
 
 

 
 

Министерство науки и высшего образования Российской Федерации 

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ  

“САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ  

УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ,  

МЕХАНИКИ И ОПТИКИ” 
 

 

 

 

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА 
 
 
 

 

 

 

МОДЫ ШЕПЧУЩЕЙ ГАЛЕРЕИ ЭЛЕКТРОНОВ В КВАНТОВОЙ ТОЧКЕ 

 

 

 

 

Автор  Рамезанпур Шахаб      _______________ 
 (Фамилия, Имя, Отчество)   (Подпись) 

 

Направление подготовки (специальность)  12.04.03  
       (код, наименование) 

 Фотоника и оптоинформатика     

 

Квалификация    магистр   
(бакалавр, магистр) 

 

Руководитель ВКР Богданов А.А. к.ф.-м.н.   ______________ 
   (Фамилия, И., О.,  ученое звание, степень) (Подпись) 

 

 

 
 

 

 
 

 

К защите допустить 

 

Руководитель ОП   Белов П.А., д.ф.-м.н.    _____________ 
 (Фамилия, И.О.,  ученое звание, степень)  (Подпись) 

 

―_____‖__________________ 20 ____г. 

 

Санкт-Петербург, 2019 г. 



 
 

 
 

Студент  Рамезанпур Ш.  Группа  Z4240   Факультет  ФТФ   
                              (Фамилия, И. О.) 

 

Направленность (профиль), специализация    «Метаматериалы»    

_______________________________________________________________________________ 

 

Консультант (ы): 

а) ____________________________________________________________   _____________ 
   (Фамилия, И., О.,  ученое звание, степень)  (Подпись) 
 

б) ______________________________________________________________   _____________ 
   (Фамилия, И., О.,  ученое звание, степень)  (Подпись) 

 

 

 

ВКР принята  ―____‖________________________20 ____г. 

 

Оригинальность ВКР ______________% 

 

ВКР выполнена с оценкой _______________________________ 

 

Дата защиты ―____‖________________________20 ____г. 

 

Секретарь ГЭК ______________________________________________    __________________ 
 (ФИО)         (подпись) 

 

Листов хранения ___________________________________ 

 

Демонстрационных материалов/Чертежей хранения _________________________________ 

  



Ministry of Science and Higher Education 

FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION OF HIGHER PROFESSIONAL EDUCATION 

 “Saint Petersburg State University 

 of Information Technologies, 

 Mechanics and Optics” 

GRADUATION THESIS 

WHISPERING GALLERY MODES OF ELECTRONS IN QUANTUM DOT 

Author    Ramezanpour Shahab    _______________ 
(full name)  (signature) 

Subject area 12.04.03 Photonics and optoinformatics 
(code, name of program track) 

____________________________________________________________________________ 

Degree level  master 
(Bachelor, Master)

Thesis supervisor   Bogdanov A.A., PhD            _____________ 
(surname, initials, academic title, degree) (signature) 

Approved for defense 

Head of program Belov P.A., PhD, D.Sc   _____________ 
 (surname, initials, academic title, degree) (signature) 

―_____‖__________________ 20 ____ 

St. Petersburg, 2019 



Student Ramezanpour Sh. Group Z4240  Faculty PhE 
 (Surname, initials) 

Subject area, program/major     «Metatmaterials» 

_______________________________________________________________________________ 

Consultant(s): 

a) ____________________________________________________________   _____________
(surname, initials, academic title, degree) (signature) 

b) ______________________________________________________________   _____________
(surname, initials, academic title, degree) (signature) 

Thesis received  ―____‖________________________20 ____ 

Originality of thesis: ______________% 

Thesis completed with the grade: _______________________________ 

Date of defense ―____‖________________________20 ____ 

Secretary of State Exam Commission_________________________    __________________ 
(ФИО) (подпись) 

Number of pages ___________________________________ 

Number of supplementary materials/Blueprints _________________________________ 



6 

Introduction----------------------------------------------------------------------------------- 

1  Overview of the research field------------------------------------------------------- 

      1.1   Energy Spectra of a few Electrons Lateral Quantum Dot------------------ 

 1.1.1   Shell Filling and Spin Effect------------------------------------------- 

  1.1.2   Direct Coulomb and Exchange Interaction--------------------------- 

  1.1.3   Capacitance-Voltage Traces of InAs Dot----------------------------- 

  1.1.4   Perturbation Approach for the Coulomb interactions between      

        electrons------------------------------------------------------------------- 

      1.2    Creating Whispering Gallery Modes------------------------------------------- 

 1.2.1   Graphene------------------------------------------------------------------- 

  1.2.2   Oligothiophene nano-rings--------------------------------------------- 

     1.3    WGM as Superpersistent Current---------------------------------------------- 

     1.4    Fabrication of Lateral Quantum Dot------------------------------------------- 

     1.5    Wigner Localization and Conductance Anomalies------------------------- 

2   Theoretical approach------------------------------------------------------------------- 

       2.1   Schrodinger equation in effective mass approximation------------------- --- 

       2.2   Evaluating the Effect of Coulomb energy in energy spectra---------------- 

       2.3   Spin effect of the electrons in Coulomb interaction-------------------------- 

      2.4   Fock-operator---------------------------------------------------------------------- 

3   Methods and Results-------------------------------------------------------------------- 

      3.1   4 meV QD-------------------------------------------------------------------------- 

 3.1.1   Energy Spectra------------------------------------------------------------ 

 3.1.2   Wavefunction------------------------------------------------------------- 

 3.1.3   WGMs--------------------------------------------------------------------- 

      3.2   2 meV QD-------------------------------------------------------------------------- 

 3.2.1   Energy Spectra and Wavefunctions----------------------------------- 

      3.3   Effect of Coulomb Interaction-------------------------------------------------- 

      3.4   Variational Method (Hartree-Fock approach)---------------------------------- 

8 

10 

10 

10 

12 

13 

15 

16 

16 

18 

19 

20 

21 

23 

23 

24 

25 

27 

30 

30 

30 

31 

31 

32 

32 

34 

37 



7 

      3.5   Magnetic Field Effect-------------------------------------------------------------- 

      3.6.   Experimental Result---------------------------------------------------------------     

     3.7   Surface Modes in Lateral QD--------------------------------------------------- 

      3.7.1   WGMs--------------------------------------------------------------------- 

 3.7.2   Resonance across the Height-------------------------------------------- 

      3.8   Perturbation------------------------------------------------------------------------- 

 3.8.1    Lateral QD----------------------------------------------------------------- 

 3.8.2   Spherical QD--------------------------------------------------------------- 

      3.8.3   Triangular QD------------------------------------------------------------- 

Conclusion------------------------------------------------------------------------------------- 

References------------------------------------------------------------------------------------- 

41 

44 

45 

45 

46 

48 

48 

49 

50 

52 

53 



8 
 

 
 

Introduction 

Semiconductor Quantum Dot (QD) can be modeled as an artificial atom, and reveal 

discrete energy levels similar to an atom. It is shown in refs. [1-2] that by measuring 

current versus gate voltage, a QD has similar properties of atoms, as filling the shell 

structures in a 2D harmonic oscillator. It is discussed that electrons tend to fill the shell 

with parallel spin (ferromagnetic filling), according to the Hund's law. However, by 

applying a magnetic field, degenerate energy levels with plus/minus angular momentum 

would be split (Zeeman effect), which can change ground states of the QD. Besides, by 

introducing direct and exchange coulomb interaction, filling of the shells can be 

antiparallel (antiferromagnetic).  

