RESEARCH METHODOLOGY

This chapter will focus on selection resources for the device’s development and
explanation of the proposed solution. The first section will explain in detail proposing
a solution for prototype implementation. The second and third sections will cover
hardware and software selection and analysis. The fourth and fifth sections will account
for designing concepts and their analysis. The final section will analyze selected

features from previous sections.

2.1. Proposing solution

As was analyzed in the previous chapter, the most appropriate base form for this type
of device is the waterproof vest with electronic components inside/on it. The main
options of the device are the mass (not more than 3 kg) and the working time (more
than 3 hours). These two parameters should be taken into consideration during design
and algorithm development. The vest should be layered with the waterproof upper layer
to protect electronics inside. The important feature is the mount because it is necessary
to provide easy fixation for the user that can only use their hands without seeing the
mount.

The device has two main tasks: building the map of the indoor environment and
determining the object type that has been mentioned earlier. For building the map
device will use a set of ultrasonic sensors and it is necessary to obtain separate points
from every sensor, collect them, post-process the data, and plot them on. The sensors
are not ideal, every measure has errors and noise. To obtain a correct indoor map it is
necessary to process measurements using filters.

For object recognition, the neural networks, classification methods will be applied. In
this work, the objects to be recognized are vehicles (bus, truck, bicycle, car), living
objects (cat, dog, person), some household objects that might be important for the user
(cup, fork, knife, spoon, chair, dining table, bed, cell phone, microwave, sofa, sink,
monitor), and outdoor objects (traffics light, bench). After recognition of the obstacle,

the device should inform the user about the distance to than obstacle using vibration

and/or audio signal. Thereby, for device designing it is necessary to select appropriate
sensors, controller and other components with sufficient accuracy and performance,
then determine software for algorithm writing, 3D-modelling and testing the developed

model.

2.2. Hardware and software selection
2.2.1. Hardware selection

The hardware part’s base of the developing device is the controller. As it is necessary
to ensure high performance for object recognition, the controller should be powerful
enough. Thereby the Raspberry Pi board computer is the most appropriate choice for
the tasks to be solved.

The next step is the camera selection. There’s no need to use a camera allowing to
make high-quality images since the selected objects haven’t sophisticated form and
exiguous size.

For building the map ultrasonic sensors are needed. For this task, the HC-SR04
ultrasonic ranging module is quite suitable, because of its simplicity, low power
consumption and acceptable accuracy (+1-3 cm).

For the power supply, the Li-lon accumulator with 5V working voltage will be used,
as the instructions for the controller and camera require this level of the input voltage.
To inform the user about obstacles and objects two types of components are needed:
vibration motors to send vibration signals and/or audio transmitter to send audio

signals.

Figure 4 — main electronic components for developing device (1 — Raspberry Pi, 2 —
USB camera, 3 — ultrasonic sensor HCSR04, 4 — Li-lon accumulator, 5 — vibration

motor, 6 — audio transmitter)

2.2.2. Software selection
During the development of this project, the software is provided for the development
of 3D models of the device, for electronic circuit development, for modeling and
control algorithm writing.
There are a lot of programs for 3D modeling, drawing and properties analysis, but 3D
models will be produced in “Solidworks 2016 software, as it allows provide the
strength and other analyzes, and the author is well acquainted with this program.
For modeling the electrical board and electrical connections the open-source “KiCad
EDA” program will be used, as this program has a free license and simple interface for
the user with small experience in electrical board design.
And the last necessary type of software is the IDE software for coding in Python
because in this program the Raspberry Pi will be used. Here the open-source
“Anaconda IDE” will be a good choice since it has a lot of included libraries and

packets inside.

2.3. Designing concepts

As was described above, the device is the waterproof vest with electric components
inside and on it. The design should ensure uniform distribution of the electronics along
the body, comfortable wearing, and fastening. It is also important to properly position
the camera and ultrasound sensors to obtain adequate data and capture the entire
workspace. The workspace here is the space in front, on the right and on the left of the

user.

15°

4000 mm

~USer

Figure 5 — user’s workspace

As mentioned above, the location of the sensors and the camera should ensure the

capture of the entire working area, so the proposed scheme is as follows:
1,2

Figure 6 — main components proposing location (1,2 — audio and vibration modules, 3
— camera, 4 — Raspberry Pi, 5 — ultrasonic modules, 6 — accumulator)

Also, all elements should be located in silicone cases to protect against shock and
liquid, the controller and batteries should be in the inner layer of the vest, and the

camera and ultrasonic rangefinders should partially be on the surface.

2.4. Selected methodology analysis

This chapter was focused on the description of proposing solution including hardware
and software selection, designing concept definition. As a result of the selected options,
the main principles of the algorithm were determined — the mapping using ultrasonic
sensors will be implemented using filtering. The object recognition will be realized
using neural networks, classification and statistics methods.

The software was chosen according to its usability, author’s acquaintance and open
source license possibility. The hardware, in turn, was selected according to its
accuracy, performance, and cost.

In the section about designing concepts, the main options about the device appearance
were described: the workspace, the main electronics’ location and the layered structure

of the vest.

3. THE DEVICE DEVELOPING BASED ON THE SELECTED
METHODOLOGY

This chapter is devoted to developing the device itself. The developing includes the
following topics: object recognition algorithm developing and its analysis, the distance
measurement and indoor mapping algorithm developing and analysis, the 2D and 3D
modelling, the electrical scheme developing and operation time calculation.

Following this chapter, the operational prototype should be realized and the algorithms
mentioned above should be tested on it. The prototype should be based on selected

previously electrical parts.

3.1. Objects recognition algorithm

The most producive and efficacious method for object recognition is using deep
learning algorithms. Deep learning is a technique for machine learning focused on the
examples. Deep learning methods use standard neural network architectures. The
difference between simple neural and deep neural networks is the number of hidden
layers - neural network (NN) usually contains 2-3 of them, and deep NN, in turn, may
have at least 150 hidden layers. [25]

The deep learning models require pre-processing steps, such as data labeling and
network architecture description. In this work, the data labeling means the
differentiation of the dataset by the specific type manually.

One of the most popular types of deep NN is the convolutional neural networks (CNN).
CNN uses 2D convolutional layers that they’re well suited for image recognition. [26]
The usage of the CNNs allows the elimination of the manual feature extraction -
classification of the images. This type of neural network extracts data from the images
directly. The essential point here is that relevant features aren’t pre-trained, they are
learned during the network training. This detail makes deep learning algorithms highly

accurate for machine vision and classification of the objects.

Since the Python programming language has been used for this work, the architecture
can be set using a CAFFE (Convolutional Architecture for Fast Feature Embedding
[27]), deep learning framework which has an interface in Python.

CAFFE works with different types of machine learning, designed for solving the
problems of classification and image segmentation. The CAFFE provides
convolutional neural networks, RCNN, long-term short-term memory, and fully
connected neural networks. At the same time, graphic process systems (GPUSs),
supported by CUDA architectures and using the CUDNN library from Nvidia, are used
to accelerate learning. [27]

The main part of the CAFFE’s work are blobs - multidimensional data arrays using in
parallel computing that fit on a CPU or GPU. Training in CNN processed as parallel
multiprocessor computing of blobs from layer to layer.

The recognition process requires the video stream from the camera and detection of the
object type to each frame.

The first step for model training is dataset preparation. The images have been found in
Google Images using simple queries for each necessary object. Then the script in

JavaScript was used to collect the URLSs for the observed images:

var script = document.createElement(‘script’);

script.src = "https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js";
document.getElementsByTagName(*head")[0].appendChild(script);

var urls =$(".rg_di .rg_meta’).map(function(){return JSON.parse($(this).text()).ou; });
var textToSave = urls.toArray().join(\n');

var hiddenElement = document.createElement('a’);

hiddenElement.href = 'data:attachment/text,’ + encodeURI(textToSave);
hiddenElement.target ='_blank’;

hiddenElement.download = "urls.txt’;

hiddenElement.click();

The file with URLs should be processed using the Python script to download images
to the prepared folders. The code for this task can be found in the Appendix.

The second step is preparing the data for the training: to convert the images to the
LMDB (Lightning Memory-Mapped Database) format readable for the Caffe module.

The following bash script has been used for this task:

EXAMPLE=~/scripts/examples/dataset

DATA=~/scripts/data/dataset

TOOLS=Dbuild/tools

TRAIN_DATA ROOQOT=~/scripts/dataset/train/

VAL_DATA ROOT=~/scripts/dataset/train/

RESIZE=true

GLOG_logtostderr=1 $TOOLS/convert_imageset \

SEXAMPLE/dataset_train_Imdb

echo "Creating LMDB values..."

GLOG_logtostderr=1 $TOOLS/convert_imageset \

$DATA/text.txt \

$EXAMPLE/dataset_val_Imdb

echo "Ready"

Also, it is necessary to compute the mean image. The purpose of the neural network
learning process is to search the global minimum of the cost function. To make this
process faster, the correct data preparation is needed. One of the methods for data pre-
processing is the data normalization. The data normalization can be implemented by
subtracting the mean value to get a new dataset with mean = 0.

The bash script that has been used for mean image computation is the following:
EXAMPLE=~/scripts/examples/dataset

DATA=~/scripts/data/dataset

TOOLS=build/tools

$TOOLS/compute_image_mean SEXAMPLE/dataset_train_Imdb \
$DATA/dataset_mean.binaryproto

The structure and parameters for the neural network are described in the prototx file.

And the third step is the neural network training that can be implemented using one
command: ./build/tools/caffe train --solver=models/dataset alexnet/solver.prototxt
As the model is prepared, the script for real-time object recognition can be realized.
The Python code uses a model and prototxt file. During the code execution, the video
stream from the camera connected to the Raspberry Pi is shown inside the frame. The
full code is presented in the Appendix.

The screenshots below show the result of the program execution:

Figure 8 — traffics light is detected

. - @ "(.
\ 21 ¥
L g
- uck 45.3%

-"

Figure 10 — person detection has the most level of accuracy (more than 95%)

Figure 11 — sometimes the algorithms shows the wrong results

Figure 12 — the bus is detected correctly

The results of the detecting algorithm will be summarized in the next section.

3.1.1 Objects recognition testing analysis

The graph below shows the ratio of losses to accuracy for training and test classifier

during the training of the neural network described in the previous section.

Training Loss and Accuracy

—— frain_loss

4- —— val_loss
train_acc

val_acc

Loss/Accuracy
.

Ayt -
MMAMJ&M

20 40 60 80 100
Epoch #

Figure 13 — the plot describing the training loss and accuracy, epochs (corresponding
to the time in secs) are along the x axis, the levels (the value 1 equals to 100%) of the
training loss and accuracy are shown along the y axis

Training and validation values during the NN learning are shown on the plot above.
The epoch here is the number of cycles, in other words, this value shows how many
times NN reads every example to find the pattern on it. The number of epochs for the
NN learning is equal to 100.

After the learning of the neural network, the theoretical accuracy, as can be seen from
the graph, is 97% for both validation and training sets.

The training of the network was based on the image datasets divided to the training
dataset (70%) and validation dataset (30%). Images for datasets were collected in
Google Images using a search query that matches the type of object (for example, for
the object "person™ the request was "person™). The search is conducted according to
the relevance of the results, the number of images in the dataset for each type was at
least 180.

Before training the network, the following images were discarded:

e not relevant;
e with low resolution (less than 600x800 px);

e damaged,;

Network training took about 40 minutes, the result after the first training is shown in
the graph above.

The tests in real conditions (outdoor and indoor) for the object recognition algorithm
have been implemented. After the tests, the obtained data have been summarized in the
table below. The test includes real-time indoor/outdoor observation containing ~30

coincidences for each object type:

Table 1 — analysis of the detection for each object type at the street and at home

o o D o 2| v 2o 2o 2 v 2 8 2| R S| o5
22 |2 |2E|2E228 282|5 |22|22|28 2843
SZ |& |FETETETEE|E |FETE T
3 40 33 2 1 4 0 0 0 0 0 40
§ 28 19 2 0 7 0 0 0 0 0 28
8

@

S 24 19 1 3 1 0 0 0 0 0 24
%

o 38 31 7 0 0 0 0 0 0 0 38
o)

= 30 25 1 1 3 2 2 0 0 0 32
o

41

36

38

29

30

23

35

26

24

44

22

30

18

28

22

17

20

15

14

33

29

29

31

22

24

16

22

40

12

11

27

41

30

14

28

Jed

auoyd
[192

reyo

dna

a|qel
Buluip

Bop

104

91U

9/ABMOIIW

uosJiad

)uls

g 1o | 1 0 2 | 28 | 1 1 33
© o
EE | 2|16 | 1 1 o [0| O 0 21
T2

S
= 0o | 0 | O 0 30 | 25 | 3 2 30
o <

=}

£
S 78.319% 80.204% 7%'2
L 6%

Based on the data from the table, | can say that the algorithm for determining object

type recognizing copes with its task in general. On average, it correctly determines the

type of object with an accuracy of 79.26%. The average percent of correctly determined
objects at the street is 78.319%, at home — 80.204%. The difference might be connected

with the number of the observed objects and their size, however, the difference is not

large.

The algorithm shows the best results for those objects that have a large size (car, table,

sofa) and a large amount of training data (person, chair, bed). The detailed analysis is

shown below:

Table 2 — statistical measures of the algorithm performance

Object type Sen.f_gg'ty’ Spe.mllg'ty’ PPV FNR Accuracy
bed 0.971 0.667 0.943 0.029 0.925
bench 1 0.778 0.905 0 0.929
bicycle 0.864 0.5 0.950 0.136 0.833
bus 1 0 0.816 0 0.816
cat 0.964 0.75 0.964 0.036 0.938
car 1 0 0.976 0 0.976
cell phone 0.593 0.556 0.800 0.407 0.583
chair 0.971 0.5 0.943 0.029 0.921
cup 0.783 0.333 0.818 0.217 0.69
dining table 0.966 0 0.966 0.034 0.933
dog 0.850 0.333 0.895 0.15 0.783
fork 1 0.308 0.710 0 0.743
knife 0.773 0.25 0.850 0.227 0.692
microwave 0.952 0 0.909 0.048 0.87

person 1 0 0.955 0 0.955
sink 0.933 0.429 0.778 0.067 0.773
sofa 0.933 0.333 0.933 0.067 0.879

traffic light 0.842 0.5 0.941 0.158 0.810
tv monitor 1 0.4 0.893 0 0.9
Mean 0.915 0.349 0.892 0.085 0.839

Here, the sensitivity means the proportion of actual positives that are correctly

identified as such or true positive rate (TPR) and calculates as:

TPR = ——
TP + FN

Specificity or true negative rate (TNR) means the proportion of actual negatives that

are correctly identified as such and can be calculated as:

TNR = —
TN + FP

PPV (positive predictive value) or precision here is proportions of positive and negative

results:
PPV = ——
TP + FP
FNR (false negative rate) shows the probability of falsely detection:
FNR = ——
FP + TN

And the accuracy shows the closeness of the recognized object to its real type and it’s

calculate as:

TP + TN

ACC = S TN T FP T EN

Sensitivity of the algorithm

1.050
1.000
0.950
0.900
0.850
0.800
0.750
0.700
0.650
0.600
0.550
0 2 - 6 8 10 12 14 16 18 20

TPR, % Threshold = 80%

Figure 14 — sensitivity plots demonstrates that most of the determined objects
correctly recognized and crossed the threshold 80% value

Mean value of the algorithm sensitivity is 91.5% that is very good result. The plot

below shows the specificity of the algorithm:

Specificity of the algorithm

0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000
0 5 10 15 20

Specificity Threshold

Figure 15 — specificity plots demonstrates the possibility that values have been
recognized as negative mostly correctly

Here the threshold is 30%, and most of the values crossed this threshold. According to
the plot above, can be concluded that the algorithm should be improved for better

definition of the true false values.

However, the mean (83.9 %) and individual accuracy values are quite high that shows
the high precision of the algorithm. The accuracy might be increased be improving the
algorithm for higher values of the specificity mentioned above.

Comparing theoretical and real accuracy, it’s possible to summarize the real accuracy

is lower. There’s a list of factors causes the accuracy decline:

e training and validation datasets consist of each object separately, i.e. each image
has only one object often without bright background. However, if the images in
the dataset have excess details, it can decrease the pattern recognition itself;

¢ in real conditions, the picture may contain several objects of different types and

dimensions.

The algorithm has some drawbacks listed above, however, the performance and
accuracy is enough for the first prototype. In the future, it is possible to retrain the

neural network using more voluminous datasets and varied images inside them.

3.2. Distance measurement and mapping using ultrasonic sensor

Determining the distances for objects in rooms is important for people with visual
impairments, as this will reduce the risk of injury and allow them to navigate in space
easier, especially considering the fact that these people spend much more time indoors
than on the street. The following parameters were chosen as the goal for the problem
solved in this chapter: find the beginning and the end of the user’s path, track the path
with an accuracy of 0.5 m, find the correct correspondence to the distance traveled,
find the dimensions of the room with an accuracy of 0.5 m, determine the shape of the
objects’ in the room with an accuracy of 0.5 m.

Ultrasonic sensors emit short, high-frequency sound pulses at regular intervals. These
pulses are transmitted in the air at the velocity of sound. If they strike an object, then
they are reflected back as echo signals to the sensor. The echo signal can be post-
processed to the distance as time-span between emitting the signal and receiving the

echo.

Figure 16 — the description of the ultrasonic sensor working method

An Ultrasonic Distance Sensor (UDS) has 4 pins:

« Vcc is the power pin, requires 5V;

« Trig is transmitting pin (trigger) and it can be triggered with 3.3V,

« Echo is the receiving pin. The output of this pin has 5V;

« Gnd is the ground pin.
Since the Echo pin outputs 5V and the Raspberry can only receive 3.3V maximum, it
IS necessary to use a potential divider. The resistance depends on the voltages

mentioned above:

R, = %

where Vot = 3.3 V is the divider output voltage, Vi, = 5 V is, respectively, divider
input voltage.