    It is shown in ref. [3] that energy levels of InAs QD are as  s -,  p - and  d -shell by 

using high-resolution capacitance spectroscopy and detecting maximums of the 

capacitance. Furthermore, it shows that applying magnetic field causes intermixing of  

p - and d -shells. In order to model interband spectroscopy, in ref. [4], Coulomb 

interaction between electrons and also electrons and holes are calculated and treated as a 

perturbation, where confining potential is considered parabolic and two-dimensional. 

    Quantum Dots can support states with high angular momentum. These states behave 

as Whispering Gallery Modes (WGMs) in optical resonator. The distribution of 

wavefunction associated to WGM is confined to the edges of QD, which can have 

applications in electronic lenses and resonators. It is shown in ref. [5] that WGM can be 

created in Graphene by an induction from scanning tunneling probe. The size of the 

circular trap can be tuned by the voltage of the back-gated Graphene device. It is shown 

in ref. [6] that WGM can be created in Oligothiophene nano-rings which can act as 

electronic resonator.  It is shown in ref. [7] that WGMs can be used as a superpersistent 

currents in Dirac materials which has application in Qubits and Topological Insulators 

(TI) [8].  

In a few electron QD, electrons can create a crystalization called Wigner Molecules 

(WM). In these dots, excited electrons can reveal different modes including WGM. 

Structural and optical properties of InP/GaInP QDs are studied in ref. [9], while in [10-

11], it is shown that WGMs can be in the resonance of Wigner Molecules (WMs) 

ground state. Furthermore, zero-bias conductance anomalies (having conductance at zeo 
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bias voltage) in Quantum Point Contact (QPC) is explained by Wigner localization and 

alternating equilibrium and non-equilibrium of Kondo screening of different spin states 

[12-13].  

    Therefore, evaluating the energy spectra of the QD is challenging, since many 

parameters can affect it such as Coulomb interaction between the electrons, shape of the 

QD, magnetic field, etc. Furthermore, literature usually consider lateral QD with a zero 

thickness, however, our calculation reveals that even very small thickness of the QD can 

have significant effect on the energy spectra. Besides, due to the application of some of 

the modes in the QD such as lasing, lenses, electronic resonator, ..., we study WGMs in 

the lateral QD and its energy levels.  

    We evaluate the energy spectra of QD with both perturbation approach and 

variational method. Although, perturbation approach is simpler, it suits well for our 

structure, since we consider the QD which contains a few amount of electrons in the 

ground state and one or two electrons in the excited state. Although, the variational 

method is much more time-consuming, it takes into account the effect of the 

wavefunctions on each other. We could attain almost the same result from these two 

methods.  

   This thesis shows that the dimension of the QD including its height has a 

critical effect on the QD's energy spectra, therefore, it cannot be considered as a 2D 

harmonic oscillator. The Coulomb interaction is comparable to the energy of interband 

transition which cause intermixing energy bands even for zero magnetic field. It shows 

resonances along the height of the lateral dot which are quite unusual, and studies 

perturbation and topological effects on surface states in these dots and also in spherical 

and triangular ones. 
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1 OVERVIEW OF THE RESEARCH FIELD 

1.1 Energy Spectra of a Few Electrons Lateral Quantum Dot 

1.1.1 Shell Filling and Spin Effect 

Reference [1] represents that adding an electron to a semiconductor quantum dot, 

―addition energy‖ is required which is similar to the real atom. However, this addition 

energy is greater than the interband energy, due to the coulomb interaction between the 

electrons. Vertical quantum dots are like a disk with a diameter around 10 times of its 

thickness. They can be modeled by two dimensional (2D) harmonic oscillators, since 

their lateral potential can be considered to have a cylindrical symmetry with soft walls. 

The artificial shells can be filled completely by the number of electrons 2, 6, 12, ..., 

which are considered as magic numbers. The addition energy is usually larger when the 

electron numbers are equal to the magic numbers. To study the magnetic field 

dependence, at a sufficiently small magnetic field (B< 0.4 T), spin filling obeys Hund‘s 

rule, while at higher magnetic fields (B> 0.4 T), the filling of states are with successive 

spin-up and spin-down. 

Figure 1(a) shows the current at drain voltage 150V V as a function of gate 

voltage 
gV   for a dot with diameter 0.5D m , where the picks are related to adding one 

electron to the dot. Figure 1(b) depicts the addition energy versus the electrons number

N, for two different devices. 
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Figure 1 - (a) current versus gate voltage at 0B T  for a 0.5D m  dot. (b) Addition 

energy versus electron number for two different dots with 0.5D m and 0.44 m [1]  

The energy spectrum in a B field for a 2D harmonic oscillator can be obtained 

analytically as: 

2 2 1/2

, 0

1 1
(2 | | 1) ( )

4 2
n l c cE n          

with a radial quantum number 0,1,2, .( )..n   and angular momentum quantum number 

( 0, 1, 2,...)   , while 0  is the electrostatic confinement energy and c  is the 

cyclotron energy.  Figure. 2(a) shows  
,n lE  versus B calculated for 0 3meV  . A single-

particle state with a positive angular momentum shifts lower while the state with a 

negative one shifts higher energies, respectively, with increasing B. Figure. 2(b) shows 

the B-field dependence of the fifth, sixth, and seventh current peaks. From this figure, 

one can observe that the fifth and sixth peaks form a pair. At 1.3 T , the maximum and 

minimum of the sixth and seventh peaks, respectively, can be attributed to the crossing 

of the third and fourth energy curves at 1.3 T in Fig. 2(a). 
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Figure 2 - (a) Calculated single-particle energy versus magnetic field for a parabolic 

potential with 0 3meV  .  (b) Evolution of the fifth, sixth, and seventh current peaks 

with magnetic field for 0.5D m dot [1] 

1.1.2 Direct Coulomb and Exchange Interaction [2] 

By applying magnetic field, ref. [2] shows that spin-configurations can be 

explained in terms of two-electron singlet and triplet states. 

        Figure. 3(b) shows two, spin-degenerate single-particle states with energies Ea and 

Eb crossing each other at B = B0. For two electrons we can distinguish four possible 

configurations with either total spin S = 0 (spin-singlet) or S = 1 (spin-triplet). The 

corresponding energies, Ui(2, S) for i = 1 to 4, are given by: U1(2, 0) = 2Ea + Caa (two 

elctrons in Ea state with different spins),U2(2, 0) = 2Eb + Cbb (two electrons in Eb state 

with different spins), U3(2, 1) = Ea+Eb+Cab−|Kab| (one electron in Ea and another in Eb 
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state with same spin), U4(2, 0) = Ea +Eb+Cab (one electron in Ea and another in Eb state 

with different spin), where Cij and Kij are direct and exchange Coulomb interaction, 

respectively. 

 

Figure 3 - (a) Scanning electron micrograph of the semiconductor quantum dot device. 

(b) Schematic diagram of two single particle states with energies Ea and Eb crossing 

each other at a magnetic field B = B0 [2] 

1.1.3 Capacitance-Voltage Traces of InAs Dot 

Figure 4 shows the essential layer sequence and a sketch of the conduction band 

edge [3]: 

 

  

Figure 4 - (a) Layer sequence of the devices. The InAs dots are distributed within the 

plane sandwiched between two GaAs layers. (b) Sketch of the conduction-band edge Ec 

with respect to the Fermi level EF along the growth direction for gate voltages at which 

no electrons are in the InAs dots. The indicated distances define the lever arm according 

to ttot /tb (in our case equal 7) which converts voltage into energy differences 
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Figure 5(a) shows the capacitance versus gate voltage for different applied 

magnetic fields between 0 and 23 T. It shows two degenerate maxima and four 

degenerate maxima, which can be attributed to the s and p shells, respectively. Figure 

5(b) shows the dependence of these maximas to the magnetic field, which depicts that 

the maximas related to the s shell is almost unaffected (because of zero angular 

momentum), while two of the maximas related to the p shell decrease (because of 

positive angular momentum) and two of them increase (due to the negative angular 

momentum). 