If Ry is assumed as 1000 Q, then R, will be equal to 1941, 176 Q. For more

convenience, this value is rounded up: R, = 2000 Q.

sV GND
¢ ®

Figure 17 — the voltage divider

Also, the vibration motor was added to provide feedback for the user: the less distance
to the object — the more frequent vibrations. During the next stages of developing the
device, vibration motor can be replaced by a microphone playing prepared phrases.
Before developing the algorithm, there’s a necessity to describe the calculation of the
parameters:

1. distance:

vxt
2

where v — ultrasound speed, t — time from transmitting signal and receiving it.

d =

Since signal passes 2 ways — forward and reflected — the distance is divided by
two.

2. vibration intensity:
The vibration motor is controlled by GPIO output using Pulse Width
Modulation (PWM). PWM is described in the gpiozero library and has a rate
between 0 and 1.

(d — minDistance) X (minValue — maxValue)
v =

. — + maxValue
(maxDistance — minDistance)

_—(@-01)
 (2-0.1)

Here minDistance = 10 cm, this is the minimum distance for sensor reaction,

+1

maxDistance, accordingly, the maximum distance for reaction, assumed as 2 m.

MinValue and MaxValue correspond to the 0 and 1 PWM values.

3. mean ultrasound speed for temperature rate:

y*R*T
M

where vy is the adiabatic index of air = 1.4, R = 8.3144 is the universal gas
constant, T is the absolute temperature of the air (K), M is the molecular mass
of air (g / mol) = 28.98. The operating temperature range of the sensor is 30 -
80°C, the speed of sound is calculated for them. The mean speed for the

working temperature rate is 343 ms™,

To obtain the distance values, the Python script has been written. The InputDevice and

the OutputDevice libraries have been used to control the ultrasonic sensor. Functions

in the script use time span for sending and receiving signals according to the sensor’s

documentation:

The trigger pin transmits ultrasound for 10 ps;

Then echo pins waits for the reflected signal, its state is active. The pulse time
starts recording;

After the receiving echo, the echo pin becomes inactive, the pulse time interval
IS obtained,;

Then the sensor “sleeps” for 6 ms.

Then it is necessary to add another 2 sensors and write data to the file. Since the data

from the sensors include errors, noise, it is necessary to pre-process them. Firstly, the

signal was limited to “bottom” and “top” - negative values and values corresponding

to distances greater than 400 cm were discarded. Secondly, the data was processed

using the median filter. The plots below show the data from ultrasonic sensors with

and without filtering:

Ultrasonic sensors data before filtering

350 A 1

& |

_3

300 4 it

\
250 T ; l] I
i
/| (] |
g '| Ll iAW
E 200 1 i | I . ll' /
o \ | A | My
bt \ ﬂ\ T~ | N { | | If
2 \ [l | \ | [Ao |
5 UL AL N NN A O AL
S AYS7/E R /B \SYRRRETINT Awre v e A e AN i
: I‘ |II \f \ | |‘ I|I i I"‘ﬂ/'. | A R ||‘II \ |
\ {.I I| ,‘ | I"\ |‘ \ | [| I| | " ,” \ ', | I:lqlll \ v II
(IR \ VA /\ I\ X |
1009 | | l'l I1|IJ I‘ :) W/ } | I]\ TRy "-'J l | f) !'a | l‘u
\ II I| \ || | I | ". ‘Iu | | . / ".. \
| NIV N Y \/ - \
\ ," N | 1TAY |l N v | .
4 \ \ | i
30 ! Y T —7 !
\l ~J \ I,."
\ \
04
T T T T T T
0 10 20 30 40 50
Time (s)

Figure 18 — data from ultrasonic sensors before filtering

Ultrasonic sensors data after filtering

250 4

200 4

E
o
2 150 4
2
]
o
a
100
=0 4
o 10 0 0 40 50
Time: (5]

Figure 19 — data from ultrasonic sensors after median filtering with kernel = 3

Ultrasonic sensars data after filtering

1
2
3

180 4

—y

160 4

1430 4

120 4

Distance (cm]

Tume (5)

Figure 20 — data from ultrasonic sensors after median filtering with kernel =5

As can be seen from the plots above, the median filter allows achieving more smooth
lines with less number of peaks. The kernel size increasing leads to the smoother curve.
Also, ultrasonic sensors are located at an angle of 40 degrees, to cover a larger area of
space and non-intersection of signals.
The full code in Python can be found in the Appendix. The photo of the prototype for
algorithm testing is described below:

Figure 21 — the prototype used for testing

The important part for mapping is tracking the user’s path, due to the necessity to set

obstacles according to the user’s position. This feature has been realized using the

gyroscope/accelerometer sensor GY-521.

To create a map, the following steps are needed:

read the accelerations from the gyroscope/accelerometer sensor;

read distances to the obstacles using ultrasonic sensors, process this data;

write the data both from the gyroscope/accelerometer and ultrasonic sensors to
the file;

read the file and pre-process the angles and acceleration using the Butterworth
filter;

integrate them twice to obtain the coordinates;

plot the data to obtain a path and a map.

The GY-521 should be connected to the Raspberry Pi board over the 12C interface. To
work with the sensor, it is necessary to connect 4 GY-521 pins (VCC, GNS, SCL,

SDA) to the Raspberry GPIO pins as it described in the picture above:

ERNRRNRRRNNNRNN

7102 'd Auaqdsey
L"1A Z 19poj Id Auaqdsey

ETHERNET

USB 2x

- UV

Figure 22 — the gyro accelerometer connection

It is necessary to configure the 12C communication protocol in Raspberry Pi and find
the bus address of the connected sensor using the following command in the terminal:

sudo i2cdetect -y 1.

pi@raspberrypi:~ 5 sudo i2cdetect -y 0
® 1 2 3 4 5 6 7 8 9 a b c

i i i i i i i L
1 1 1 1 1 1 1
i i i i i i i M

1 1 1 1 1 1 1
T o o =4

- == == == == == BB -- -=- -=- -- -

Figure 23 — the detection of the register of the GY521 connection

Now the algorithm can be written using this address. The full code for obtaining the
angles and accelerations data can be found in the Appendix.
The next step is obstacle detection. After obtaining data from all sensors it is necessary
to write them into file for further processing.
The code for writing the data for sensors into the file is places below:
def write_csv(data):
with open('/home/pi/Desktop/data2.csv', 'a") as outfile:
writer = csv.writer(outfile, delimiter="")
writer.writerow(data)
X = datetime.datetime.now()
data = [X, acceleration_xout_skaled, acceleration_yout_skaled,
acceleration_zout_skaled, distancel, distance2, distance3]
write_csv(data)
Then it’s necessary to read accelerations from the file and process data using
Butterworth filter to remove noise. The code below describes Butterworth filtering:
N = 2 # Filter order
Wn = 0.001 # Cutoff frequency 0 <Wn <1
B, A = signal.butter(N, Wn, output = 'ba’)
xAcc[:] = signal filtfilt(B, A, xAcc[:])
yAcc[:] = signal.filtfilt(B, A, yAcc[:])

To obtain coordinates, it’s necessary to integrate the accelerations twice using
scipy.integrate.cumtrapz function. This method not accurate, due to the quality of
accelerometer data and errors. However, it should be enough to obtain not accurate
path to make a general map.

The last step is, respectively, plotting the data using the processed data from the

sensors. The plot below shows the obtained map of the room:

—— curve in (x,y)
e pointsin (x,y)

Figure 24 — the path and the room outlines

curve in (x,y)
e pointsin (x,y)

Figure 25 — the outlines of the room and objects in the room are highlighted, the noise
values are placed in circles

The constructed map fairly accurately shows the size and shape of the room, although
the result is not ideal. It can be noted that the left wall of the room is practically not
marked, this was due to the small amount of data (the map was built after one circle).

It is not difficult to improve the map by collecting more data.

3.2.1. Distance measurement and mapping analysis

The following tasks were set as a goal for the room map:

« Track the path of a person with an accuracy of 0.5 m (turns, beginning, and end
of the path, correspondence to the distance travelled);
« Determine the dimensions of the room with an accuracy of 0.5 m;

« Determine the shape of large objects in the room with an accuracy of 0.5 m.

According to the received map of the room described above, it’s possible to say that
the tasks were completed. The real room dimensions were 3x7 m, the map shows
dimensions 2.3x7 m, this is the satisfied result.

As for tracking the path, the tasks set in this direction were also fulfilled: the beginning
and end of the path correspond to the actual path, the distance traveled also corresponds
to the real one with an accuracy of less than 0.5 m.

The plots below show the accelerations, velocities, and the path obtained by

accelerometer:

Acceleration (g)

X, Y, and Z Acceleration

2.0
— X
—_
— 7
1.5
1.0
0.5 4
. . “ _,-"f\"' NN
\\ A { -
0.0 A 1
___?;.3.*-* ~ N A
-0.5 7 r;"
/jl;
-1.0 T : T T T T T
o] 10 20 30 40 50
Time (s)
Figure 26 — the accelerations obtained by accelerometer
X, Y, and Z Velocities
01 v
_—
40
%
E 20
0,
6 lb 2b 3|0 4|0 _';0
Time (s)

Figure 27 — the velocities calculated from accelerations

2D Trajectory ((X,) Coordinates))

60

50 4

40 4

30 1 &

Y Distance (cm)
®

20+

10 4 .