 

 

 

 

Figure 5 - (a) Differential capacitance of the layered structure at different magnetic 

fields (b) Magnetic-field dependence of each maxima [3] 
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1.1.4  Perturbation Approach for the Coulomb interactions between electrons 

In magnetic field, single particle energies have the following energy levels: 
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(1) 

 

 

where  

 

2 2' / 4c   
 

(2) 

 

is effective frequency and / *c eB m   is cyclotron frequency. For instance the s-state 

wavefunction is 

  

2 21
exp( / 2 )e

s e

e

r l
l




 

 

(3) 

 

where el  is effective length of electrons 

*el
m 

  
 

(4) 

while for holes effetive length is: 

 

*h

h h

l
m 



 

(5) 
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    On the other hand, direct and exchange Coulomb interaction can be obtained from 

Eqs. (6) and (7), respectively: 

2 22
1 2

1 2

0 1 2

| ( ) | | ( ) |

4 | |

e e

i j

ij

r

r re
E drdr

r r

 

 


  
 

(6) 

* *2
1 2 2 1

1 2

0 1 2

( ) ( ) ( ) ( )

4 | |

e e e e

i j i j

ij

r

r r r re
E drdr

r r

   

 


  
 

(7) 

For example, direct Coulomb interaction between two electrons in s-state is 

calculated: 

2

0

1

4 2
ij

r e

e
E

l



 
  

 

(8) 

The ground state energy for N electrons can then be obtained from: 

1( ) ( )sp c

N gE E N E N NeV     (9) 

where E
sp

(N) is the sum of the single-particle energies, E
C
(N) the matrix element of the 

Coulomb interaction, and -λ
-1

NeVg expresses the electrostatic energy due to the electric 

field between gate and back contact.  

1.2 Creating Whispering Gallery Modes 

1.2.1  Graphene 

In [5], Whispering Gallery Mode (WGM) is created in Graphene by creating pn 

junction, induced by a scanning tunneling probe (Fig. 6). The size of the resonator can 

be tuned by back-gated graphene device. It demonstrates an entirely different approach, 

inspired by the peculiar acoustic phenomena in whispering galleries. This type of 

resonators can be used in quantum electron-optics such as electronic lenses and 

resonators. Therefore, scanning tunneling microscopy (STM) probe is utilized for both 

probing electronic states and also creating pn junction which serves as confining 

potential for electrons. 

    Two types of WGM are detected in the structure (Fig. 7). First type is called 

WGM‖ which occur in conventional energy states ε𝜈=μ0+𝑒𝑉b. However, the tip bias 

variation causes the Fermi level beneath the tip to move through system energy levels 

ε𝜈, which create another type of WGM (WGM‘) at Fermi energy level ε𝜈=μ0. 
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Figure 6 – (A) The rings are induced by the STM tip voltage bias (𝑉b) and back-gate 

voltage (𝑉g) is adjusted to reverse the carrier polarity beneath the tip relative to the 

ambient polarity. The cavity radius and the local carrier density are tunable by both Vb 

and Vg. (B) Spatial profile of WGM resonances. The confinement is stronger for the 

larger angular momentum m values [5] 

 

 

 

Figure 7 – (A) Differential tunneling conductance, 𝑑𝐼/𝑑𝑉b, map for a single-layer 

graphene device as a function of sample bias, 𝑉b and back gate voltage, 𝑉g. (B) 
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Interference features in 𝑑𝐼/𝑑𝑉𝑏 calculated from the relativistic Dirac model. The 

boundaries of WGM‘ (WGM‖) regions are marked by dashed (dotted) white lines [5] 

1.2.2 Oligothiophene Nano-Rings 

In Whispering gallery Modes (WGMs), such as the dome of St Paul‘s Cathedral 

in London, waves travel along a curved path. For closed-loop galleries, wave 

resonances appear when an integer number of wavelengths equals the perimeter of the 

resonator. To have WGM, the coherence length of the waves must exceed the perimeter 

of the resonator, and the walls must efficiently reflect the waves. Reference [6] creates 

WGM in Oligothiophene nano-rings as shown in Fig. 8. This figure also contains wire 

topology excitement, which has application in atomic wire.  

 

Figure 8 – (Color online) (a) Topographic STM image (I = 100 pA and Vsample = 0.1 V, 

6.6 × 2.4 nm
2
) and (b) constant height differential conductance spectra (set point: I = 5 

pA and Vsample = 1 V) of a linear-[12]-thiophene. The grey and black spectra correspond 

to two positions of the tip on top of the wire (see grey and black arrows in (a)). Green 

lines are Gaussian function fits. (c) to (f) are constant height conductance maps acquired 
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at voltages corresponding to maxima in (b). The same data were acquired for a cyclo-

[12]-thiophene: (g) topographic STM image (2.8 × 2.8 nm
2
), (h) constant height 

differential conductance spectra acquired on top of the wire, and (i) to (k) constant 

height conductance maps acquired at voltages corresponding to maxima in (h)  

1.3 WGM as Superpersistent Current 

In the presence of random scatterings, e.g., due to classical chaos, Persistent Currents 

(PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, 

vanish for Schrӧdinger particles [7]. However, relativistic Dirac quantum AB rings 

threaded by a magnetic flux are extremely robust (superpersistent currents (SPCs)). A 

striking finding is that the SPCs can be attributed to a robust type of relativistic quantum 

states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta 

and travel along the boundaries and can potentially be the base for a new class of 

relativistic qubit systems.  

    By examining the eigenstates, we note that, for low energy levels, the 

Schrödinger particle is strongly localized throughout the domain, as shown in Figs. 9(a–

c), since asymmetry in the domain geometry cause mixing angular momentum states 

and leading to localization of lower states in the entire domain region and vanishing AB 

oscillations. However, the Dirac fermion typically travels around the ring‘s boundaries, 

forming relativistic WGMs that persist under irregular boundary scattering due to chaos 

and are magnetic flux dependent, as shown in Fig. 9(d–f).  

 

Figure 9 – Probability distribution of the 10th eigenstate for (a–c) nonrelativistic and 

(d–f) relativistic AB chaotic billiard, for different chaos degee [7] 
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1.4 Fabrication of Lateral Quantum Dot 

Due to the vast application of self-organized InP quantum dots (QDs), especially in 

laser and single photon-source (SPS), they have been widely studied in the recent 

decades [9]. Self-organized InP quantum dots (QDs) grows on 
1x xGa In P

 lattice-matched 

to GaAs substrates (further denoted as InP/ GaInP QDs).  Interestingly,  InP/GaInP 

QDs have been shown to reveal Wigner Molecule (WM) states which make them an 

ideal candidate to be used in nano-electronics, quantum computing devices. Although, 

WM states could be observed in InSb nanowires, and carbon nanotubes. To this end, 

control of the QD‘s optical and structural properties is essential. For laser and SPS 

applications, the control of the properties of the QDs with sizes 40–70 nm have done, 

but not for larger InP/GaInP QDs (>100 nm)  which is required for the optimization of 

WM structures.  

    In [9], the QD sample structure is as follows: 500 μm in direction [1 0 0] GaAs 

substrate misoriented by 2° or 6° towards the [1 1 0] direction, 50 nm thick GaAs buffer 

layer, 50 nm 
1x xGa In P

 latticed matched to the GaAs grown at 725 °C, seven monolayers 

of InP at 725 °C to form the QDs, and a 60 nm 1x xGa In P cap layer grown at either 650 or 

725 °C. Representative plan-view Transmission Electron Microscopy (TEM) images of 

the four samples are shown in figure 10 (a) as well as the lateral size probability density 

functions (PDFs). The QD lateral sizes range from ~100–200 nm. The PDFs peaked at 

140, 160, 100, and 130 nm for samples i, ii, iii and iv, respectively. 
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Figure 10 – Structural data of the samples i, ii, iii and iv: plan-view TEM images with 

the extracted lateral dot size probability distribution functions—(a) and cross-sectional 

TEM images and EDX scans—(b). The amount of 
1( )x x xGa Ga In P

 for each line scan 

(along the vertical lines indicated) is shown to the image‘s right [9] 

1.5 Wigner Localization and Conductance Anomalies 

A Quantum Point Contact (QPC) is a constriction in the transverse direction which 

create a resistance for the electron motion where with applying voltage across the 

constriction, current can be induced. Hence, the QPC shows quantized conductance for 

different gate voltage, however, a shoulder like curve appear near the conductance 

0.7G0=0.7*2e
2
/h  which cannot be explained by single particle approach. This anamoly 

is called ‗0.7 anomaly‘ or zero-bias peak called ‗zero-bias anomaly‘ (ZBA). 

    Reference [12] observes repetitive splitting of the zero-bias anaomy by 

changing the distance of the scanning gate microscope tip, also appearing of 0.7 

anomaly, simultaneously (Fig. 11).  
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Figure 11 – Transport measurements. Base temperature is 20 mK. (a) Electron 

micrograph of the QPC gates. Scale bar, 300 nm. (b) Differential conductance G at zero 

bias versus split-gate voltage Vgate. The 0.7 anomaly is visible below the first plateau. 

(c) Differential conductance G versus source-drain bias for different gate voltage Vgate 

from -1.08 to -0.96 V 

This behavior is explained as existing of Wigner localization containing charges 

with different parities, in which spin states in the channel shows alternating equilibrium 

and nonequilibrium Kondo screenings (Kondo effect can be explained as hybridization 

of localized electrons to the conduction electrons at low temperature which creates a 

narrow band gap). 

This behavior can be interpreted in terms of alternating equilibrium and 

nonequilibrium Kondo screenings of different spin states localized in the channel. These 

alternating Kondo effects point towards the presence of a Wigner crystal containing 

several charges with different parities.  
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2 THEORETICAL APPROACH 

2.1 Schrodinger Equation in Effective Mass Approximation 

Schrodinger equation in effective mass approximation can be written as: 

2 1
.( )

2 e

V E
m

 
       
 

 
 

(10) 

Regarding that, our structure is symmetric in azimuthal ( ) direction, by 

separation of variables, we can write wavefuntion as: 

( , ) ( )r z      (11) 

On the other hand, in cylinderical coordinates, the operator 
1

.( )
em

  is: 

2

2 2

1 1 1 1 1
.( ) ( ) ( )

e e e e

r
m r r m r z m z m r 

    
    

    
 

 

 (12) 

By inserting Eqs. (11) and (12) into (10):  

2 2 2

2 2 2 2

1 1 1
( ) ( )

8 8e e e

h h
r V E

r r m r z m z m r

  
 

  

      
       

     
 

 

(13) 

where 
2

h


 . Deividing both sides of this equation by 

2

em r


 gives: 

2 2 2
2 2

2 2 2

1 1 1 1 1
( ) ( ) ( )

8 8
e e

e e

h h
m r r m r V E

r r m r z m z

 

   

      
     

      
 

 

(14) 

Therefore, we can equate both side of the above equation to a constant like 

2
2

28

h
l


  which gives two independent equations as: 

2
2

2

1
l



 
 

 
 

 

(15) 

and 

2 2
2 2 2

2 2

1 1 1 1
( ) ( ) ( )

8 8
e e

e e

h h
m r r m r V E l

r r m r z m z

 

  

    
      

    
 

 

(16) 

The solution of Eq. (15) is in the form: 

exp( )il   (17) 
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where due to the periodic condition ( 2 ) ( )     , l , the principle quantum number, 

should be integer. 

Furthermore, multiplying both sides of Eq. (16) with 
2

em r


 and arranging the 

terms gives: 

2 2 2 2

2 2 2 2

1 1
( ) ( ) ( )

8 8 8e e e e

h h h l
V E

r m r z m z m r r m r

  
 

  

     
      

     
 

 

(18) 

which is in the form of a coefficient form partial differential equation (PDE): 

.( ) ac u u au u d u             (19) 

with: 

2 2 2 2

2 2 2 2
; ; ; 1 ;

8 8 8
r a

e e e

h h h l
c a V d E

m m r m r
 

  
         

 

(20) 

while other coefficients are zero. 

We note that in Eq. (19), ( , )
r z

 
 

 
 is considered. 

2.2  Evaluating the Effect of Coulomb Energy in Energy Spectra 

To calculate Coulomb interaction between two electrons, the wavefunctions 

associated with these two electrons can be written as: 

1 2 1 1 1 2 2 2 1 2 2 1( , ) ( ) ( ) ( ) ( )r r c r r c r r       (21) 

where 
1( )r and 

2 ( )r  are wavefunctions of two states, while 
1r  and 

2r  are positions of 

the electrons. The quantity  2

1| |c  is the propabibility of the electron with state 1( )r being 

in the position 1r  and electron with state 2 ( )r being in the position 2r . The similar 

definition stands for 2

2| |c . Therefore, 1c  and 2c   are equal to 
1

2
  , regarding that 

2 2

1 2| | | | 1c c   and 2 2

1 2| | | |c c . Since electrons are fermions, the wavefunction of these 

two electrons should be antisymmetrized, hence, we choose 
1

1

2
c   and 

2

1

2
c   . 

Therefore, from Eq. (21): 
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1 2 1 1 2 2 1 2 2 1

1 1
( , ) ( ) ( ) ( ) ( )

2 2
r r r r r r       (22) 

In fact, Eq. (22) is a representation of slater determinant, since this determinant can be 

decomposed to 2 2  determinants, and for studying two electrons, only the related 2 2

determinant would be kept and other components would be considered zero. 

On the other hand, the potential energy between two-charge distribution can be 

calculated from: 

1 2

0 12

1

4 r

dq dq
dV

r 
   

(23) 

where 

2 2 2 *

1 2 1 2 1 2 1 2 1 2 1 2| ( , ) | ( , ) ( , )dq dq e r r dv dv e r r r r dv dv     (24) 

 

Therefore, 

*2

1 2 1 2
2

0

1

12

( , ) ( , )

4 r

r r r re
dv d

r
vV

 

 
   

 

(25) 

 

Inserting 1 2( , )r r  from Eq. (22), one can obtain: 

2 2 * *2

1 1 2 2 1 1 2 2 1 2 2 1
1 2

0 12 12

1 2

| ( ) | | ( ) | ( ) ( ) ( ) ( )

4 r

r r r r r re
dv dv dv

r
dvV

r

    






    

 

(26) 

 

where the first term: 

0

2 22

1 1 2 2
1 2

12

| ( ) | | ( ) |

4
d

r

r r
dv dvV

r

e








   

 

(27) 

 is called direct coulomb energy and 

* *

1 1

12

2 2 1 2 2 1
1 2

( ) ( ) ( ) ( )
e

r r r r
V dv dv

r

   
   

 

(28) 

is exchange coulomb energy. 