“.. ."'..’-\,\

04 ® ®
LI °®

® .
—10 - .'=a.a=--

T T T T T T T T
=700 —600 =500 —400 =300 =200 —100 0
X Distance (cm)

Figure 28 — the position in 2D calculated from the velocities

As a conclusion for mapping and distance measurement, it’s possible to say that all
tasks were completed. However, the result can be improved by using more data. As
mentioned above, this result was obtained after one walk around the room, with an

increase in the aisles it’s possible to obtain a more detailed map.

3.3. Description of the device operation algorithm

The operation algorithm should combine several scripts mentioned above and provide
the work of the whole device.

Operation algorithm should solve the following tasks:

« run the script for the device after turning on;
« control the sensors;

« run the script for map designing;

« inform the user about obstacles;

« inform the user about the battery discharging.

l. Turning on |
~—

Y

Check the charge ‘

. o S yes }
Infrom user about Infrom user about
the low charge the current charge

-

b,

L - >y
v
Run main
algorithm
L
__-"'-.-— "‘x\
(furning off |

k. A
— -

Figure 29 — the operation algorithm description

Run main
algorithm

—17
v Y
S 3
Start recording
— Start video stream data from the -,
SENSOrs

L _ v \ A
N T .

Colllect the data
for 2 minutes

-

1 Object recodnition

Run mapping
script
Y Y
-y 's "y

the obstacles minutes

Infarm users about ‘ Clear after 10

Figure 30 — the main script description

To run scripts after boot it is needed to modify the .bashrc file in the /home/pi/
directory. In this file 2 lines should be added in the end of the file, where starting.py is
the file with the main operation algorithm:
echo Running at boot
sudo python /home/pi/starting.py
The starting.py code is the following:
#!1/usr/bin/python
import subprocess
import time
codel = 'python sensors.py' #code for record data from sensors
code2 = 'python object_detection.py' # code for object detection
code3 = "python map.py' #code for mapping
data_file = open("/home/pi/Desktop/data.csv"”, "rw+")
def mapping_buffer(seconds): #run mapping for 10 minutes
start = time.time()
time.clock()

elapsed =0

while elapsed < seconds:
elapsed = time.time() - start
script_3 = subprocess.Popen(code3, stdout=subprocess.PIPE, shell=True)
def main():
while True:
script_1 = subprocess.Popen(codel, stdout=subprocess.PIPE, shell=True) #run first
script
script_2 = subprocess.Popen(code2, stdout=subprocess.PIPE, shell=True) #run second
script
time.sleep(60) #wait for data collection
mapping_buffer(600) #run mapping for 10 minutes
data_file.truncate() #clear file with data to restart the map
The code above has been successfully executed, the algorithm runs all necessary

scripts.

3.3.1. Operation algorithm testing and analysis

For the working algorithm, the tasks described in the previous section were set. In
general, the working algorithm should start after turning on the device and run all other
scripts necessary for work.

The most important indicator of a working algorithm is its ability to run in real
conditions. The parameter that should be also taken into account is the algorithm
performance.

Regarding the ability to work in real conditions, it is possible to say that this purpose
has been achieved. The algorithm has been tested indoors (for example, the mapping
section describes indoor testing) and outdoors (the section about the object detection
shows the results).

However, it should be mentioned that the current scripts have some issues. The object

detection part is the most “loading” part since this script uses functions and libraries

that are most demanding on the CPU usage. The execution of the main code causes 98-

99% CPU utilization. This fact causes the limitations and warnings:

1. There’s no possibility to add other features;
2. The high constant load of the CPU causes the board overheating, and

subsequently can damage it.

To overcome the issue with high CPU usage, it is possible to split up the solving task
between separate boards. For instance, connect an external small-scale Arduino Nano
or Raspberry Pi Zero board and execute part of the scripts there (for example, the
recording data from the sensors).

Additionally, to prevent overheating, the Raspberry Pi board should be placed in a
special case providing ventilation and cooling. The resolution of this task is described

in the modelling section.

3.4. Electrical scheme developing

The electrical scheme should ensure the correct connection of the selected electronic
components. Also, it should describe the power connection.

The requirements set for power source are the following:

e It should provide the necessary voltage level for the components;

e The power source must ensure the operation of the device for at least three hours.

So, the first step before the scheme developing is the calculation of current and voltage
consumed by electronic components, and the selection of a battery based on it.

The total power consumption can be calculated as a sum of average consumable power
and current:

Table 3 — power characteristics of the module components:

Component Average consumable Average consumable
power current
Raspberry Pi Model B+ 35W 700 mA
Ultrasonic module HC- 0.75W 15 mA
SR04
Vibration motor 1030 0.1914 W 58 mA
Audio module 0.005 W 1 mA
HPM14A
USB camera 2W 500 mA
Gyro accelerometer 0.013W 3.9 mA
GY-521

Average power consumption and current, respectively:
Wy =35+ 0.75% 3+ 0.1914 + 0.005 + 2 + 0.013 = 7.9594 W
Iyay =700+ 15%3+ 58+ 1+ 500+ 3.9 =1307.9mA
To power, the device, lithium-polymer batteries with a built-in protection board and an
MCP73833 charge controller with an IM27313 DC-DC converter were selected.
Output voltage is 5V (suitable to power the Raspberry Pi board), capacity - 2000 mA/h.

Based on the above data, the device’s battery life [28]:

Usce *Coce * K *Kgq *K;e 5*%2%0.8%0.85%0.8
T = = = 0.683 (h
W av 7.9594 (hours)

where C,.. is the capacity of the battery (Ah), U, Is the supply voltage of the battery
(V), Wy 4, is the average power consumption (W), K is the inverter efficiency equal to
80%, K;,; = 0.85 is the coefficient depth of discharge, K,. = 0.8 - coefficient of
available capacity.

Thus, one battery is not enough to ensure the operation time of the device for 3 hours,
it is necessary to use 5 accumulators connected using the parallel method. Then the
total capacity of the batteries C,.. = 10000 mA/h, the supply voltage of the batteries
remains the same. In this case:

Ugce * Cace * K *Kgqg *Kge 5%10%0.8%0.85%0.8
T = = = 3.417 (h
Wy av 7.9594 (hours)

So, it is necessary to use 5 batteries connected in parallel to provide the operation for
3 hours.

The electrical scheme damage in KiCAD software. Some parts of the scheme are
described below:

il
.
i
O
C . GPIO7/SPILsct 28 L #22 GND .
L GPIOB/SPIICSO S il 23 SPI_SCLK/GPIOTL -
' GPID25 2% SPLMISO/GPIOY -
~ oND 24 19 <pl_MOSI/GPIOLO
cPiozy 18 L7 3y ouT
GPioz3 18 LS Cpjg22 -
""""" cnp 14) Gpigzr
GPIO18,/PwWMo 14 L Gpig17 -
GPIO15/UARTO_RX 14 L9 GND :
GPIOL4 /UARTO.TX B4 b7 GP.CLKO/GPIO4
: " oND 4 b2 |2C0_SCL/GPIOYL -
asy LS 366 SpayRios |
4By 2! S bl L 3y3iouT

Figure 31 — The Raspberry Pi connecting ports

The Raspberry Pi ports are taken from the board datasheet. As shown in the picture
above, Raspberry has outputs for powering the sensors. The sensors can be powered

either from Raspberry or common accumulators.

- - UltrasonicModule3

HC—SRO4 -

o T-J I3

=
=

o O

Lol
| S

ASE
4y
&)

GNE. .

Figure 32 — The GY-521 gyro accelerometer’s and HCSR04 ultrasonic sensor’s ports

The gyro accelerometer has been connected to the 3.3 V power source and 12C ports

of the Raspberry Pi board. The connection can be seen in the picture below:

..... GRIOTASRIZGCL Sapon moue none sE=iGNDER 2o &
6PIBBASPLESE20 |11 SPISCLK/GPIO1]
GRigzs 22 + 1 @k SpiMISO/GPIOY
6ND 29 D1 @D gpi MOSI/GPIGL
GPiozy 18 el YsvE o
GPi0z3 18 nE 15 crigaa
GND R 0 iR IS gay - e e L
GPlIo18/PwMp 12 1 Vg T PIPE:
S % " (i 1_0‘ : e o] 3
L 6PI015/UARTO_RY L0 - o il igd Gy il
- GPIOLA/UARTOLTX 2o .- . .. 8 R I L s
: " GND B4 5 aco-scirenios
A S LR i)
Sy 24 b 3v3ouT
S
oL ADO
b6 xti
] L5 YDA
A P3SN S
o
2
A

Figure 33 — the connection between Raspberry Pi and GY521

The ultrasonic sensors are connected to the GPIO pins, and as the echo pins output the
5V signal, which can cause the Raspberry Pi damage), it should be connected through
the voltage divider:

o+ UltrasenicHodulel UltrasonicModule? UltrasonicModule3
o
2
K-S HC—SRO%4 HC—SRO4 HC—SRO4
E
> : >

h,E +4+5Y H 5V +5Y

[=J=8

Be

o o

oo

THe

q il

GND GND

23 spLSCLK/GPIOLY
2L cp| MISD/GRI09 GND

0 = g

i S o

GPI07/spLsc1 24 25 Gnp _ TTdY T4
ND

9 cp|_MOSI/GPIOLY

A7 43v3_ouT 3 o
R

ioon

GPIO18/PwMo 1

G 02
= . 16]
onD 14 '
Rz
x 1% G 2000
g 1 CReLHOAEPIO
“anp &4 15 |2c0_ScL/GPIOL v L

R&
2000

GPIO15 /UARTO_RY

GPIOLY /UARTO_TY &4 A
+5Y =i 13 12C0_SDA/GPIO ’
+5v 24 1L 43v3_ouT

Figure 34 — the connection between Raspberry Pi and HCSR04 sensors

The full scheme can be found in the Appendix.

3.4.1. Electric scheme testing results

The electronic components connected according to the scheme described above fulfill
their task. However, as it was noticed in the previous sections the electronic part
requires cooling and moisture protection, which will be taken into account in the next
section.

The operating time was also checked, the prototype was connected to 5 batteries and
left to work, every 5 minutes the battery charge was taken. The graph of the decrease

in charge can be seen below:

Battery Discharge Graph
5.5

Output voltage (V)

0 50 100 150 200
Time (min)

Figure 35 — plot describing the accumulators discharging

As can be seen from this graph, the device can work for 3 hours. However, the
theoretical operation time was equal to 3.4 hours, but in practice, the operation time
span is 3.1-3.2 hours.

The operation time can be increased by using more number of accumulators or be using

the accumulators with more capacity.

3.5. 2D and 3D modelling

This section is intended for 2D and 3D modelling of the developing device. As a result

of this section the following tasks have been set:

« Developing of the bodies for the Raspberry Pi and ultrasonic sensors;

« The vest should include mountings;

« The placing of the electronic components should be realized correctly, some
components should be placed on the vest and some of them inside the vest layers;

. Ventilation and cable management should be taken into account.

Firstly, the body for the Raspberry Pi was developed. The body has holes for the cables
and cooling the board. This body should be placed inside the vest. The 3D model can

be seen below:

Figure 36 — the body for the Raspberry Pi

The drawing for the body was made in accordance with the requirements of GOST,
which is required by the terms of the grant “UMNIK”, under which this work is carried

out. The drawing can be viewed in the Appendix.

Secondly, the mountings and the body were modelled for ultrasonic sensors. These
sensors should be placed at an angle of 40 degrees. Sensors should be located on the

vest. The 3D model is as follows:

Figure 37 — ultrasonic sensors in the body
The drawing can be found in the Appendix.

The last part is the assembling of the components. The assembling looks as follows:

Figure 38 — the prototype of the device

This vest has mounts on the sides so that it is possible to place the camera and sensors
on the front in the center. The camera and ultrasonic sensors are located in the front.
The holes under the camera has been implemented for better Raspberry Pi board
cooling. The accumulators are placed in the back, the audio modules and vibration
motors are located near the shoulders for better receptivity.

The wires can be easily integrated into the internal layers of the vest. The bodies can
be printed using a standard 3D printer.

Also, the weight of the vest is important, as it was defined in the Proposing solution
section it should be no more than 3 kg. The vest used as a base for the assembling is
made from neoprene and has weight 2 kg. With all electronics, the weight of the vest

shown above is about 2.5-2.6 kg, that less than a set maximum.

3.5.1. 2D and 3D modelling results analysis

To model the device, several important tasks were posed: the vest should have
convenient fastenings that any user can handle; vest weight should be less than 3 kg;
all electronic components must be placed so that their correct performance is ensured,
and at the same time they should be protected from moisture and the heat excessing
must be conducted.

All of the above factors were taken into account in the simulated prototype shown in
the previous section.

Also, as noted above, the body elements can be printed on a 3D printer to simplify the
manufacture of the prototype or made by casting for a complete device.

The basis, type, material, and fastening of lifejackets were used. Such vests are usually
made of lightweight materials (neoprene), have convenient fastenings, and do not
constrain movement. For the prototype, you can use a life jacket, converted for the
required task.

Thereby, it’s possible to say that all the tasks for prototype modeling were completed.

3.6. Device developing summary

This chapter was devoted to the development and testing of a prototype device. For
development, electronic components and programs were selected.

As was analyzed in the previous chapter, the most appropriate base form for this type
of device is the waterproof vest with electronic components inside/on it. As a base, the
type and material of the life vest was used, which has convenient fastenings,
lightweight and is comfortable to wear. The developed model shows that taking into
account all electronic components, the weight of the vest is less than 3 kg.

Also, the device must be able to work for at least three hours. For this, a circuit for
connecting electronic components was developed and on their basis, the theoretical
operating time and the number of batteries capable of providing it were calculated.
According to theoretical calculations, 5 batteries should ensure the operation of all
electronics for the planned time, which was confirmed experimentally.

Also in the chapter, algorithms were developed and tested for recognizing a number of
objects in real-time and obtaining a room map by determining the distance to objects
using ultrasonic sensors and tracking the user's path using an accelerometer. Object
recognition is performed in real-time using a camera connected to the Raspberry Pi,
the algorithm uses data from a pre-trained neural network.

3 ultrasonic sensors located at an angle of 40 ° determine obstacles in front, to the right
and to the left of the user and cover a distance of 400 mm in front of him. At the same
time, the accelerometer tracks movement and turns when walking. Then these data are
processed and based on them, a room map is constructed with the outlines of objects
inside the room. The size of the room is determined with an accuracy of less than 0.5
m.

Thus, it is possible to conclude that all the tasks were completed.

4. DISCUSSION

This chapter is intended for discussion about project results. The limitations that the
author encountered while performing the work will be considered. Further steps that

can improve current results and possible new features will also be described.

4.1. Limitations

There were few limitations encountered during the implementation of the project. They

are listed below:

e The CPU of the Raspberry Pi. As noted earlier, the Raspberry Pi CPU is 98-99%
loaded, so you need to use an additional controller to separate tasks between
them and reduce the load on one board;

e Operation time. Operating time is very limited, and with its increase, the number
of batteries should increase also, which affects the weight of the device and ease
of use;

e Real-time work. If the object type recognition algorithm is capable of working
in real-time, then the map building algorithm needs separate scripts for reading
data from sensors and a separate algorithm for building a map since data from
sensors must be pre-processed,;

e Object type. The type of recognizable objects is limited by the parameters of a
trained neural network. In order to expand the list of objects, the neural network
must be retrained;

e Object recognition. The quality of object recognition depends on the quality and
quantity of data used to train the neural network. As can be seen from the results
obtained during the testing of the algorithm, some types of objects have a high
level of recognition errors (> 20%). This error level can be reduced by increasing
the data in the dataset for the required type of object;

e Path tracking. The accuracy level of tracking the user’s path is limited by the
accuracy of one sensor, the data from which include noise and measurement

errors.

4.2. Future improvements

As noted above, the developed prototype has several limitations. Some of them may
be allowed in the future. There are also some functions that were not implemented in

this work, but might be added in the future.

e Separation of tasks between multiple controllers;

e Adding the ability to notify the user both using the speaker and using
headphones;

e Increasing the number of accelerometers for more accurate data on the
movement of the user;

e Ability to build maps outside the premises, save them and export to tactile
screens;

e Ability to use ready-made databases containing environmental information (for
example, the user can use Google Maps and information from them to notify the

user about objects nearby).

SUMMARY

This work was devoted to the development of a device that facilitates the qualitative
movement of people with visual impairments.

In the first chapter, an analysis of existing solutions was carried out, the advantages
and disadvantages of modern developments were noted. The goal of the study and its
objectives. The concept of the device is determined and the relevance of development
at the present time is confirmed.

Based on a certain concept, components were selected for the implementation of the
module. An algorithm for recognizing given types of objects has been developed. An
algorithm has been developed that reads indicators from ultrasonic sensors and an
accelerometer, as well as an algorithm for constructing a room map.

According to certain criteria, the layout of the device is selected. The operation time
for the device is about 3 hours.

Summing up the work, it’s possible to say that it fully complied with the requirements

of the technical specifications.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

LIST OF REFERENCES

Sachkov M., Yusupova A., "Filtration algorithms of ultrasound sensor signals
for obstacle detection devices," Scientific and Technical Journal of
Information Technologies, Mechanics and Optics, vol. 19, no. 2, pp. 326-332,
2019.

Fricke, TR, Tahhan N, Resnikoff S, Papas E, Burnett A, Suit MH, Naduvilath
T, Naidoo K, "Global Prevalence of Presbyopia and Vision Impairment from
Uncorrected Presbyopia: Systematic Review, Meta-analysis, and Modelling,"
Ophthalmology, 9 May 2018.

Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et
al., "Magnitude, temporal trends, and projections of the global prevalence of
blindness and distance and near vision impairment: a systematic review and
meta-analysis," Lancet Glob Health, 5 September 2017.

E. K. ElImannai W., "Sensor-Based Assistive Devices for Visually-Impaired.
Review," Sensors, 10 March 2017.

L.J. Z. D. W. L. W. X. Pei Xuming, "IEEE International Conference on
Mechatronics and Automation,™ in A Robot Ultrasonic Mapping Method
based on the Gray System Theory, 2010.