2.3 Spin effect of the electrons in Coulomb interaction 

Let's define the wavefunction of two correlated electrons as: 
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1 1 2 2 1 2 1 2( , , , ) ( , ) ( , )r r r r        (29) 

where 
1r and 

2r are spatial parameters and 
1  and 

2 are spin parameters. The function 

1 1 2 2( , , , )r r   should be antisymmetrized. If the spins of the electrons are same, 
1 2( , )  

is symmetrized, therefore, 
1 2( , )r r should be antisymmetrized (as Eq. 22). Therefore, by 

inserting this wavefunction in the Coulomb energy (Eq. 25), the exchange part of 

Coulomb energy would be negative. Vice versa, for different spin, 
1 2( , )r r should be 

symmetrized and exchange coulomb interaction is positive.  

However, according to another approach, we assume the wavefunction of an 

electron as:  

( , ) ( ) ( )r r      (30) 

Let's calculate the notation ˆ| |i jh   : 

*ˆ ˆ| | ( , ) ( , )i j i jh drd r h r          
(31) 

Inserting Eq. (30) into (31):
 

* *ˆ ˆ| | ( ) ( ) ( ) ( )i j i i j jh drd r h r            (32) 

Separating spin function and spatial function gives: 

*ˆ ˆ| | ( ) ( ) ( ) ( )i j i j i jh d dr r h r             
(33) 

For same spin 
i j   

*( ) ( ) 1i jd      (34) 

 

and for different spin, the integral is zero. 

Therefore, to calculate single particle energy, we can write  

*ˆ ˆ| | ( ) ( ) ( ) ( )i i i i i jh d dr r h r             
(35) 

Therefore, 

ˆ ˆ| | ( ) ( )i i i jh dr r h r        (36) 

For exchange coulomb inetraction, we can write: 
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* *

1 1 2 2 1 1 1 1 2 2 2 2

12

1
[ | ] ( , ) ( , ) ( , ) ( , )i j j i i j j idr d dr d r r r r

r
                (37) 

With separating spin part and spatial parts: 

* * * *

1 1 1 2 2 2 1 2 1 1 2 2

12

1
[ | ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j j i i j j i i j j id d dr dr r r r r

r
                

 
        

 
    

 

(38) 

 

Therefore, for different spin 
i j  , the integral is zero. However, for direct 

coulomb interaction, we can write: 

* * * *

1 1 1 2 2 2 1 2 1 1 2 2

12

1
[ | ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i j j i i j j i i j jd d dr dr r r r r

r
                

 
        

 
  

 

(39) 

 

Regardless of same or different spins, we can write: 

* *

1 2 1 1 2 2

12

1
[ | ] ( ) ( ) ( ) ( )i i j j i i j jdr dr r r r r

r
        

 

(40) 

According to this approach, for same spin, exchange coulomb energy is negative, 

and for different spin, it is zero. In our calculations, we have used the second approach. 

2.4 Fock-operator 

The energy associated to an electronic system can be defined as: 

1
| | [ | ] [ | ]

2

HF

i i i i j j i j j i

i ij

E h                 

(41) 

where the first, second and third terms are single particle energy, direct coulomb energy 

and exchange coulomb energy. The coefficient 1/ 2  is due to the fact that in the sum  of 

electron interactions, each electrons has considered twice. However, currently we do not 

care about coefficients and sign, since later, we can adjust them regarding the number 

and spin of the electrons in the orbitals. 

Let's assume wavefunction of orbital i th ( i  ) changes a bit as: 

i i i     (42) 

Langragian of this orbital can be defined as:  

{ } { } ( | )HF

i i ij i j ij

ij

L E           (43) 
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In fact Eq. (43) investigate the orthogonality of the orbitals. The unknown 

coefficients (Langragian multiplier) 
ij can be found by differentiating of Eq. (43) and 

equating it to zero. 

The differentiation of the Langragian defined in Eq. (43) is: 

{ } { } |HF

i i ij i j

ij

L E            (44) 

where the differentiation of the term |i j   is: 

| | |i j i j i j             
 (45) 

and differentiation of  HFE  from Eq. (41) is: 

 ˆ ˆ| | | |

1
[ | ] [ | ] [ | ] [ | ]

2

1
[ | ] [ | ] [ | ] [ | ]

2

HF

i i i i

i

i i i i i i i i i i i i i i i i

ij

i j j i i j j i i j j i i j j i

ij

E h h    

               

               

     

   

   







 

 

 

 

(46) 

 

If we consider the integral form of Eq. (46), we can observe that some terms in 

this equation are equal to each other, and it can written as: 

 ˆ ˆ| | | |

[ | ] [ | ] [ | ] [ | ]

HF

i i i i

i

i i i i i i i i i j j i i j j i

ij ij

E h h    

               

     

   



 
 

 

 

(47) 

By inserting Eqs. (45) and (47) into (44), we can write: 

 ˆ ˆ{ } | | | |

[ | ] [ | ] [ | ] [ | ]

( | | )

i i i i i

i

i i i i i i i i i j j i i j j i

ij ij

ij i j i j

ij

L h h     

               

    

     

   

     



 


 

(48) 

Some terms of Eq. (48) is complex conjugate of each other, therefore, this 

equation can be written as: 
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ˆ{ } | | [ | ] [ | ] | .i i i i i i i i j j i ij i j

i ij ij ij

L h complex conjugate                           (49) 

We can write Eq. (49) in the integral form as: 

* *

1 1 1 2 2 2 1 2 2 2
* 12 12

1 1

1

1 1ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } ( ) . 0
( )

i i j j j j i

j j
i i

i
ij j

j

h r r r dr r r r dr r r
r r

L dr r c c
r

      

  
 

 
  

   
 
  

  



 

(50) 

In order that Eq. (50) being equal to zero, the expression in the bracket should be 

zero: 

* *

1 1 2 2 2 1 2 2 2 1 1

12 12

1 1ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i j j i j i j ij j

j j j

h r r dr r r r dr r r r r
r r

        
   

     
   

   

 

(51) 

In Eq. (51), we can define operators ˆ
jJ and ˆ

jK which are related to the direct and 

exchange coulomb interaction, respectively: 

*

1 2 2 2 1

12

1ˆ ( ) ( ) ( ) ( )j i j j iJ r dr r r r
r

       

(52) 

*

1 2 2 2 1

12

1ˆ ( ) ( ) ( ) ( )j i j i jK r dr r r r
r

    
 

(53) 

Therfore, Eq. (51) can be written in the operator  form as:  

1 1
ˆ ˆ ˆ ( ) ( )j j i ij j

j j j

h J K r r  
 

   
 

  
 

(54) 

 

We choose Langragian multiplier 
ij to be diagonal ( 0 ;ij i j   ), therefore, Eq. 

(54) can be written as: 

1 1
ˆ ˆ ˆ ( ) ( )j j i ii i

j j

h J K r r  
 

   
 

   
 

(55) 
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3 METHODS AND RESULTS 

3.1 4 meV QD 

3.1.1 Energy Spectra 

The eigenvalues (eigenenergies) and eigenfunctions of Eq. (19) with coefficients 

defined in Eq. (20) can be evaluated by Finite Element Method by Comsol software, 

"Coefficient Form PDE" section. To obtain eigenenergies in eV  unit, we can divide h  

and 
em  in Eq. (20) by the charge of electron e . The Quantum Dot (QD) and surrounding 

areas are InP  and GaAswith effective mass of electrons 0.08 em  and 0.067 em , respectively 

while the applied potential on the QD is 0 and on the surrounding area is 0.2 eV .  

Therefore, In Comsol, two PDE are defined, one of them for QD and another one for 

sorrounding area. Although the height of QD is too small, it should be considered as a 

3D structure in order to achieve a more accurate results, since some energy degeneracy 

would be created due to the non-zero height of the QD.  

    In order to achieve a precise result, a dense meshing is considered for the structure as 

shown in Fig. 12 (a). Figure 12 (b) shows energy spectrum of a QD for which its 

dimensions is adjusted in order to achieve 4 meV energy splitting between two lowest 

energy levels, s  and p .  

 

 

Figure 12 - (a) Meshing. (b) Energy Spectrum for QD with 4 meV s-p energy splitting 
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This figure shows some energy degeneracy for each azimuthal number (m ).  

3.1.2 Wavefunction 

The wavefuncions of the QD (Figure 13) shows that these degeneracy is due to 

the changing the quantum number associated to the height of the QD ( z -direction). It 

starts between 5th and 6th eigenvalues and the splitting increases with increasing the 

azimuthal number.  

 
 

 
 

  

Figure 13 - Eigenfunctions of 4 meV QD for azimuthal numbers 0m   

3.1.3 WGMs 

The probability densities ( 2| | ) of some of the Whispering Gallery Modes 

(WGMs) is also depicted in Figure 15. 
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Figure 14 - Probability densities of WGMs for 2m   to 7m   

3.2 2 meV QD 

3.2.1 Energy Spectra and Wavefunctions 

With changing the size of the QD, its energy spectrum can be manipulated. 

Figure 15, shows energy spectrum of a QD for which its size is adjusted in order to 

create 2 meV  energy splitting between &s p -states. It shows that energy spectrum is 

denser comparing to 4 meV  QD, and its wavefunctions depicted in Fig. 16 shows that 



33 
 

 
 

energy degeneracy starts between 4th and 5th eigenvalues (instead of 5th and 6th in 4 

meV QD).  

 

Figure 15 - Energy spectrum of 2 meV QD 
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Figure 16 - Eigenfunctions of 2meV QD for azimuthal numbers 0m   

3.3 Effect of Coulomb Interaction 

We assume a QD which contain 5 electrons in ground state and also one electorn 

in the excited state or 4 electrons in the ground state and 2 electrons in the excited state. 

Therefore, to evaluate Coulomb interaction, different arrangements are considered (Fig. 

18). 

s

py px

 

(a) 
s

py px

wgmy wgmx

 

(b) 

 

s

py px

wgmy wgmx

 

(c) 

s

py px

wgmy wgmx

 

(d) 

 

Figure 17 - Different arrangement of 6 electrons in the QD 

In Fig. 17a, coulomb energy of one of the electron in xp  orbital is  

   1 2 ( ) 2 ( )x x x y x y e x x eC p p p p p p sp sp        (56) 

 

where x xp p is direct coulomb interaction between two electrons in xp  state, which can 

be evaluated from Eq. (27). The term 
x yp p  is direct Coulomb interaction between one 
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electron in 
xp  state and two electrons in 

yp  state (therefore, it has coefficient 2) and 

( )x y ep p is exchange Coulomb interaction between these electrons, since the electron 

under study in 
xp  has same spin with one of the  electrons in (

xp  has   dependent as 

cos( )m  while 
yp  has sin( )m ). The same condition is considered for the other states. In 

Fig. 18b, coulomb energy of the electron in 
xwgm  is 

   2 ( ) 2 ( ) 2 ( )x x x x e y x y x e x x eC p wgm p wgm p wgm p wgm swgm swgm         (57) 

The calculated Coulomb energy difference between Figs. 18a and 18b is 

1 2 5.93C C meV  . 

If we consider the arrangemnet of Fig. 18c (excited electron in 
ywgm ), the 

Coulomb energy difference between Figs. 18c and 18a is calculated  5.7 meV . 

For two electron in wgm  orbital (Fig. 18d), the coulomb energy difference 

between Figs. 18d and 18a is calculated 15.15 meV , therefore, we can expect that each of 

the electrons in wgm has about 15.15 / 2 7.58 meV  lower energy than the electron in p  

orbital. 

With excitation of an electron, a s - hole would be created in the structure, hence, 

the effect of exiton energy should also be added in the Coulomb interaction. The s -hole 

wavefunction is obtained by considereng effective mass of hole 0.6 em m . 

The exiton energy beween s -hole and an electron in xp  orbital is calculated 

7.75h xs p meV  while for ( 2)xwgm m  , it is 6.3h xs wgm meV , therefore, the value 

7.75 6.3 1.45 meV   should also be added to the coulomb energy difference between 

Figs. 18a and 18b.   

For the other states, the difference of the Coulomb interaction can be calculated, 

similarly. We assume first eigenstates of azimuthal number 2, 3, ...m   as wgm , the 

second eigenstates of 0,1, 2,...m   as xII , and third eigenstates  of 0,1, 2,...m  as xIII . 

 Figure 19a shows, energy spectra for one electron in the excited state (Fig. 18b) with 

taking into account the Coulomb interaction between the electrons, while in Fig. 19b 

exitonic energy is also included.  
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(a) 

(b) 

Figure 18 - Energy spectra for one electron in the excited state: (a) without excitonic 

energy. (b) with exitonic energy 

Fig. 19 is related to the energy spectra for 2 electrons in the excited state (Fig. 17d). 
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(a) 

 

(b) 

Figure 19 - Energy spectra for 2 electron in the excited state: (a) without exitonic 

energy. (b) with exitonic energy 

3.4 Variational Method (Hartree-Fock Approach) 

    In this section we evaluate the result with variational (Hartree-Fock (HF)) method. 

Energy of an electron in state i  can be calculated from Fock-operator as:   
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1 1
ˆ ˆ ˆ ( ) ( )j j i ii i

j j

h J K r r  
 

   
 

 
 

(58) 

 

The general  concept is that the shape of orbitals deviate a bit from their single 

particle wavefunctions due to the interaction between the orbitals. Therefore, the new 

wavefunction can be written as a linear combination of all the orbitals (in order to take 

into account their interactions) and estimate their new energy and wavefunction by 

variational method.  

Equation (58) is an eigenvalue problem which gives wavefuncion and energy of i

th orbital. First, we should choose eigenbasis, and write wavefunction of the orbitals as 

a linear combination of these eigenbasis. It is more convenient to use single particle 

wavefunctions as the eigenbasis, since they are currently available. If we consider single 

particle wavefunction, equivalent to atomic orbital and the wavefunction under study 
i , 

equivalent to molecular orbital, this method is called Molecular Orbital as a Linear 

Combination of Atomic Orbital (MO-LCAO) method. 

For our structure, we assume ground states have the wavefunction as their single 

particle states, but the excited state, as a linear combination of the single particle 

wavefunctions. For instance, for WGM  with azimuthal number 2m  we can write:  

 

 1 2 3 4y x xWGM c s c p c p c wgm   
 

(59) 

By inserting Eq. (59), into (58):  

   1 1 2 1 3 1 4 1 1 1 2 1 3 1 4 1
ˆ ˆ ˆ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j y x ii y x

j j

h J K c s r c p r c p r c wgm r c s r c p r c p r c wgm r
 

         
 

 

 

 

(60) 

 

where, ii  is the energy of orbital WGM . In this equation 1,2,3j   is related to the 

orbitals , ,y xs p p , respectively.  The operators 
1J  and 

1K  are related to the direct and 

exchange coulomb interation of orbital ( )s r  and ( )WGM r , and we can write: 



39 
 

 
 

  *

1 1 2 2 2 1

12

1
( ) 2 . ( ) ( ) ( )J WGM r dr s r s r WGM r

r
    

(61) 

  *

1 1 2 2 1 2

12

1
( ) . ( ) ( ) ( )K WGM r dr s r s r WGM r

r
    

(62) 

 

In Eq. (61), the coefficient 2 is due to the direct coulomb effect of 2 electrons in s  

orbital on WGM  orbital. The minus sign in Eq. (62) is due to the one electron in ( )s r  

orbital which has same spin with the electron in ( )WGM r orbital. 