0. G. U. G. Gambino F., "A comparison of three uncertainty calculus
techniques for ultrasonic map building," Proceedings of SPIE - The
International Society for Optical Engineering, January 2015.

F. H. Tunai P. Marques, "IEEE Green Energy and Smart Systems Conference
(IGESSC)," in Autonomous robot for mapping using ultrasonic sensors, 2017.
I. Andersone, "Probabilistic Mapping with Ultrasonic Distance Sensors,"
Procedia Computer Science, no. 104, p. 362 — 368, 2017.

Y. T. Shuihua Wang, "IEEE International Conference on Bioinformatics and
Biomedicine Workshops (BIBMW)," in Detecting stairs and pedestrian
crosswalks for the blind by RGBD camera, 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T.-L. L. N. V. Huy-Hieu Pham, "Real-Time Obstacle Detection System in
Indoor Environment for the Visually Impaired Using Microsoft Kinect
Sensor," Journal of Sensors, pp. 1-13, November 2016.

L.-N. G. G. J. Perez-Yus A., "European Conference on Computer Vision," in
Detection and Modelling of Staircases Using a Wearable Depth Sensor, 2015.
"Obstacle Sensing Stick for Visually Impaired Persons,” 26 October 2015.
[Online]. Available: http://digital-
wizard.net/pic_projects/smart_stick_for_visually impaired.

Saaid, M.F. et. al., "Smart cane with range notification for blind people," IEEE
International Conference on Automation Control and Intelligent Systems
(I2CACIS), pp. 225-229, 2016.

Manikanta, K., et. al., "Implementation and Design of Smart Blind Stick for
Obstacle Detection and Navigation System," International Journal of
Engineering science and Computing, August 2018.

L. Shin Byeong-Seok and Cheol-Su, "Obstacle Detection and Avoidance
System for Visually Impaired People,” Haptic and Audio Interaction Design,
pp. 78-85, 2007.

T. Lewis, "Vibrating Clothes Could Help Blind People Navigate," January
2014. [Online]. Available: : https://www.livescience.com/46236-vibrating-
clothes-help-blind-navigate.html.

D. Eagleman, "VEST: A Sensory Substitution Neuroscience Project [Online].
Available," March 2016. [Online]. Available:
https://www.kickstarter.com/projects/324375300/vest-a-sensory-substitution-
neuroscience-project?ref=category_featured.

K. Rosmino, "Replacing white sticks with electronic devices: new
technologies for the visually impaired,” 26 July 2019. [Online]. Available:
https://www.euronews.com/2019/07/22/replacing-white-sticks-with-
electronic-devices-new-technologies-for-the-visually-impaired.

Brilhault, A.; Kammoun, S.; Gutierrez, O.; Truillet, P.; Jouffrais, C, "In

Proceedings of the 4th IFIP International Conference on New Technologies,

Mobility and Security (NTMS)," in Fusion of artificial vision and GPS to
improve blind pedestrian positioning, Paris, 2011.

[20] C. Liuyuan, "SensCap is a device that guides the visually impaired around
obstacles," August 2009. [Online]. Available:
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/zb34
Ic465/zb34 lc465/index.html.

[21] M. McBride, "Sonar Glasses Obstacle Detection Device for Blind and
Visually Impaired,” 13 July 2016. [Online]. Available: https://www.disabled-
world.com/assistivedevices/visual/sonar-glasses.php.

[22] L. Hardesty, "Avoiding stumbles, from spacewalks to sidewalks," 22 July
2016. [Online]. Available: http://news.mit.edu/2016/vibrating-footwear-
astronauts-visually-impaired-0722.

[23] A.P.J. Petsiuk, "Low-Cost Open Source Ultrasound-Sensing Based
Navigational Support for the Visually Impaired,” Sensors, July 2019.

[24] L. Hardesty, "Wearable system helps visually impaired users navigate," 31
May 2017. [Online]. Available: http://news.mit.edu/2017/wearable-visually-

impaired-users-navigate-0531.

[25] M. Nielsen, “Neural Networks and Deep Learning”, 12 September 2018.
[Online]. Available:
http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.

pdf.
[26] “What Is Deep Learning?”, December 2018. [Online]. Available:

https://www.mathworks.com/discovery/deep-learning.html

[27] Jia Yangging, et. al., “Caffe: Convolutional architecture for fast feature
embedding”, Proceedings of the 22nd ACM international conference on
Multimedia, March 2014.

[28] Kyung-Wook N. “Vibration Pattern for the Implementation of Haptic
Joystick”, 6th International Conference, Proceedings, Part I, 2013.

http://news.mit.edu/2017/wearable-visually-impaired-users-navigate-0531
http://news.mit.edu/2017/wearable-visually-impaired-users-navigate-0531
http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
http://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://www.mathworks.com/discovery/deep-learning.html

APPENDICES

1. JavaScript code for collecting the URLSs for dataset images:
var script = document.createElement('script’);

script.src = "https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js";

document.getElementsByTagName('head’)[0].appendChild(script);

var urls = $('.rg_di .rg_meta").map(function() { return JSON.parse($(this).text()).ou;
b

var textToSave = urls.toArray().join(\n');

var hiddenElement = document.createElement('a’);

hiddenElement.href = 'data:attachment/text,’ + encodeURI(textToSave);
hiddenElement.target ="' blank’;

hiddenElement.download = "urls.txt’;

hiddenElement.click();

2. Python script for the dataset images downloading:

from imutils import paths

import argparse

import requests

import cv2

import 0s

construct the argument parse and parse the arguments

ap = argparse.ArgumentParser()

ap.add_argument(™-u", "--urls", required=True,

help="path to file containing image URLs")

ap.add_argument("-0", "--output", required=True,
help="path to output directory of images")
args = vars(ap.parse_args())
collect the list of URLs from the file, then find the number of images should be
#downloaded
rows = open(args["urls"]).read().strip().split("\n")

total =0

https://ajax.googleapis.com/ajax/libs/jquery/2.2.0/jquery.min.js

loop
for url in rows:
try:
try to download the image

r = requests.get(url, timeout=60)

save the image to disk

p = os.path.sep.join([args["output™], "{}.jpg".format(
str(total).zfill(8))])

f = open(p, "wb")

f.write(r.content)

f.close()

print("[INFO] downloaded: {}".format(p))
total +=1
if something went wrong
except:
print("[INFO] error downloading {}...skipping".format(p))
loop over the image paths we just downloaded
for imagePath in paths.list_images(args[*output"]):
initialize if the image should be deleted or not
delete = False
try to load the image
try:
image = cv2.imread(imagePath)
if the image can be opened
if image is None:
print("None")
delete = True

except:
print("Except")
delete = True
check to see if the image should be deleted
if delete:
print("[INFO] deleting {}".format(imagePath))

0s.remove(imagePath)
3. Python script for real-time object recognition

import the necessary packages

from imutils.video import VideoStream

from imutils.video import FPS

import numpy as np

import argparse

import imutils

import time

import cv2

construct the argument parse and parse the arguments

arg = argparse.ArgumentParser()

arg.add_argument("-p", "--prototxt", required=True,
help=" ptototxt")

arg.add_argument(*'-m", "--model", required=True,

help=" caffe")
args = vars(ap.parse_args())
initialize the list objects should be detected
CLASSES =["bus", "truck", "bicycle", "bench", "cup",

, cat’,

“fork", "knife", "car chair"”, "spoon", "diningtable",

"dog", "bed", "cell phone", "person”, "microwave", "traffic light",

"sofa", "sink", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

load the model
print("[INFQO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
start a video stream
print("[INFQO] starting video stream...")
vs = VideoStream(src=0).start()
vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
fps = FPS().start()
loop over the frames from the video stream
while True:
grab the frame from the threaded video stream and resize it
to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromIimage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
pass the frame over the network and obtain the detections
net.setlnput(blob)
detections = net.forward()
loop over the detections
for i in np.arange(0, detections.shape[2]):
extract the confidence (i.e., probability) associated with
the prediction
confidence = detections[0, 0, i, 2]
show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & OxFF

if the "q" key was pressed, break from the loop
if key == ord("q"):
break
do a cleanup
cv2.destroyAllWindows()
vs.stop()