For the coulomb operator of ( )yp r  orbital on ( )WGM r , we can write: 

  *

2 1 2 2 2 1

12

1
( ) 2 . ( ) ( ) ( )y yJ WGM r dr p r p r WGM r

r
 

 

(63) 

  *

2 1 2 2 1 2

12

1ˆ ( ) . ( ) ( ) ( )y yK WGM r dr p r p r WGM r
r

    

(64) 

 

The coulomb operator  of ( )xp r  orbital on ( )WGM r  is: 

  *

3 1 2 2 2 1

12

1ˆ ( ) . ( ) ( ) ( )x xJ WGM r dr p r p r WGM r
r

    

(65) 

  *

3 1 2 2 1 2

12

1
( ) . ( ) ( ) ( )x xK WGM r dr p r p r WGM r

r
    

(66) 

 

regarding that there is one electron in ( )xp r  orbital with the same spin as the electron in 

( )WGM r orbital. 

Since there are four unknown parameters 1 2 3 4, , ,c c c c  , four equations are needed to 

calculate them. According to Roothan method, first equation can be obtained by 

multiplying both sides of Eq. (60) by  1( ) |s r  (multiplying it by *

1( )s r and taking integral 

with respect to 
1r ). Similarly, second, third and fourth equation can be obtained by 

multiplying it by 
1( ) |yp r , 1( ) |xp r , 1( ) |wgm r , respectively. From these four equations, 
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we can arrange the terms with respect to the unknown coefficients  
1 2 3 4, , ,c c c c , which 

yields the matrix form equation as: 

11 12 13 14 11 12 13 141 1

21 22 23 24 21 22 23 242 2

31 32 33 34 31 32 33 343 3

41 42 43 44 41 42 43 444 4

ii

F F F F S S S Sc c

F F F F S S S Sc c

F F F F S S S Sc c

F F F F S S S Sc c



      
      
      
      
      

      
(67) 

where due to the large expressions, it is shown parametrically. Equation (67) can be 

written as: 

1

iiS FC C  (68) 

which is an eigenvalue problem. The eigenvalues and eigenvectors of the matrix 1S F

gives 
ii and C , respectively (we note that if we choose the ground states as a linear

combination of the eigenbasis either, then the operators would also contain the unknown 

coefficients C  , therefore the problem would be Self-Consistent Field (SCF), since the 

operators depend on the eigenfunctions, however, our case is not self-consistent). 

The calculated eigenvalues and eigenvectors are according to: 

 

 

 

 

1 1

2 2

3 3

4 4

53.6070 ; 0.1494, 0, 0.0149, 0.9887

44.6968 ; 0.9868, 0, 0.0631, 0.1490

46.0224 ; 0.0022, 0, 1, 0.0068,

48.2944 ; 0,1, 0, 0

E V

E V

E V

E V

  

 

   

 
(69) 

where we choose the first eigenvalue and eigenvector, since 4c (coefficient of xwgm in 

Eq. (59)) is near one.  

It may also be reasonable to investigate five eigenbasis: 

1 2 3 4 5y x x yWGM c s c p c p c wgm c wgm     (70) 

in order to observe the difference of energy levels of  xWGM and  
yWGM . 
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The calculated eigenvalues and eigenvectors are as below: 

 

 

 

 

 

1 1

2 2

3 3

4 4

5 5

44.6968 ; 0.9868, 0, 0.0631, 0.1490, 0

46.0224 ; 0.0022, 0, 1, 0.0068, 0

53.6070 ; 0.1494, 0, 0.0149, 0.9887, 0

53.3365 ; 0, 0.0455, 0, 0, 0.999

48.2840 ; 0, 0.999, 0, 0, 0.0455

E V

E V

E V

E V

E V

    

   

   

   

  
(71) 

where third and fourth set is associated to the 
xWGM and 

yWGM , since 
4c and 

5c are 

near one, respectively, which shows a difference of energy about 0.3meV .  

To evaluate the energy level of 
xP in the arrangement of the electrons according to the

Fig. 18a, we can consider three eigenbasis as: 

1 2 3x y xP c s c p c p   (72) 

which yields 

 

 

 

1 1

2 2

3 3

47.6672 ; .9948, 0, 0.1019

54.8473 ; 0.0775, 0, 0.997

49.3702 ; 0, 1, 0

E V

E V

E V

  

 

  
(73) 

where second set with energy of 54.85 meV  is related to the xP which is about 1.5 meV

higher than xWGM  and 1.3 meV  higher than 
yWGM .  This result is corresponding to the 

previously evaluated energy spectra in Fig. 19(a). 

3.5 Magnetic Field Effect 

Fig. 21 shows eigenergies of QD for 4.1meV  s - p  states splitting, where quantum 

numbers ( , )n l  related to the radial and azimuthal number are specified for each of the 

levels, while Table I shows the corresponding energies for each state. 
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Figure 20 - Energy spectra for 4.1meV QD 

Table 1 - Values corresponding to the Fig. 21 

(0,0): 0.019 (0,3): 0.032 (1,3): 0.045 (0,6): 0.049 (4,0): 0.07 

(0,1): 0.023 (2,0): 0.039 (0,5): 0.04 (3,1): 0.06 (3,2): 0.068 

(1,0): 0.028 (1,2): 0.039 (3,0): 0.052 (2,3): 0.059 (2,4): 0.066 

(0,2): 0.028 (0,4): 0.038 (2,2): 0.052 (1,5): 0.058 (1,6): 0.064 

(1,1): 0.033 (2,1): 0.045 (1,4): 0.051 (0,7): 0.055 (0,8): 0.061 

For 2D harmonic oscillator the energy levels can be determined from: 

, 0(2 | | 1)n lE n l    (74) 

The energy levels of our system, near to the &s p  states can be somehow 

equivalent to the 2D harmonic oscillator energy levels. To this end, we introduce a 

detuning parameter 
,n l  as: 

, 0 ,(2 | | 1)( )n l n lE n l     (75) 

The detuning parameter for each energy level is obtaind as following: 

The energy levels of s - and p - states are considered to be 0 and  02  , respectively, 

with zero detuning parameters, where 0 4.1meV  is &s p  energy splitting: 

0,0 0 0,0; 0E   

0,1 0 0,12 ; 0E    (76)
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For a specific energy level like 
0,2E , we can write the energy difference 

0,2 0,0E E

from Eqs. (75)-(76) as: 

0,2 0,0 0 0,2 03( ) 8.537meVE E       (77) 

Therefore, from Eq. (77), we can calculate: 

0,2 0.11meV  (78) 

Similarly, for energy level 
0,3E :  

0,3 0,0 0 0,3 04( ) 13.31E E       (79) 

we can obtain: 

0,3 0.25meV  (80) 

On the other hand, energy levels of 2D harmonic oscillator with applying 

magnetic field can be calculated from: 

2 2

, 0

1 1
(2 | | 1) ( ) ( )

4 2
n l c cE n l l      

(81) 

where c  is cyclotron frequency which can be evaluated from: 

*

*
; 0.08c e

eB
m m

m
  

(82) 

For instance for the magnetic field 1B T  we evaluate 1.4471c meV  . For our 

case, we can insert 
,n l  in eq. (81) as: 

2 2

, 0 ,

1 1
(2 | | 1) ( ) ( )

4 2
n l c n l cE n l l       

(83) 

Therefore, for 
0,0E we can write: 

2 2 2 2

0,0 0

1 1
( ) ( ) (1.4471) (4.1) 4.1634

4 4
cE meV     

(84)
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while for zero magnetic field, 
0,0 4.1E meV which shows that with magnetic field, 

energy level of s -state would be increased by 0.0634 meV . 

For p -state, 1l   , we can write: 

2 2 2 2

0,1 0

1 1 1 1
2 ( ) ( ) 2 (1.4471) (4.1) 1.4471 9.0503

4 2 4 2
c cE         

(85) 

while for zero magnetic field, 
0,1 8.2E  , which shows that, p -state would be increased 

by 0.8503 meV . 

For wgm , 2l   we can write: 

2 2 2 2

0,2 0 0,2

1 1
3 ( ) ( ) 3 (1.4471) (4.1 0.11) 1.4471 11.3681

4 4
c cE           

(86) 

while without magnetic field, 
0,2 12.63E  , which shows that it would be decreased by 

1.2619 meV   

    For wgm , 3l  ,  

2 2 2 2

0,3 0 0,3

1 1 3
4 ( ) ( ) 4 (1.4471) (4.1 0.25) 1.4471 15.5684

4 4 2
c cE           

(87) 

    For zero magnetic field 
0,3 17.4E meV which shows that it is decreased by 1.8316 meV . 

3.6 Experimental Result

Figure below shows experimental result for 4 meV QD. There are two close picks 

between s- and p-states which are related to the WGMs. Therefore, we can predict that 

these two close picks are corresponding to 2 electrons in WGM orbital, where each pick 

related to one of these 2 electrons. This result is corresponding to our numerically 

calculated energy spectra for 4 meV QD, Fig. 19 (a), in which 2 electrons are supposed 

to be in the excited state and 4 electrons in the ground state.  In Fig. 19 (a), we similarly 

calculate the energy splitting between s- and p-states equal to 4 meV, and attain a WGM 

between these two states. Although, these two electrons have degenerate energy levels 
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in numerical result, but in experiment, this degeneracy can be split due to the defect in 

the dot. Besides, the size of the wavefunction distribution which is obtained by Near-

Field Scanning Optical Microscopy (NSOM) is almost identical with single particle 

(numerical) calculation.  

Figure 21 - Experiment result of energy spectra and wavefunction distribution for 4 

meV QD 

3.7  Surface Modes in Lateral QD 

We could achieve surface states in lateral QD, in two orthogonal directions, φ- 

and z-directions.  

3.7.1 WGMs 

The resonance in the φ-direction which is referred to WGMs shows that WGM 

with higher angular momentum has larger effective length of the QD. Figure 22 shows 

WGMs with different angular momentums, in which the radius size of the resonance is 

increased for higher angular momentums.  
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Figure 22 – WGMs from left to right, top: m=3, m=5, bottom: m=7, m=9. 

3.7.2 Resonance across the Height 

For each of the angular momentums (m), it is possible to achieve different modes 

of distribution along the height of the QD. Figure 23 shows these modes for m=7, which 

are related to 5th, 7th, 9th and 11th eigenvalues. 
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Figure 23 - Wavefunctions of QD for m=7 ; from left to right, top: 5th, 7th, bottom: 9th, 

11th  eigenfunctions 

For 6 meV  QD, for m=0, quantum number associated to the height, starts to 

change from 7th eigenvalue, while for 4 meV QD, it is 6th eigenvalue. Generally 

speaking, with increaing the s-p splitting, resonances across the height occur in a higher 

number of eigenstates. Figure 24 shows surface states of 10 meV QD which can exist 

only for m=0 (7th and 9th eigenvalues), m=1 (7th and 9th eigenvalues), m=2 (7th 

eigenvalue) and m=3 (7th eigenvalue). The interesting feature in this figure is that the 

confinement of the distribution in the QD is reduced which can be attributed to the both 

approaching the eigenvalues to the applied voltage, and also decreasing the height of 

QD.   
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Figure 24 - Surface states of 6 meV QD;  from left to right, top: 7th (m=0), 9th (m=0), 

7th (m=1), bottom: 9th (m=1), 7th (m=2) , 7th (m=3)   eigenfunctions 

3.8 Perturbation 

3.8.1 Lateral QD 

Figure 25 shows that the perturbation which interfere a state can change it, 

otherwise it would be unaffected.  This figure shows the comparison of three modes of 

surface states between unperturbed and perturbed QD, for 5th eigenvalue of m=0,1, 2 

(unperturbed dot) and 6th eigenvalue of m=0, 5th eigenvalue of m=1,2 (perturbed dot).  
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Figure 25 - Wavefunctions of 4 meV QD; from left to right, top (unperturbd): 5th 

(m=0), 5th (m=1), 5th (m=2), bottom (perturbed): 6th (m=0), 5th (m=1), 5th (m=2)  

eigenfunctions 

It shows that the first mode which is mostly affected by perturbation is changed 

considerably, however, the other two modes are changed a little. The perturbation at the 

center of the dot leads the height of QD be decreased which cause the surface state for 

m=0 occur at a higher eigenvalue. 

3.8.2 Spherical QD 

Figure 26 shows that smooth deformation along the surface keep the surface 

states unchanged. This figure is related to the 1st, 2nd and 3rd eigenvalues of angular 

momentum m=10, for both spherical and deformed spherical dot, which shows that 

distribution and also the eigenvalues are almost identical in these dots. However, for 

higher order modes, due to the rapidly changing of the distribution along the surface, the 

deformation would change the states. 
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Figure 26 - Wavefunctions of spherical  QD for first three eigenmodes of m=10, top: 

unperturbed, bottom: perturbed 

3.8.3.  Triangular QD 

Figure 27 shows that by changing the geometry of the QD, we can handle the 

distribution of the electrons in the dot. This figure is related to the first three 

eigenmodes of angular momentum m=10 for the dots with the vertex at symmetrical and 

also unsymmetrical positions. It shows that electrons tend to concentrate at the vertex of 

these dot. Besides, in the unsymmetrical one, the distribution of electrons are more 

likely along the surface.  
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Figure 27 - Wavefunctions of triangular  QD for first three eigenmodes of m=10, top: 

symmetrical vertex, bottom: unsymmetrical vertex 
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Conclusion 

In this thesis, we study WGMs in Quantum Dots (QDs). In lateral QD the Coulomb 

interaction between the electrons plays a significant role in its energy spectra. We reveal 

that Coulomb interaction can be comparable to the interband transition energy, which 

cause some higher energy levels fall between the two lowest energy levels s- and p-

states. Furthermore, some resonances along the height of QD are detected which are 

unusual in these dots. We reveal the perturbation and topological effect on the surface 

states in these dots as well as in spherical and triangular dots. 

    In these dots WGMs with higher angular momentums shows larger effective 

lengths in the QD. Resonances along the height of these dots show less confinement in 

the dot, with decreasing the height of the dot. It is shown that perturbation can affect the 

local distributions, while the non-local states would be unaffected. Smooth perturbation 

in spherical QD keep the surface states unaffected. Furthermore, surface states can be 

manipulated by changing the location of the vertex, in triangular dots.  
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