4. Script for UDS:

#!/usr/bin/python
from gpiozero import InputDevice, OutputDevice, PWMOutputDevice
import time
from time import sleep
import numpy as np
import csv
import math
import datetime
from multiprocessing import Process
Ports
trigl = OutputDevice(4)
trig2 = OutputDevice(21)
trig3 = OutputDevice(25)
echol = InputDevice(17)
echo2 = InputDevice(22)
echo3 = InputDevice(8)
motor = PWMOutputDevice(14)
#calculate the time span between sending and obtaining impulse for 3 sensors
def get_pulse_time_3():
trig3.on()
sleep(0.00001)
trig3.off()

timeout =0
#start recording when signal is sent, stop recording when signal is received
try:
while (echo3.is_active) == False:
pulse_start3 = time.time()
while (echo3.is_active) and (timeout < 50) == True:
timeout +=1
pulse_end3 = time.time()
timeout =0
sleep(0.06)
#is something went wrong return the minimum time span
return pulse_end3 - pulse_start3
except:
return 0.02
def get_pulse_time_2():
trig2.on()
sleep(0.00001)
trig2.off()
timeout =0
try:
while (echo2.is_active) == False:
pulse_start2 = time.time()
while (echo2.is_active) and (timeout < 50) == True:
timeout +=1
pulse_end2 = time.time()
timeout =0
sleep(0.06)
return pulse_end2 - pulse_start2
except:
return 0.02

def get_pulse_time_1():
trigl.on()
sleep(0.00001)
trigl.off()
timeout =0
try:
while (echol.is_active) == False:

pulse_startl = time.time()

while (echol.is_active) and (timeout < 50) == True:
timeout +=1
pulse_endl = time.time()
timeout =0
sleep(0.06)
return pulse_end1 - pulse_startl
except:
return 0.02
#the distance calculation using a time span and speed of air, the distance is calculated
#incm
def calculate_distance(duration):
distance = duration * 17160.5 #to cm
distance = round(distance, 2)
#discard wrong results
if distance > 400:
distance =400
if distance < 0:
distance = 0
return distance
write to file

def write_csv(data):

with open('/home/pi/Desktop/data.csv', 'a’) as outfile:
writer = csv.writer(outfile, delimiter=",")
writer.writerow(data)
Main cycle
while (True):
distancel = calculate_distance(get_pulse_time_1())
distance2 = calculate_distance(get_pulse_time_2())
distance3 = calculate_distance(get_pulse_time_3())
print("Distl1: ", distancel)
print("Dist2: ", distance2)
print("Dist3: ", distance3)
print
X = datetime.datetime.now()
#write distances to the file using a sensors’ angles)
data = [X, distancel*cos(-0,698132), distance2, distance3*c0s(0,698132)]

write_csv(data)
5. Python script for gyro accelerometer:

#!/usr/bin/python
import time

import numpy as np
import csv

import smbus

import math

import datetime

Register
power_mgmt_1 = Ox6b
power_mgmt_2 = 0x6¢
#read the data

def read_byte(reg):

return bus.read_byte data(address, reg)
#read high and low 16-bits data
def read_word(reg):
h = bus.read_byte data(address, reg)
| = bus.read_byte data(address, reg+1)
#concatenate them
value = (h << 8) + 1|
return value
def read_word_2c(reg):
val = read_word(reg)
#get a sigh
if (val >= 0x8000):
return -((65535 - val) + 1)
else:
return val
def dist(a,b):
return math.sqgrt((a*a)+(b*b))
def get_y rotation(x,y,z):
radians = math.atan2(x, dist(y,z))
return -math.degrees(radians)
def get_x_rotation(x,y,z):
radians = math.atan2(y, dist(x,z))
return math.degrees(radians)
def get_z rotation(x,y,z):
radians = math.atan2(z, dist(x,y))
return math.degrees(radians)
bus = smbus.SMBus(0) # bus = smbus.SMBus(0) for Raspberry Pi version B
address =0x68 # via i2cdetect
write to file

def write_csv(data):

with open('/home/pi/Desktop/data2.csv', ") as outfile:

writer = csv.writer(outfile)
writer.writerow(data)

Main cycle

while (True):
gyro_xout = read_word_2c(0x43)
gyro_yout = read_word_2c(0x45)
gyro_zout = read_word_2c(0x47)
acceleration_xout = read_word_2c(0x3b)
acceleration_yout = read_word_2c(0x3d)
gyro_zout = read_word_2c(0x47)
acceleration_xout = read_word_2c(0x3b)
acceleration_yout = read_word_2c(0x3d)
acceleration_zout = read_word_2c(0x3f)
acceleration_xout_skaled = acceleration_xout / 16384.0
acceleration_yout_skaled = acceleration_yout / 16384.0
acceleration_zout_skaled = acceleration_zout / 16384.0
X = datetime.datetime.now()
data = [X, acceleration_xout_skaled, acceleration_yout_skaled,

acceleration_zout_skaled]

write_csv(data)
6. Python script for plot and process the values and mapping:

import 0s

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy.integrate as it
import scipy.signal as signal

from mpl_toolkits import mplot3d

from mpl_toolkits.mplot3d import Axes3D
from datetime import datetime
from array import array
File under analysis.
filename = '/home/pi/Desktop/data.csv'
Data preparation
allData = pd.read_csv(filename)
xAcc = allData.iloc[:, 1].values
yAcc = allData.iloc[:, 2].values
zAcc = allData.iloc[:, 3].values
Dist_1 = allData.iloc[:, 4].values
Dist_2 = allData.iloc[:, 5].values
Dist_3 = allData.iloc[:, 6].values
time = allData.iloc[:, 0].values
#set an epochs for easier calculations below
epoch = np.zeros(len(xAcc))
for i in range(len(xAcc)):
ifi==0:
epoch[0] = 0.000
else:
epoch[i] = epoch[i-1] + 1
xAcc[i] = float(xAcc[i])
yAcc(i] = float(yAccli])
zAcc[i] = float(zAcc[i])
Dist_all[i] = float(Dist_all[i])
epochl = np.zeros(len(Dist_1))
for i in range(len(Dist_1)):
ifi==0:
epoch1[0] = 0.000

else:

epochl[i] = epochl[i-1] + 1

Dist_1[i] = float(Dist_1[i])

Dist_2[i] = float(Dist_2[i])

Dist_2[i] = float(Dist_2[i])
ultrasonic data before filtering
plt.figure(figsize = (10, 6))
plt.plot(epochl, Dist_1, label ='1", color ='r", linewidth = 1, alpha = 0.6)
plt.plot(epochl, Dist_2, label ='2', color ='g’, linewidth = 1, alpha = 0.6)
plt.plot(epochl, Dist_3, label ='3', color ='b', linewidth = 2, alpha = 0.6)
plt.title("Ultrasonic sensors data before filtering’)
plt.legend(loc = 'upper left’)
plt.xlabel("Time (s)")
plt.ylabel('Distance (cm)’)
plt.xlim()
plt.ylim()
plt.grid()
plt.show()
#filtering data using median filter with kernel =5
Dist_1 = signal.medfilt(Dist_1, 5)
Dist_2 = signal.medfilt(Dist_2, 5)
Dist_3 = signal.medfilt(Dist_3, 5)
ultrasonic data after filtering
plt.figure(figsize = (10, 6))
plt.plot(epochl, Dist_1, label ='1', color ='r", linewidth = 1, alpha = 0.6)
plt.plot(epochl, Dist_2, label ='2', color ='g', linewidth = 1, alpha = 0.6)
plt.plot(epochl, Dist_3, label ='3', color ='b', linewidth = 2, alpha = 0.6)
plt.title('Ultrasonic sensors data before filtering’)
plt.legend(loc = 'upper left’)
plt.xlabel('Time (s)’)
plt.ylabel('Distance (cm)’)

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

Plotting X Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, label = 'X', color ='r', linewidth = 1)
plt.title("X Acceleration’)
plt.ylabel(‘Acceleration (g)')

plt.xlabel("Time (s)")

plt.xlim()

plt.ylim(-1, 1)

plt.grid()

plt.show()

Plotting Y Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, yAcc, color ='g', linewidth = 1)
plt.title("Y Acceleration’)
plt.ylabel('Acceleration (g)')

plt.xlabel("Time (s)")

plt.xlim()

plt.ylim(-1, 1)

plt.grid()

plt.show()

Plotting Z Acceleration

plt.figure(figsize = (10, 6))

plt.plot(epoch, zAcc, color ="', linewidth = 1)
plt.title('Z Acceleration’)
plt.ylabel('Acceleration (g)')

plt.xlabel("Time (s)')

plt.xlim()

plt.ylim(-1, 2)

plt.grid()

plt.show()

Plotting all accelerations

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, label ="X', color ="', linewidth = 1, alpha = 0.6)
plt.plot(epoch, yAcc, label ="Y", color ="'g’, linewidth = 1, alpha = 0.6)
plt.plot(epoch, zAcc, label ='Z', color ='b', linewidth = 2, alpha = 0.6)
plt.title("X, Y, and Z Acceleration’)

plt.legend(loc = ‘upper left’)

plt.xlabel("Time (s)")

plt.ylabel('Acceleration (g)’)

plt.xlim()

plt.ylim(-1, 2)

plt.grid()

plt.show()

Butterworth Filtering X and Y Acceleration

N = 2 # Filter order

Whn = 0.9 # Cutoff frequency 0 <Wn <1

B, A =signal.butter(N, Wn, output = 'ba’)

xAcc = signal.filtfilt(B, A, XAcc)

yAcc = signal filtfilt(B, A, yAcc)

plt.figure(figsize = (10, 6))

plt.plot(epoch, xAcc, linewidth = 1, color ="'r")

plt.plot(epoch, yAcc, linewidth = 1, color ='g’)

plt.title("X and Y Acceleration Denoised’)

plt.xlabel("Time (s)")

plt.ylabel('Acceleration (g)')

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

plt.show()

First integration: generating velocity

xVel = it.cumtrapz(xAcc, epoch)

yVel = it.cumtrapz(yAcc, epoch)

zVel = it.cumtrapz(zAcc, epoch)

Plotting the velocities

plt.figure(figsize = (10, 6))

epoch = np.delete(epoch, -1)

plt.plot(epoch, xVel, linewidth = 2, alpha = 0.7, label ="X', color ='r")
plt.plot(epoch, yVel, linewidth = 2, alpha = 0.7, label ="Y", color ='g’)
plt.plot(epoch, zVel, linewidth = 2, alpha = 0.7, label ='Z', color ='b")
plt.title("X, Y, and Z Velocities')

plt.xlabel("Time (s)")

plt.ylabel("Velocity (cm/s)")

plt.legend(loc = 'upper left’)

plt.grid()

plt.show()

Second integration: generating path

xDis = it.cumtrapz(xVel, epoch)

yDis = it.cumtrapz(yVel, epoch)

zDis = it.cumtrapz(zVel, epoch)

3D Trajectory Plotting

plt.figure(num = None, figsize=(10, 8), dpi=80, facecolor = 'w', edgecolor="b")
ax = plt.axes(projection ="'3d")

ax.plot3D(xDis, yDis, zDis, 'red’, label = "Trajectory’, linewidth = 2)
ax.set_xlabel("X DISTANCE [cm]', fontsize = 12)

ax.set_ylabel("Y DISTANCE [cm]', fontsize = 12)

ax.set_zlabel('Z DISTANCE [cm]', fontsize = 12)

ax.set_xlim3d()

ax.set_ylim3d()

ax.set_zlim3d()

plt.legend(loc = ‘'upper left’)

plt.title('Location Trajectory (Accelerometer)’)

plt.show()

fig = plt.figure()

ax = fig.gca(projection="'3d')

Plot a sin curve using the x and y axes.

X = XxDis

y = yDis

ax.plot(x, y, zs=0, zdir='z', label="curve in (x,y))

#ax.plot3D(xDis, yDis, zDis, 'red’, label = "Trajectory’, linewidth = 2)
By using zdir='z', the y value of these points is fixed to the zs value 0
and the (x,y) points are plotted on the x and y axes.

ax.scatter(x, Dist_all-100, zs=0, zdir=z', label="points in (x,y)")

Make legend, set axes limits and labels

ax.legend()

ax.set_xlim()

ax.set_ylim()

ax.set_zlim()

ax.set_xlabel("X")

ax.set_ylabel("Y")

ax.set_zlabel('Z")

Customize the view angle so it's easier to see that the scatter points lie
on the plane y=0

ax.view_init(elev=20., azim=-35)

plt.show()

2D Trajectory Plotting

plt.figure(figsize = (10, 6))

plt.scatter(xDis, yDis, linewidth = 0.1, alpha = 0.7, label = "X Coord.", color ="'r")
plt.title("2D Trajectory ((X, Y) Coordinates))’)

plt.xlabel("X Distance (cm)’)

plt.ylabel("Y Distance (cm)’)

plt.xlim()

plt.ylim()

plt.grid()

plt.show()

7. Python starting script

#!/usr/bin/python
import subprocess
import time
codel = 'python sensors.py' #code for record data from sensors
code2 = 'python object_detection.py' # code for object detection
code3 = 'python map.py' #code for mapping
data_file = open("/home/pi/Desktop/data.csv", "rw+")
def mapping_buffer(seconds): #run mapping for 10 minutes
start = time.time()
time.clock()
elapsed =0
while elapsed < seconds:
elapsed = time.time() - start
script_3 =subprocess.Popen(code3, stdout=subprocess.PIPE, shell=True)
def main():
while True:
script_1 = subprocess.Popen(codel, stdout=subprocess.PIPE, shell=True) #run first

script

script_2 = subprocess.Popen(code2, stdout=subprocess.PIPE, shell=True) #run second
script

time.sleep(60) #wait for data collection

mapping_buffer(600) #run mapping for 10 minutes

data_file.truncate() #clear file with data to restart the map

GRAPHICAL MATERIAL

The electronics connection scheme

GPI02_SDA1_12C

GPI03_SCL1_I2:

GPIO4

GPI017

3V3
5v

1040-SPIO-MESH

GPI011_SPIO_SCLK

D_SD_I2C_ID_EEPROM

GPI05

GPIOL
RaspberryPiModelB+

UltrasonicModulel 7 UltrasonicModule2 UltrasonicModule3 UltrasonicModuleh UltrasonicModule5 UltrasonicModule6
|- cPi021 HC-SRUD4. HC-SRO4 HC-SRO4 HC-SRO4 HC-SRO4 HC-SRO4
. _ I _ _
I3 4 3 2] 23 © §
o4 = 3 = = =
Pio+2 F5V] 4 4 +5v Y +5v Y +5v 4
| o_sczceerron 1] |ove GND GND 1 Jeno) T |ewo
R1 R3 RS R7 R9 R11
[— GPID7_SPIO_CELN _H_ R_Smal _” R_Small _” R_Small _“ R_Small _” R_Small _H_ R_Small

GPIOB_SPIO_CEO_N

GPI025

GPI024

GPI018_PCM_CLK
GPI015_UARTO_RXD

GPI014_UARTO_TXD

GND

RaspberryModelB+1
Camera

Cameral
RaspberryPiB+

C 100nF

A 0 ibrationMator
SE) 9 ML
Miopg 3 8
=Hre— -
AMA_DN4—D 6
Mipps 6 5
=R - |
M w +5v GND
1q 1
Ve RigE L 0 2
et e O 9 g
= 13 8 Wil | [©) nvmnmr_.mmm
FEET 7 IM69D120 2 DATA Anastasiia lusupova
15| 6
+3.3v Sheet: /
GND File: 1.sch
Title: DEVICE FOR NAVIGATING PEOPLE WITH VISUAL IMPAIRMENTS
Size: AL | Date: 2020-01-16 [Rev:
KiCad E.DA. kicad (5.1.5)-3 [T1d: /1
1 I 2 I 3 [| 5 I

The drawing of the Raspberry Pi body, the bottom part:

B-B

2R1

10

25

26

1 HI4, his, +IT14/2

A-A 6N
, (\ \v

54l

2. Unspecified radii R0.3

7
; VA
2 7
o3
3 1
By
6
8 ||,
\0
2
o Q
67 5
Isomefry

us.01001.01

Designed

lusupowa

11062020

1104.2020

Scale

Lt

o

RP| Case Bottom

Page 1 _

Polyamide

The drawing of the Raspberry Pi body, the top part:

sajoy 47/
99

16
L8
Bt @-f-e-f-@-

Y
2
= 8
16
step
- 62* -
58 ‘
1 i N v
b
b
§ W=~ 3— f= o
IE'
S o .
1S]
S == D
= Shdvy
1y moN
Q_I:"D
S S
8RS
SN
N
S I
s S 3
™
RS Ee)
oY L
5| ¥
3 n | <
x n
o S | o
hs] -
S
S
) o~
S
N
&
=~ |
-

al

7

/4

A1)3wos|

The drawing of the back case for the ultrasonic body:

£020010SN 32 <M>
1 L =
1675
1 H12, h12, +IT12/2
US.01.002.03

Designed

lusupowa

Scale

US back case 0

1.2

Polyamide

The drawing of the protecting ring for the ultrasonic body:

502001051 32 <V>

A-A
N
A : |
1 HI12, h12, +IT12/2
US.01.002.05
Scale
Designed | lusupowa US R /lng 0 2 7
Polyamide

The drawing of the top case for the ultrasonic body:

£0°20010SN

——
S5
A-A
56Lﬁ \? &y
S / S
1575)
——
1 H12, h12, +IT12/2
US.01.002.01

Designed | lusupowa

Scale

US Case Top 0

1.2

Polyamide

The drawing of the front case for the ultrasonic body:

2020010SN
155
% 55
¥
/]
30\ o)
&_
147
2
@oes 52 ‘;
- -\ % Be
L) L
\
N | = ;
42,7

1 *Reference dimensions
2 H1I2 h12 +IT12/2

US.01.002.02

Designed | lusupowa

US front case ,

Scale

1.2

Polyamide

KonupoBan

Popmam A4

The drawing of the overlay case for the ultrasonic body:

7020010°SN 32 <V>

32

6 holes M3-7H

1% 27
: 55
B A-A Q16
" * 7 holes 2
| 4 |
il ; e 9 . 1 i
B @19

5
o
I

Fan
U

S
N
U

—D—
|
|
|
©
177 suy

A
=N
T'\
7.2 ’

B2 T wpy 6,2
1 HI2, h12, +IT12/2
US.01.002.04
Scale
Designed | lusupowa US OVE/"[a_y 0 27

Polyamide

The drawing of the assembled case for the ultrasonic body:

000°20010°SN

o
~N
5
1675
% Lode Name Count
B
\r/ 7 Us.01002.05 US Ring 6
[m\ 2 US.01.002.04 US overlay 3
¥ 3 Us.01002.03 US back case 7
4 Us.01.002.02 US front case 7
& 5 Us.01002.01 US Case Top 2
~ 6 Screw M3x6 OIN 7985 18
7 Sealing ring 6
8 HC-SR04 Ultrasonic sensor 3
T
B
1 Reference dimensions
Scale
Designed | lusupowa 4 202 le. U\Qﬁ\ﬂ 4 NN

The rendering of the vest prototype, front:

The rendering of the vest prototype, back:

