МИНОБРНАУКИ РОССИИ федеральное государственное бюджетное образовательное учреждение высшего образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «СамГТУ»)

Факультет: Химико-технологический

Кафедра: Химической технологии переработки нефти и газа

ДОПУСТИТЬ К ЗАЩИТЕ

Заведующий кафедрой _____Пимерзин А.А. (подпись)

« » 20 г.

Выпускная квалификационная работа

Студента _____ Ильменского Алексея Сергеевича, 4-ХТФ-1_____

Вид работы _____ Дипломный проект бакалавра_____

Пояснительная записка

Сам ГТУ 18.03.01.01.12.06. 02. ПЗ

Тема: Разработка технологической схемы современного НПЗ для переработки Михайловской нефти пашийского горизонта ДІІ. Проект установки гидрокрекинга вакуумного газойля.

Нормоконтролер к.х.н., доцент Жилкина Е.О.

(подпись, дата, фамилия, инициалы)

Руководитель работы зав. кафедрой ХТПНГ, д.х.н., профессор Пимерзин А.А_____ (должность, подпись, дата, фамилия, инициалы)

Консультант доцент, к.х.н. Сумарченкова И.А. (должность, подпись, дата, фамилия, инициалы)

Консультант доцент, к.х.н. Копнина А.Ю. (должность, подпись, дата, фамилия, инициалы)

Студент Ильменский А.С. (подпись, дота, инициалы, фамилия)

Самара 2020г.

ΡΕΦΕΡΑΤ

Пояснительная записка содержит 144 страниц, 8 рисунков, 104 таблиц, 34 источников. Графическая часть проекта выполнена на 4 листах формата А1.

ГИДРОКРЕКИНГ, РЕАКТОР, ТЕПЛООБМЕННИК, ВОДОРОД, РЕЦИКЛ, ФРАКЦИЯ, КАТАЛИЗАТОР, ЦЕОЛИТЫ, ВОДОРОДСОДЕРЖАЩИЙ ГАЗ, РАСЧЕТ, МАТЕРИАЛЬНЫЙ БАЛАНС, ТЕПЛОВОЙ БАЛАНС, КОЛОННА, СЕПАРАТОР.

В разделе «Структура И характеристика НПЗ при переработке Михайловской нефти пашийского горизонта ДІІ» рассмотрены мощности современных НПЗ, их структура и отмечены приоритетные задачи, стоящие перед российской нефтепереработкой. Приведена характеристика заданной нефти, растворенных газов и нефтяных фракций, а также проведено сравнение показателей товарных топлив с показателями соответствующих им фракций. Обоснован выбор состава технологических установок завода путем анализа существующих технологий, а также приведены выбор и обоснование ассортимента получаемых фракций на установке АВТ. Кроме того, дана краткая характеристика вторичных процессов переработки.

В разделе «Проект установки гидрокрекинга вакуумного газойля» на основании литературных данных рассмотрены теоретические основы и пути интенсификации процесса, проведен анализ влияния технологических параметров и применяемых катализаторов на результаты процесса. Приведена характеристика сырья, получаемых продуктов, катализатора и реагентов. На основе этих данных произведен выбор технологического оформления процесса и условий его проведения. Кроме того, представлена технологическая схема установки с элементами КИП и А, ее описание и краткая характеристика основного оборудования с последующим его технологическим расчетом.

Раздел «Мероприятия по безопасной эксплуатации установки» посвящен рассмотрению опасных и вредных факторов технологического процесса. В разделе приведен анализ мероприятий, необходимых для обеспечения безопасной эксплуатации установки, произведено категорирование по взрывопожарной и пожарной опасности.

В разделе «Мероприятия по охране окружающей среды на установке» оценено экологическое воздействие работы установки на окружающую среду с учетом планируемого расположения завода. Предложены мероприятия по уменьшению негативного воздействия объекта проектирования на окружающую среду.

СОДЕРЖАНИЕ

	Введение	4
1	Структура и характеристика НПЗ при переработке Михайловской нефти пашийского горизонта ДП	5
1.1	Мощности современных НПЗ по объему перерабатываемой нефти, требования по глубине переработки нефти, ассортименту и качеству продуктов переработки	5
1.2	Характеристика Михайловской нефти пашийского горизонта ДІІ, растворенных газов и нефтяных фракций	7
1.3	Выбор и обоснование ассортимента получаемых фракций из Михайловской нефти пашийского горизонта ДІІ на установке ABT	13
1.4	Выбор и обоснование состава технологических установок, блок-схема НПЗ	20
1.5	Краткая характеристика технологических установок НПЗ	25
1.5.1	Характеристика установки ЭЛОУ-АВТ. Материальный баланс установки ЭЛОУ-АВТ производительностью 12 млн. тонн в	
	год	25
1.5.2	Характеристика установок вторичных процессов переработки нефти и процессов переработки нефтезаводских газов	26
2	Проект установки гидрокрекинга вакуумного газойля	30
2.1	Обзор научно-технической литературы на тему: пути интенсификации процесса гидрокрекинга вакуумного газойля	30
2.2	Характеристика сырья, получаемых продуктов, реагентов	33
2.3	Выбор и обоснование технологического оформления процесса, условий его проведения	35
2.4	Технологическая схема установки с элементами КИП и А и ее описание, краткая характеристика основного оборудования	40
2.5	Технологический расчет основного оборудования	44
2.5.1	Исходные данные для расчета	44
2.5.2	Материальные балансы установки и реакторов	44
2.5.3	Технологический расчет реакторов	50
2.5.4	Тепловой баланс реакторов	52
2.5.5	Гидравлический расчет реактора	58
2.5.6	Механический расчет толщины корпуса и днища аппарата	64
2.5.7	Расчет узла сепарации ГПС	66
2.5.8	Расчет сырьевых теплообменников «ГСС – ГПС»	73
2.5.9	Расчет печи нагрева ГСС по укрупненным показателям	76
2.5.10	Расчет воздушного конденсатора-холодильника и водяного	77

	холодильника	
2.5.11	Материальный баланс колонны фракционирования катализата	79
2.5.12	Лабораторный контроль качества сырья, получаемой	
	продукции, газов	80
3	Мероприятия по безопасной эксплуатации установки	81
3.1	Анализ опасных и вредных производственных факторов,	
	возникающих при ведении процесса	81
3.2	Мероприятия, обеспечивающие безопасное ведение	
	технологического процесса	83
3.3	Пожарная безопасность	86
4	Мероприятия по охране окружающей среды на установке	88
4.1	Краткая характеристика объекта проектирования или	
	исследования	88
4.2	Характеристика качества компонентов окружающей среды в	
	районе расположения объекта	88
4.3	Оценка уровней воздействия объекта проектирования на	
	компоненты окружающей среды	89
4.4	Перечень мероприятий по снижению негативного воздействия	
	объекта на окружающую среду	93
	Заключение	95
	Библиографический список	96
	Приложения	99

ВВЕДЕНИЕ

На сегодняшний день нефть является одним из важнейших ресурсов, ведь она необходима не только в топливной индустрии, но и в производстве широкого спектра продуктов химической промышленности, например, полимеров, растворителей, лакокрасочных материалов, лекарств, моющих средств и т.д.

В нефтеперерабатывающей промышленности наблюдаются тенденции к увеличению глубины переработки нефти, повышению качества выпускаемых нефтепродуктов наряду с вовлечением в переработку все более тяжелой и высокосернистой нефти. сегодняшний В связи с этим, на день нефтеперерабатывающие необходимостью заволы сталкиваются c модернизации действующих установок, поскольку многие из них не позволяют необходимые показатели качества обеспечить товарной продукции, a некоторые и вовсе являются морально устаревшими.

Кроме того, наряду с переоснащением производства нефтеперерабатывающие компании инвестируют средства в строительство современных НПЗ, ориентированных на безостаточную переработку нефти. Это обуславливает актуальность проектирования принципиально новых схем НПЗ с внедрением лишь недавно разработанных процессов и технологий.

В связи с этим, в данной работе предложен возможный вариант современного НПЗ, который был разработан на основе анализа сведений научно-технической литературы по данной тематике.

К числу процессов, отвечающих сегодняшним запросам как мировой, так и отечественной нефтеперерабатывающей промышленности, бесспорно можно отнести процесс гидрокрекинга вакуумного газойля. Данный процесс позволяет не только вырабатывать дополнительное количество светлых нефтепродуктов, но и получать подготовленное сырье для процесса каталитического крекинга.

В России установки гидрокрекинга имеются на нефтеперерабатывающих заводах в Уфе, Волгограде, Перми, Самаре, Сызрани, Ангарске, Ярославле [1]. В целом же, Россия отстает от Германии и США по доле вторичных процессов (36.4 % в России на 2015 год, 88 % в США, 61 % в Германии), а по процессу гидрокрекинга отставание тоже существенное (4.8 % в России на 2015 год, 9,64 % в США, 8,32 % в Германии) [11]. Таким образом, строительство новых установок гидрокрекинга является актуальным направлением развития отечественной нефтепереработки.

1. СТРУКТУРА И ХАРАКТЕРИСТИКА НПЗ ПРИ ПЕРЕРАБОТКЕ МИХАЙЛОВСКОЙ НЕФТИ ПАШИЙСКОГО ГОРИЗОНТА ДІІ

1.1 Мощности современных НПЗ по объему перерабатываемой нефти, требования по глубине переработки нефти, ассортименту и качеству продуктов переработки

Динамика изменения объемов добычи и переработки нефтяного сырья за последние годы свидетельствует о постоянном увеличении количества добываемых углеводородов. По сравнению с 2017 году поставка сырья на НПЗ России в 2018 году увеличилась на 2,5 % и составила 287 млн т/год. В настоящее время в России действует 34 НПЗ производительностью более 1 млн т, обладающих суммарной установленной мощностью 310,4 млн т/год. В 2018 году они переработали около 275 млн т углеводородного сырья, более 12 млн т нефти переработали мини-НПЗ [16]. Для сравнения суммарная мощность 165 НПЗ, расположенных в Северной Америке, за аналогичный период составила 1101 млн т, а для действующих 109 НПЗ на территории Европы – 763 млн т [17]. Мощности наиболее крупных НПЗ, действующих в России, США и Германии, приведены в таблице 1.1.

Таблица 1.1

Мощности наиболее крупни	ых НПЗ России, США и Германии							
Нефтеперерабатывающий завод	Мощность, млн т/год							
Po	ссия							
Газпромнефть-ОНПЗ	20,89							
Киришинефтеоргсинтез	20,1							
Рязанская нефтеперерабатывающая компания	18,8							
Лукойл-Нижегороднефтеоргсинтез	17,0							
Лукойл-Волгограднефтепереработка	15,7							
США								
«Экссон Корпорэйшн», штат Луизиана	22,0							
«Тексако инкорпорейтед»	20,0							
«Экссон Корпорэйшн», штат Техас	19,7							
«Амоко Ойл»	16,4							
Герг	мания							
MiRO GmbH & Co. KG	14,9							
PCK Raffinerie GmbH	11,6							
BAYERNOIL Raffineriegesellschaft mb	10,3							

Считается, что наиболее эффективными с позиций эксплуатации, управления и экономики являются заводы производительностью по сырой нефти 12-15 млн т/год [18].

В соответствии с «Энергетической стратегией развития России на период до 2020 года», принятой Распоряжением Правительства РФ № 1234-р от 28.08.2003, глубина переработки нефти на 2020 год должна составлять 85 %. По итогам 2018 года глубина переработки нефти в России составила 83,4 %, что на 2,1 % выше, чем в 2017 году [16]. Это свидетельствует о соблюдении компаниями требований, предъявляемых государством, а также о

необходимости соответствия этим требованиям всех вновь проектируемых НПЗ. Однако величина глубины переработки в 85 % в современных условиях не является достаточной, поскольку в США, для сравнения, глубина переработки нефти составляет 90–95 %, а на самых современных американских НПЗ — до 98 %, в странах - членах ОПЕК — 85 %, в Европе 85–90 % [19].

Кроме того, существуют требования, предъявляемые к качеству продукции НПЗ. Так, в России допускается к выпуску в обращение топливо, полностью соответствующее требованиям технического регламента Таможенного союза, утвержденного 18 октября 2011 г. Нормируемые данным документом показатели качества товарных бензинов, реактивных и дизельных топлив представлены в таблице 1.2, таблице 1.12 и таблице 1.13 соответственно.

Таблица 1.2

11	31	начение для ма	арки		
паименование показателя	АИ-92	АИ-95	АИ-98		
1 Октановое число, не менее:					
по исследовательскому методу	92,0	95,0	98,0		
по моторному методу	83,0	85,0	88,0		
2 Концентрация свинца, мг/дм ³		Отсутствие			
3 Концентрация смол, промытых растворителем, мг/дм ³ (мг/100 см ³) бензина, не более		50 (5)			
4 Индукционный период бензина, мин, не менее	360				
5 Массовая доля серы, мг/кг, не более, для экологического класса К5		10,0			
6 Объемная доля бензола, %, не более, для экологического класса К5	1				
7 Объемная доля углеводородов, %, не более, для экологического класса К5					
олефиновых	18,0				
ароматических	35,0				
8 Массовая доля кислорода, %, не более, для экологического класса К5	2,7				
9 Объемная доля оксигенатов, %, не более, для экологического класса К5					
метанола		1,0			
этанола		5,0			
изопропилового спирта		10,0			
трет-бутилового спирта		7,0			

Требования к характеристикам автомобильного бензина (ТР ТС 013/2011)

6

	31	начение для ма	арки		
паименование показателя	АИ-92	АИ-95	АИ-98		
изобутилового спирта		10,0			
эфиров (С5 и выше)	15,0				
других оксигенатов (с температурой конца кипен не выше 210 °C)		10,0			
10 Испытание на медной пластинке (3 ч при 50 °C	Класс 1				
11 Внешний вид	Чистый, прозрачный				
12 Плотность при 15 °С, кг/м ³	725,0-780,0				
13 Концентрация марганца, мг/дм ³ , не более	Отсутствие				
14 Концентрация железа, мг/дм ³ , не более	Отсутствие				
15 Объемная доля монометиланилина (N- метиланилина), %, не более, для экологического класса К5		Отсутствие			

Продолжение таблицы 1.2

1.2 Характеристика Михайловской нефти пашийского горизонта ДІІ, растворенных газов и нефтяных фракций

В соответствии с классификацией по ГОСТ Р 51858-2002 Михайловская нефть пашийского горизонта ДІІ является малосернистой и особо легкой (см. таблицу 1.3). Характеристики растворенных газов и нефтяных фракций представлены в таблицах 1.4-1.11.

Выход фракций, %мас. Температура, °С насышенных паро Кислотность, мг КОН на 100 см³ нефти мм рт. ст. Парафины Давление Содержание, %мас. вспышки в закрытом тигле Коксуемость, %мас. Зольность, %мас. Молярная масса v_{20} , MM/c^2 v_{50} , mm/c^2 застывания температура плавления, смол силикагелевых нафтеновых кислот содержание, %мас. смол сернокислых асфальтенов при 38 °C при 50 °C до 200 °С фенолов азота серы Ниже -35 Следы 10,01 0, 1937,5 2,58 0,480,042,88 0, 87203 366 9 52 9 1 1 Т т

Плотность при 20 °C, кг/м3

790,4

Общая физико-химическая характеристика нефти

Таблица 1.4

Состав газов, растворенных в нефти

Выход на нефть, %мас.		Содержание индивидуа	льных углеводородов, %мас.	
	C_2H_6	C_3H_8	Изо-С ₄ Н ₁₀	$H-C_4H_{10}$
4,0	7,7	20,2	9,6	62,5

8

Таблица 1.3

до 350 °C

68,0

Характеристика фракций, выкипающих до 200 °С

λa, °C	Mac.	Ф	ракционн	ый состав,	°C		ómac.	MM)	КОН	іх паров рт.ст.)
Температура отбор	Выход на нефть, %	НК	10 %	50 %	90 %	Шлотность при 20 °C, кг/м ³	Содержание серы, ⁹	Октановое число (]	Кислотность, мг К на 100 см ³ фраки	Давление насыщенны при 38 °C, кПа (мм ј
28-85	7,6	47	56	66	80	680,5	0,030	64,4	Следы	186
28-100	10,8	53	63	77	95	693,9	-	61,5	-	-
28-120	15,5	60	70	89	110	707,4	0,040	58,4	Следы	151
28-150	22,0	68	80	103	132	722,3	0,050	50,4	Следы	100
28-180	28,9	70	82	117	160	732,8	-	44,4	-	-
28-200	33,5	72	84	126	180	740,0	0,060	40,3	Следы	64

Таблица 1.6

Характеристика фракций, являющихся сырьем каталитического риформинга

Температура отбора, °С	Выход на нефть.	Плотность при 20 °С.	Содержание серы, %мас.	Содержание углеводородов, %мас.					
1 7	%мас.	кг/м ³	1 /	ароматических	нафтеновых	парафиновых			
62-105	8,4	-	0,04	15,0	23,0	62,0			
85-120	7,9	-	0,05	17,0	22,0	61,0			
105-140	8,0	-	0,05	20,0	21,0	59,0			
140-180	8,9	-	0,08	23,0	20,0	57,0			

Характеристика легких керосиновых фракций

150-320	150-280	120-235	`емпература отбора, ℃	Ţ
36,4	28,4	18,7	3ыход на нефть, %мас.	в
800,0	799,0	774,0	Плотность при 20 °C, кг/м ³	
I	I	138	HK	
188	158	148	10 %	Фракі
232	200	178	50 %	ционнь
286	240	217	% 06	ій сост
308	I	228	% 86	ав
-24	-35	-60	начала кристаллизации	Темпеј
55	46	32	Вспышки в закрытом тиг	ратура, °С
19	20	1	а некоптящего пламени, мм	Высота
0,36	0,30	0,148	одержание серы, %мас.	C
1,40	I	ı	утность, мг КОН на 100 см ³ дистиллята	Кисло
ловская Дп	Михай	Михайловская C _I	Нефть	

							Tupun	erepne m	па дное	TDIIDIII 4	Pundim				
pa, °C	%Mac.	OID	Фра	акцион	ный соо	став	0 °C,	5 °C,			Те	мпература	ı, °C	%Mac.	КОН ива
Температура отбо	Выход на нефть, '	Цетановое чис	10 %	50 %	% 06	98 %	Плотность при 2 кг/м ³	Плотность при 1 кг/м ³	V20, MM ² /C	V40, MM ² /C	застывания	помутнения	вспышки	Содержание серы,	Кислотность, мг на 100 см ³ топл
150-350	42,0	56	186	234	310	-	812,0	816,0	2,84	1,68	-27	-15	60	0,38	-
240-320	16,4	58	258	274	300	-	828,2	-	4,53	2,36	-12	-8	89	0,42	_
200-350	30,5	58	251	280	316	-	824,0	-	3,81	2,30	-15	-9	85	0,41	-
225-350	25.1	58	254	275	308	-	826.0	_	4,20	2,33	-13	-8	187	0,42	-

Характеристика дизельных фракций

Таблица 1.9

Характеристика остатков

Octotor	Выход (на нефть)	2^{20} m/s ³	BV-	BVaa	BY100	Темпера	тура, °С	Солержание серы	Коксуемость,
OCIATOR	%мас.	$ ho_4$, KI/M	D y 50	D y 80	D y 100	застывания	вспышки	%мас.	%
Выше 300°С	41,6	895,0	-	4,10	2,32	28	192	0,87	6,21
Выше 350°С	32,0	951,0	-	6,45	3,75	35	243	0,95	7,41
Выше 400°С	24,0	953,0	-	9,00	6,20	46	284	0,99	9,40

	Потенциальное содержание базовых дистиллятных и остаточных масел											
				Privar Gapapi w Magar 9/Mag								
Температура	Выход дистиллятной фракции или остатка на нефть, %мас.							Температура застывания, °С	DEIAOD OASOBEIA MACCI, 70Mac.			
отбора, °С		ρ ₄ ²⁰ , кг/м ³	ν ₅₀ , мм²/c	ν ₁₀₀ , мм ² /с	ν ₅₀ /ν ₁₀₀ , MM ² /c	ИВ	ВВК		на дистиллятную фракцию или остаток	на нефть		
350-400	14,0	886,0	16,50	4,37	3,77	85	-	-27	69,2	9,7		
450-495	3,9	885,0	41,50	8,20	5,06	85	-	-15	71,4	2,8		
Остаток выше 495	14,1	883,0	98,60	15,48	6,36	94	0,8093	-11	38,2	5,4		

	Температура	Выход на н	ефть, %мас.	$ ho_4^{20},$	
JN⊙	выкипания		CVAMPDIII IŬ	кг/м ³	М
	фракции при 760 мм рт. ст. °С	фракций	Суммарный		
1	700 мм рг. ст., с	4 0	4.0		
1.	1 a3	4,0	4,0	627.0	<u> </u>
2.	<u> </u>	2,5	0,5	680.4	80
<u>э</u> .	33-70	2,5	0,0	080,4	
4.	/0-80	2,0	11,4	/11,8	
5	86-96	2,7	14,1	727,3	94
6.	96-108	2,8	16,9	737,2	
7.	108-122	2,8	19,7	746,5	
8.	122-135	2,7	22,4	753,4	
9.	135-146	2,8	25,2	760,2	122
10.	146-160	2,9	28,1	766,6	
11.	160-175	3,0	31,1	773,2	
12.	175-188	3,2	34,3	778,5	
13.	188-198	3,0	37,3	782,3	154
14.	198-212	2,9	40,2	791,2	
15.	212-226	3,0	43,2	799,7	
16.	226-243	2,9	46,1	804,1	
17.	243-253	3,0	49,1	810,9	195
18.	253-267	2,9	52,0	815,5	
19.	267-283	2,9	54,9	823,8	
20.	283-299	3,0	57,9	829,4	
21.	299-312	3,1	61,0	835,2	250
22.	312-328	3,3	64,3	843,7	
23.	328-345	3.2	67,5	851,9	
24.	345-364	2,9	70,4	860,1	305
25.	364-380	3.2	73.6	865.3	
26.	380-408	3.1	76.7	872.8	
27.	408-430	3.1	79.8	879.9	
$\frac{-7}{28}$	430-465	31	82.9	887.7	
$\frac{20.}{29}$	465-495	3.0	85.9	893.5	440
30		1/ 1	100.0	075,5	
50.	OCIAIOK	14,1	100,0		

Разгонка (ИТК) Михайловской (пашийского горизонта Д_{II}) нефти в аппарате АРН-2 и характеристика полученных фракций

1.3 Выбор и обоснование состава технологических установок; блок-схема нефтеперерабатывающего завода

Установка каталитической изомеризации легкой прямогонной бензиновой фракции нужна для получения изомеризата – компонента бензина с высоким октановым числом, который также обеспечивает пусковые свойства топлива. Существует три типа установок каталитической изомеризации, которые подразделяют в зависимости от используемого в процессе катализатора:

низкотемпературная (120-200 °C), среднетемпературная (280-320 °C) И высокотемпературная (360-420 °C). Также, процесс может быть реализован либо по «за проход», либо с рециркуляцией низкооктановых схеме эффективным углеводородов. Наиболее является применение низкотемпературного катализатора, поскольку по сравнению с другими типами катализаторов он обеспечивает наибольшую конверсию нормальных пентана и гексана в соответствующие изомеры при значительно меньших температурах. Вариант технологии «за проход» может обеспечить прирост октанового числа не более чем на 10-11 пунктов, в то время как рециркуляция н-пентана и нгексана с метилпентанами позволяет повысить октановое число на 14-20 пунктов [20]. Таким образом, выбираем установку низкотемпературной изомеризации с депентанизатором и деизогексанизатором.

Установка каталитического риформинга выбрана для проектируемого нефтеперерабатывающего завода с целью получения риформата – высокооктанового компонента товарного бензина. Установки каталитического риформинга подразделяют на три типа:

- со стационарным слоем катализатора и его регенерацией одновременно во всех реакторах при полной остановке установки;

- со стационарным слоем катализатора и его регенерацией в каждом из реакторов за счет подключения резервного реактора взамен выключенного;

- с движущимся катализатором и его непрерывной регенерацией в отдельном аппарате – регенераторе [21].

Целесообразным является выбрать вариант риформинга с движущимся слоем катализатора, поскольку такая технология обеспечивает непрерывность процесса, постоянство выхода и качества получаемого риформата и ВСГ, возможность ведения процесса в жестком режиме с глубокой ароматизацией сырья при низком давлении (0,35-1 МПа) и низкой кратности циркуляции ВСГ (500-840 нм³/м³). Октановое число получаемого риформата при этом на уровне 100 пунктов по ИМ [1]. Кроме того, часть риформата будет перерабатываться в комплексе по производству ароматических соединений с целью получения бензола, орто- и параксилолов, являющихся ценным сырьем нефтехимического Необхолимость включения этого комплекса обусловлена синтеза. ограничением содержания ароматических углеводородов (не более 35 %мас. для класса-5 по техническому регламенту) в товарных бензинах.

Гидроочистка прямогонной керосиновой фракции требуется для обеспечения установленных для марок реактивного топлива ДЖЕТ А-1 и ТС-1 значений плотности, низшей теплоты сгорания, высоты не коптящего пламени ароматических углеводородов. Установка содержания гидроочистки И дизельного топлива необходима для достижения в прямогонной фракции, а также в легком газойле вторичных процессов (каталитического крекинга и установки замедленного коксования) содержания серы, соответствующего топливу класса-5 по техническому регламенту и марке ЕВРО. Существующие варианты процессов гидроочистки являются однотипными по аппаратурному оформлению и схемам реакторных блоков, основные различия это применяемый (алюмоникельмолибденовый катализатор или

14

алюмокобальтмолибденовый) и схема секции сепарации («горячая» ИЛИ Исходя из рекомендаций [22], для процесса гидроочистки «холодная»). керосиновой применяться алюмокобальтмолибденовый фракции будет катализатор, гидроочистки дизельной фракции для алюмоникельмолибденовый. Холодная сепарация по сравнению с горячей обеспечивает более высокую концентрацию водорода в ЦВСГ. Горячая сепарация обеспечивает меньшие эксплуатационные затраты на нагрев и охлаждение; недостатком является некоторое увеличение расхода водорода изза его растворения в гидрогенизате. В соответствии с рекомендациями [2], на установке гидроочистки керосиновой фракции будет применяться холодная сепарация ГПС, а для дизельной фракции – горячая сепарация.

Процесс каталитического крекинга предназначен для получения высокооктанового бензина (ОЧМ 76-82) и легкого газойля – компонента дизельного топлива. По технологическому оформлению установки подразделяются на следующие типы:

- с движущимся слоем крупногранулированного катализатора;

- установки с псевдоожиженным слоем микросферического катализатора;

- установки с прямоточным лифт-реактором.

Установки первых двух типов на сегодняшний день являются морально устаревшими и по технико-экономическим показателям значительно уступают установкам с лифт-реактором [21]. Последний вариант представляется наиболее эффективным, поскольку он позволяет проводить процесс при повышенных температурах (510-530 °C) и коротком времени контакта сырья и катализатора (2-6 с). Такие условия ведения процесса способствуют увеличению выхода высокооктанового бензина и содержания олефинов C_3 - C_4 в газе, а также росту селективности процесса. Выход бензина при этом достигает 55-60 % [1]. Поэтому для проектируемого НПЗ выбираем именно этот вариант технологии.

Установка замедленного коксования в составе нефтеперерабатывающего завода играет важную роль и является самой рентабельной и перспективной технологией переработки тяжелых остатков, особенно в условиях низких цен на нефтяное сырье [15, с. 72]. Наличие этой установки предопределяет высокую глубину переработки нефти и способствует выработке наряду с коксом значительного количества светлых нефтепродуктов и газа. Кроме того, наличие в схеме завода УЗК высокой производительности позволяет быстрее адаптироваться к изменению состава перерабатываемой нефти, что особенно актуально в связи с увеличением содержания сернистых соединений в нефтях, поступающих на переработку [16, с. 55]. УЗК разделяют на одноблочные и двухблочные. Одноблочные установки имеют в своем составе, как правило, три коксовые камеры, и их рабочий цикл «загрузка сырья – выгрузка кокса» составляет около 48 часов. Основное отличие двухблочных установок замедленного коксования состоит в наличии четырех камер, которые работают попарно, независимо друг от друга. Каждую пару камер можно отключить на ремонт, не останавливая всей установки. Таким образом, целесообразным будет выбрать для проектируемого НПЗ двухблочный тип УЗК.

алкилирования бутан-бутиленовой Установка фракции метанолом структуру нефтеперерабатывающего завода внедрена В для получения метилтретбутилового эфира. Получение этого оксигената является актуальным, поскольку он является октаноповышающим компонентом товарного бензина и обеспечивает большую полноту сгорания топлива. Большинство промышленных установок имеют схожую схему, состоящую из секций реакции и очистки. Основные различия заключаются в типе реакционных устройств (изотермические, адиабатические и каталитической дистилляции) или их различной комбинации. Наибольшая конверсия достигается с использованием каталитической дистилляции колонны в дополнение К основному адиабатическому комбинации устраняются реактору. В такой термодинамические ограничения по степени превращения изобутилена при алкилировании в результате непрерывного отбора МТБЭ из реакционной смеси (~100 %) [20]. Исходя из этого, выберем именно такой вариант технологии.

Бутан-бутиленовая фракция после алкилирования метанолом поступит на установку алкилирования изобутана олефинами, которая служит для получения парафиновых широкоразветвленных углеводородов, являюшихся высокооктановым компонентом товарного бензина. В промышленной практике применяют три типа установок: сернокислотное, фтористоводородное и алкилирование на твердых катализаторах. Процесс фтористоводородного алкилирования протекает более селективно, при температуре, позволяющей для съема избыточного тепла реакции применять водяное охлаждение, без принудительного перемешивания реакционной смеси и с меньшим расходом катализатора. Недостатком является высокая летучесть и токсичность HF. Октановое число алкилата несколько выше при сернокислотном алкилировании. Основное достоинство установок с применением твердых катализаторов – это безопасность их эксплуатации при сопоставимой с жидкостным алкилированием эффективности процесса [21]. Однако твердые катализаторы подвержены относительно быстрой дезактивации. В связи с этим в структуру проектируемого завода предлагается включить принципиально новую технологию алкилирования, основанную на применении комплексного соединения, синтезируемого из ионной жидкости и хлоридов меди и алюминия. По сравнению с другими технологиями, данный процесс более безопасен, используемая неагрессивна, оборудование ионная жидкость все изготавливается из углеродистой стали. Хотя и ионная жидкость дороже серной кислоты, в целом процесс экономически более эффективен [23].

Процессы изомеризации н-бутана подразделяются на типы в зависимости от применяемого катализатора: хлорида алюминия, хлорированного оксида алюминия или сульфатированных оксидов металлов. Катализаторы на основе хлорида алюминия и хлорированного оксида алюминия обеспечивают селективность по изобутану 99 % при температуре 100 – 160 °C, однако их существенный недостаток – высокая чувствительность к примесям соединений серы и воды в сырье, необратимо дезактивирующих катализатор [24]. Технология же с применением сульфатированных оксидов металлов обеспечивает несколько меньшую селективность в изомеризации н-бутана при температурах процесса 160 – 200 °С. Тем не менее, использование таких катализаторов не требует операций подачи хлорорганических соединений и нейтрализации кислых газов. Кроме того, они гораздо менее чувствительны к каталитическим ядам в сырье [25]. Это позволяет сделать выбор в пользу технологии изомеризации н-бутана с использованием сульфатированных оксидов металлов.

Процессы дегидрирования пропана и изобутана классифицируют по трем критериям:

по типу реактора (адиабатический или изотермический);

_

– по типу применяемого катализатора (алюмохромовый или алюмоплатиновый);

– по типу организации реакционной зоны (стационарный, движущийся или кипящий слой катализатора).

изотермическом реакторе обеспечивает Процесс В наибольшую селективность (не менее 90 %), конверсия за проход при этом составляет около 45 %. В условиях же адиабатического реактора селективность несколько ниже (85 - 90 %), но конверсия за проход при этом достигает 50-60 %. Кроме того, поддержание изотермического режима требует более сложного аппаратурного оформления. Что касается типа катализатора, то при схожей селективности алюмохромовый катализатор обеспечивает несколько большую конверсию по сравнению алюмоплатиновым. Процесс, проводимый в кипящем слое катализатора, показывает меньшую селективность, чем в стационарном или движущемся слое [26]. Наиболее оптимальным является вариант процесса в адиабатическом реакторе стационарным co слоем алюмохромового катализатора, поэтому целесообразным будет выбрать именно его.

Установка олигомеризации пропилена вводится в структуру НПЗ для получения полимер-бензина – высокооктанового компонента товарного бензина, удовлетворяющего требованиям экологических стандартов. Процесс подразделяют на типы [27] в соответствии с применяемым катализатором: цеолитом, алюмосиликатом, катионообменными смолами ИЛИ «твердой (ТФК). фосфорной кислотой» Цеолиты относят числу довольно к перспективных катализаторов, и они обеспечивают ОЧИ олигомеризата на уровне 92 п., однако по сравнению с другими типами они требуют более высоких температур (285 - 375 °C) и давления (0,4 - 3 МПа) ведения процесса. Кроме того, они чувствительны к присутствию в сырье соединений серы. Аморфные алюмосиликаты в настоящее время используются в олигомеризации намного реже, чем цеолиты. Оптимальные результаты олигомеризации обеспечиваются при температуре 120-200 °С и давлении 2-5 МПа. ОЧИ олигомеризата составляет 95-96 пунктов, при этом селективность недостаточно велика (25 – 40 %). Ионообменные смолы сульфокислотного типа наряду с ТФК относятся к наиболее распространенным промышленным катализаторам олигомеризации [28]. Данный вид катализаторов применяется в более мягких условиях: температура не более 100 °С и давление 1—2 МПа. Однако существуют ограничения в использовании большинства ионообменных смол из-за их низкой термической стабильности при температурах выше 130 °С.

Олигомеризацию алкенов в промышленности в присутствии ТФК проводят при температурах 150—250 °C и давлении 2—8 МПа. Конверсия достигает 95 %, ОЧИ полимер-бензина на уровне 94-97 пунктов. Недостатком является относительно короткий срок службы (не более 6 месяцев). Таким образом, выбираем вариант процесса с применением ТФК, поскольку он является наиболее эффективным из перечисленных.

Блок-схема проектируемого нефтеперерабатывающего завода представлена на рис. 1.1.

Блок-схема НПЗ для переработки Михайловской нефти пашийского горизонта ДІІ

1.4 Выбор и обоснование ассортимента получаемых фракций из Михайловской нефти пашийского горизонта ДІІ на установке АВТ

Ассортимент получаемых продуктов зависит от химического состава и свойств нефти и от необходимости конкретных нефтепродуктов. По заданию предложен следующий перечень фракций: газ, 28-70, 70-120, 120-180, 180-230, 230-280, 280-350, 350-530, >530 °C.

Углеводородный газ, растворенный в нефти, преимущественно состоит из н-бутана (62,5 %мас.) и пропана (20,2 %мас.) в соответствии с таблицей 1.4. Газ направляют на обработку водными растворами аминов для удаления сероводорода, после чего она поступит на газофракционирующую установку. На ГФУ в процессе ректификации будут получены топливный газ, индивидуальные низкомолекулярные углеводороды.

Фракция 28-70 °С: данных о количественном содержании углеводородов нет, поэтому предполагаем, что она почти полностью состоит из нормальных парафиновых углеводородов; ее направляют как сырье на установку низкотемпературной каталитической изомеризации для повышения октанового числа примерно с 66 до 88-92 пунктов, что позволит использовать изомеризат как компонент высокооктанового бензина.

Фракция 70-120 °С вместе с фракцией 120-180 °С поступает на установку каталитического риформинга с целью получения компонента бензина, обладающего высоким октановым числом за счет повышенного содержания ароматических углеводородов.

Чтобы получать компоненты реактивных топлив из фракций 120-180 °С и 180-230 °C, они должны соответствовать по качеству всем требованиям ГОСТ к качеству товарных реактивных топлив за исключением содержания общей и меркаптановой серы, фактических смол, термической стабильности и йодного числа. Поскольку характеристика фракции 120-230 °С для Михайловской нефти ДІІ отсутствует, воспользуемся необходимыми данными для месторождения из этого же региона с подобными характеристиками нефти (см. таблицу 1.9). Для обоснования получения керосиновой фракции и варианта ее дальнейшего использования сравним основные показатели качества этой фракции с товарными реактивными топливами марок ДЖЕТ А-1 и ТС-1 и оформим их в виде таблицы (см. таблицу 1.12). Из сравнения видно, что плотность фракции не соответствует требованиям для топлива марки TC-1, а такие показатели как низшая теплота сгорания, содержание ароматических углеводородов и высота некоптящего пламени отсутствуют. Мы сможем перерабатывать фракцию 120-230°С с целью получения компонентов товарного реактивного топлива марок ДЖЕТ А-1 и TC-1, если отправим ее на процесс гидроочистки при повышенном давлении и увеличим содержание фракции 180-230 °С в товарном топливе.

Часть фракции 180-230 °С совместно с фракциями 230-280 °С и 280-350 °С отправятся на получение дизельного топлива. Чтобы обосновать получение и дальнейшее использование дизельной фракции, сравним ее основные показатели с товарным дизельным топливом 5-го класса по техническому регламенту и с дизельным топливом марки ЕВРО (см. таблицу 1.13). Из

сравнения видно, что такие показатели как кинематическая вязкость И плотность несколько ниже требуемых для топлива марки ЕВРО; температура помутнения соответствует только классу-0 этой марки; содержание общей серы значительно выше, чем в целевых товарных топливах. Для достижения установленных значений по содержанию общей серы отправим эти фракции на гидроочистки; чтобы повысить показатели плотности процесс И кинематической вязкости, несколько увеличим долю фракций 230-280 °C и 280-350 °С в товарном топливе; для понижения температуры помутнения будем использовать депрессорные присадки.

Фракцию 350-530 °С переработаем по топливному варианту, поскольку данную фракцию экономически не выгодно использовать в качестве сырья для получения масляных дистиллятов: их рекомендуется получать при вакуумной перегонке мазута, если индекс вязкости и выход каждого базового масла не ниже 85 пунктов и 8,0 %мас. на нефть соответственно; обоим этим критериям соответствует только фракция 350-400 °С (см. таблицу 1.10).

Фракцию >530 °С (гудрон) используем для получения кокса в процессе замедленного коксования, где также будут получены дополнительные количества бензина и дизельного топлива, что увеличит глубину переработки нефти.

Характеристика реактивных топлив и керосиновых фракций

	Pea	Фракция нефти, °С		
Показатели качества	ТС-1 (ГОСТ	10227-2013)	ДЖЕТ А-1	120-235
	высший сорт	первый сорт	(ГОСТ 32595-2013)	
Плотность при 20(15) °С, кг/м ³	Не менее 780	Не менее 775	(775-840)	774(778)
Фракционный состав, °С:				
- температура начала перегонки	Не выше 150	Не выше 150	-	138
- 10 % отгоняется при температуре	Не выше 165	Не выше 165	Не выше 205	148
- 50 % отгоняется при температуре	Не выше 195	Не выше 195	-	178
- 90 % отгоняется при температуре	Не выше 230	Не выше 230	Не выше 300	217
- 98 % отгоняется при температуре	Не выше 250	Не выше 250		228
- температура конца кипения	-	-		-
Кинематическая вязкость, мм ² /с:				
- при 20 °С	Не менее 1,30	Не менее 1,25	-	1,32
- при минус 40 °С	-	-	-	-
- при минус 20 °С	Не более 8	Не более 8	Не более 8	-
Низшая теплота сгорания, кДж/кг	Не менее 43120	Не менее 42900	Не менее 42800	-
Содержание ароматич. углеводородов, %мас.(%об.)	22(20)	22(20)	25	-
Высота некоптящего пламени, мм	Не менее 25	Не менее 25	Не менее 25	-
Кислотное число, мг КОН/г топлива	-	-	Не более 0,1	
Кислотность, мг КОН/100 см ³ топлива	Не более 0,7	Не более 0,7	-	-
Йодное число, г I ₂ /100 г топлива	Не более 2,5	Не более 3,5	-	-
Температура вспышки, °С	Не ниже 28	Не ниже 28	Не ниже 38	32
Температура начала кристаллизации, °С	Не выше минус 60	Не выше минус 60	-	Минус 60
Температура застывания, °С	-	-	Не выше минус 47	-
Содержание общей серы, %мас.	Не более 0,20	Не более 0,25	Не более 0,25	0,148
Содержание меркаптановой серы, %мас.	Не более 0,0030	Не более 0,0030	Не более 0,0030	-

Характеристика дизельных товарных топлив и дизельной фракции

	Дизельные то	I		
Показатели качества	Класс 5 по ТР ТС 013/2011	ЕВРО (ГОСТ 32511-2013)	Фракция нефти 150-350 °С	
Цетановое число	Не менее 51	Не менее 51	56	
Цетановое число для холодного и арктического климата	Не менее 47	-	-	
Цетановый индекс	-	Не менее 46	-	
Плотность при 15°, кг/м ³	-	820-845	816	
Фракционный состав:				
- при температуре 250 °С перегоняется, %об.	-	Менее 65	-	
- при температуре 350 °С перегоняется, %об.	-	Не менее 85	-	
-95 %об., перегоняется при температуре, °С	Не выше 360	Не выше 360	-	
Кинематическая вязкость при 40 °C, мм ² /с:	-	2-4,5 Класс 0: 1,5-4 Класс 1: 1,5-4 Класс 2: 1,5-4 Класс 3: 1,4-4 Класс 4: 1,2-4	1,68	
Температура застывания, °С	-	-	Минус 27	
Температура помутнения, °С, не выше	-	Класс 0: минус 10 Класс 1: минус 16 Класс 2: минус 22 Класс 3: минус 28 Класс 4: минус 34	Минус 15	

Продолжение таблицы 3.2

	Дизельные то			
Показатели качества	Класс 5 по ТР ТС 013/2011	ЕВРО (ГОСТ 32511-2013)	Фракция нефти 150-350 °С	
Предельная температура фильтруемости для холодного (арктического) климата, °С, не выше	минус 20 (минус 38)	Класс 0: минус 20 Класс 1: минус 26 Класс 2: минус 32 Класс 3: минус 38 Класс 4: (минус 44)	_	
	Не бо	олее		
Содержание общей серы, мг/кг	10	K3: 350 K4: 50 K5: 10	3800	
Содержание полициклических ароматических				
углеводородов, %мас.	Не более 8	Не более 8	-	
Температура вспышки, °С:				
 - дизельные топлива, за исключением дизельного топлива для арктического климата -дизельные топлива для зимнего и арктического 	Выше 55	-	-	
климата	Не ниже 30	_	-	
-для дизелей общего назначения	-	Выше 55	60	
Зольность, %мас.	-	Не более 0,01	-	
Коксуемость 10%-ного остатка, %мас.	_	Не более 0,30	-	
Смазывающая способность, мкм	-	Не более 460	-	
Коррозия медной пластины, единицы по шкале	Клас	-		
Содержание воды (мг/кг)	Не бол	-		
Окислительная стабильность: общее количество осадка, г/м ³	Не более 25		_	

1.5 Краткая характеристика технологических установок НПЗ

1.5.1 Характеристика установки ЭЛОУ-АВТ. Материальный баланс установки ЭЛОУ-АВТ производительностью 12 млн. тонн в год

Установка будет состоять из блока ЭЛОУ, блока атмосферной перегонки, блока стабилизации, вторичной перегонки бензиновой фракции и вакуумного блока с узлом создания вакуума. Материальный баланс установки приведен в таблице 1.12.

В блоке ЭЛОУ предусмотрена двухступенчатая схема подготовки нефти, между ступенями в поток нефти будет осуществляться ввод дистиллированной воды с целью растворения солей, присутствующих в виде кристаллов. Параметры работы электродегидратора следующие: температура 160 °C, давление 1 МПа.

В блоке атмосферной перегонки нефти ректификация осуществляется по схеме с двумя ректификационными колоннами с двукратным испарением и двукратной ректификацией. Первая колонна является отбензинивающей, вторая – основной. Температура и давление на входе в основную колонну равны соответственно 352 °C и 0,2 МПа.

В блоке стабилизации выделение из бензиновой фракции растворенных углеводородных газов и сероводорода будет осуществляться в одной ректификационной колонне.

Вакуумный блок будет реализован по схеме перегонки мазута в одной ректификационной вакуумной колонне с однократным испарением и однократной ректификацией.

Таблица 1.12

			Расход			
Статьи баланса	%мас. на сырье установки	%мас. на нефть	тыс. т/год	т/сут	кг/ч	
Взято:						
Нефть сырая	100,9	100,9	12108	35612	1483824	
Итого	100,9	100,9	12108	35612	1483824	

Материальный баланс установки ЭЛОУ-АВТ

Продолжение таблицы 1	1.12
-----------------------	------

	%Mac		Расход			
Статьи баланса	на сырье установки	%мас. на нефть	тыс. т/год	т/сут	KT/4	
Получено:						
1. Газ	4	4,0	480	1412	58824	
2.Фракция НК-70 °С	4,8	4,8	576	1694	70588	
3.Фракция 70-120 °С	10,5	10,4	1248	3671	152941	
4.Фракция 120-180 °С	13,0	12,9	1548	4553	189706	
5.Фракция 180-230 °С	11,6	11,4	1368	4024	167647	
6.Фракция 230-280 °С	10,5	10,1	1212	3565	148529	
7.Фракция 280-350 °С	13,9	13,1	1572	4624	192647	
8.Фракция 350-500 °С	21,2	18,2	2184	6424	267647	
9. Гудрон	10,5	14,2	1704	5012	208824	
10. Вода	0,3	0,3	36	106	4412	
11. Потери	1,5	1,5	180	529	22059	
Итого	100,9	100,9	12108	35612	1483824	

1.5.2 Характеристика установок вторичных процессов переработки нефти и процессов переработки нефтезаводских газов

Процесс изомеризации легкой бензиновой фракции планируется по технологии Изомалк-2. Реакции протекают в присутствии водорода в неподвижном слое катализатора, которым является сульфатированный оксид циркония с нанесенной платиной. Процесс осуществляется при температуре 130 °C, давлении 2,5 МПа, объемной скорости подачи сырья 2 ч⁻¹ и кратности циркуляции ВСГ 350 нм³/м³. Октановое число изомеризата составляет 90-92 пункта.

Интегрированный комплекс UOP для производства ароматических углеводородов рассчитан на максимальный выход бензола и п-ксилола и включает следующие процессы UOP:

1) CCR Platforming для производства ароматических углеводородов из бензиновых фракций с высокой эффективностью;

2) Sulfolane, Carom – экстракционная дистилляция для получения бензола и толуола;

3) Parex для получения п-ксилола путем непрерывного адсорбционного разделения;

4) Isomar для изомеризации ксилолов и преобразования этилбензола;

5) Tatoray для преобразования толуола и тяжелых ароматических углеводородов в ксилолы и бензол.

Установка риформинга будет работать при следующих параметрах: температура на входе в реактор P-1 500 °C, давление на входе в реактор P-1 0,48 МПа, кратность циркуляции ВСГ 355 нм³/м³, объемная скорость подачи сырья 1,36 ч⁻¹. В процессе применяется полиметаллический катализатор серии R-264, который перемещается между 4 реакторами, расположенными соосно, под действием силы тяжести по специальным транспортным трубкам.

Для процессов гидроочистки дизельной и керосиновой фракций выбрана HDS/HAD компании Tops Θe . Она представляет технология собой двухступенчатый процесс для получения дизельного и реактивного топлив с ультранизким содержанием серы и малым содержанием ароматических углеводородов. На первой ступени процесса осуществляется глубокая очистка от серы и азота с применением катализатора ТК-573, не содержащего благородного металла. Жидкий продукт с этой ступени поступает в секцию промежуточной отгонки, в которой острым водяным паром или ВСГ отделяют сероводород и аммиак. Дистиллят после отпарки поступает на вторую ступень, где производится гидрирование ароматических углеводородов на катализаторе, содержащем благородный металл. Параметры процесса: давление до 6 МПа, температура 320-400 °C (P-1), 260-330 °C (P-2). Содержание серы снижается до 1 ррт, ароматических углеводородов менее 10 %мас., цетановый индекс дизельного топлива 57 пунктов.

Процесс производства водорода из сухого газа планируется по технологии парового риформинга компании Foster Wheeler. Реакция протекает при температуре 870 °С и давлении 3,1 МПа на никелевом катализаторе, набитом в печи риформинга. реакционные Получившийся водород трубы будет очищаться с помощью короткоцикловой адсорбции при переменном давлении (PSA). PSA – циклический процесс улавливания примесей в слое твердого адсорбента. Такой способ очистки позволяет получать водород с концентрацией 99,9 %.

Установка каталитического крекинга будет реализована по технологии FCC. Параметры для реактора следующие: температура 515 °C, давление 0,14 МПа, кратность циркуляции катализатора 5,5 т/т, время пребывания катализатора 2 с. Для регенератора: температура 700 °C, давление 0,2 МПа. Выход бензина составит порядка 60 %, углеводородов C_3 - C_4 – 24 %. В процессе применяется высокоактивный цеолитный катализатор, обеспечивающий октановое число получившегося бензина на уровне 92 пунктов.

Установка замедленного коксования принята по технологии Conoco Philips и состоит из трех секций: коксования, фракционирования и продувки. Установка будет иметь следующие параметры эксплуатации: температура 452

°С, давление 1 МПа, коэффициент рециркуляции 1,2. Выход кокса при этом составит 20,5 %мас. Процесс будет сопряжен с установкой прокаливания сырого кокса для получения товарного продукта, соответствующего по качеству анодному коксу.

Для процесса дегидрирования пропана выбрана технология «Катофин», представляет собой получение пропилена в одну ступень в группе реакторов, работающих параллельно. Процесс осуществляется при пониженном давлении в стационарном слое алюмохромового катализатора с частым переключением реактора по стадиям реакция-регенерация. При этом тепло, аккумулированное катализатором на стадии регенерации, используется затем на стадии дегидрирования. Параметры процесса следующие: давление 0,03 МПа, температура 560 °C, рабочий цикл 15 мин. Конверсия за проход составляет 55 %, селективность – 90 %.

Олигомеризация пропиленовой фракции планируется по технологии, предлагаемой фирмами UOP и Hüls AG. Процесс проводят при 150-250 °C, 2-8 МПа и относительно высоких объемных скоростях, чтобы ограничить коксообразование. Степень превращения пропилена составляет не менее 95%. Полученная бензиновая фракция имеет октановое число 96-97 пунктов. Катализатором процесса является твердая фосфорная кислота - фосфорная кислота, нанесенная на твердый носитель (кизельгур, диоксид кремния, силикагель).

Процесс изомеризации н-бутана будет реализован по технологии фирмы «ОЛКАТ» с использованием катализатора ИПК-2С на основе сульфатированных оксидов циркония и алюминия.. Параметры процесса следующие: температура 180 °С, давление 1,5 МПа, объемная скорость подачи сырья 3 ч⁻¹, мольное отношение водород : сырье равное 0,6 : 1. Конверсия «за проход» при этом составляет 52 %, селективность - 95 %.

Процесс дегидрирования изобутана будет реализован по той же технологии, что и дегидрирование пропана («Катофин»), но при более мягких условиях: температура 540 °C, давление 0,07 МПа, рабочий цикл 10 мин. Конверсия за проход составит 60 %, селективность – 90 %.

Для процесса получения метилтребутилового эфира выбрана технология НИИ «Ярсинтез», которая включает использование каталитической дистилляции. В процессе применяются ионитные формованные катализаторы КИФ-Т. Синтез эфира протекает при температуре 65 °С и давлении 0,9 МПа. Технология включает узел синтеза и выделения метилтретбутилового эфира, а также узел очистки отработанной бутан-бутиленовой фракции и рекуперации метанола. Конверсия изобутилена превышает 99 %, концентрация целевого эфира в товарном продукте может составлять более 99 %.

Процесс алкилирования изобутана олефинами планируется по технологии Ionikylation. Он проводится в реакторе – статическом смесителе гомогенным катализаторным комплексом на базе ионной жидкости и хлоридов алюминия и меди. Реакция протекает при температуре 15 °C и давлении 0,4 МПа, время нахождения смеси в реакторе около 10 мин, соотношение катализатор : сырье равно 1,2 : 1, соотношение изобутан : олефины составляет 500 : 1. Продукты

реакции разделяются в гравитационном осадителе, где более тяжелая ионная жидкость с катализатором легко отделяется от алкилата и поступает в рецикл. Конверсия составляет 99 %, причем 30 % алкилата приходятся на изооктан; октановое число алкилата на уровне 100 пунктов.

Производство элементной серы будет реализовано с использованием прямоточного процесса Клауса (пламенный способ) по технологии Clipsulf, разработанной фирмой «Linde». По этому способу весь кислый газ подается на сжигание в печь-реактор термической ступени установки Клауса, выполненную в одном корпусе с котлом-утилизатором. В топке печи-реактора температура достигает 1300 °C, и выход серы – 75 %. Дальнейшее превращение сероводорода в серу осуществляется в две-три ступени на катализаторах при относительно низкой температуре в 120 °C, что становится возможным благодаря использованию парогенераторов. После каждой ступени пары образовавшейся серы конденсируются в поверхностных конденсаторах. Выход серы в процессе достигает 99,9 %.

30

2.1 Обзор научно-технической литературы на тему: пути интенсификации процесса гидрокрекинга вакуумного газойля

В условиях гидрокрекинга при относительно невысоких температурах и значительном разбавлении реакционной смеси одним из реагентов – водородом – глубина гидрокрекинга парафинов и нафтенов, гидродеалкилирования ароматических углеводородов и гидрогенолиза гетероорганических соединений определяется преимущественно кинетическими, а не термодинамическими закономерностями.

При формальном описании кинетики процессов гидрокрекинга обычно используются кинетические уравнения вида:

$$w = k_0 \exp\left(-\frac{E}{RT}\right) p_y^{r_1} p_{H_2}^{r_2} = k p_y^{r_1} p_{H_2}^{r_2},$$

Где w – скорость реакции; k – константа скорости; k_0 и E – предэкспоненциальный множитель и энергия активации; p_y и p_{H_2} - парциальные давления исходного вещества и водорода; r_1 и r_2 – наблюдаемые порядки реакции по исходному веществу и водороду [4].

Расщепление и изомеризация алканов являются реакциями первого порядка, гидрирование и деструктивное гидрирование – второго порядка. Однако при большом избытке водорода последние реакции, сопровождающиеся торможением продуктами процесса, также описываются уравнениями первого порядка. Кажущаяся энергия активации гидрокрекинга вакуумного газойля составляет 140 – 250 кДж/моль при 380 – 420 °C [6].

Некоторое представление о соотношении скоростей различных реакций гидрокрекинга дает схема, изображенная на рис. 2.1 (цифры на стрелках – значения относительной константы скорости).

Соотношение скоростей некоторых реакций процесса гидрокрекинга [6]

Из схемы следует, что гидрирование до углеводородов, содержащих одно ароматическое кольцо, и разрыв нафтеновых колец в полициклических

структурах происходят быстро, а гидрирование одного ароматического кольца в структуре молекулы и гидрогенолиз кольца моноциклических нафтенов протекают медленно.

Схема отражает состав конечных продуктов гидрокрекинга: преобладание среди ароматических углеводородов алкилбензолов, среди нафтеновых – моноциклических (в значительной степени циклопентановых).

Если рассматривать процесс гидрокрекинга с точки зрения термодинамики, то величина теплового эффекта определяется соотношением реакций гидрирования и расщепления. Как правило, отрицательный тепловой эффект реакций расщепления компенсируется положительным тепловым 2.1). эффектом реакций гидрирования (см. таблицу Гидрогенолиз гетероатомных соединений также является экзотермическим процессом (см. рис. 2.2). Естественно, экзотермический тепловой эффект тем больше, чем выше глубина гидрокрекинга [1].

Тепловой эффект реакции гидрирования некоторых органических соединений серы [6]

	<i>q</i> , кДж√моль		q, кДж/кг серы	
• Реакция	300 K	800 K	300 K	800 K
$\begin{array}{c} RSH+H_2 \longrightarrow RH+H_2S \\ RSR'+2H_2 \longrightarrow RH+R'H+H_2S \\ RSSR'+3H_2 \longrightarrow RH+R'H+2H_2S \end{array}$	59 105 134	67 112 162	1850 3300 4200	2100 3500 5060

Рис. 2.2

Таблица 2.1

Средние значения термодинамических характеристик реакций, протекающих в процессе гидрокрекинга (T=350°C)

Реакция	АН кЛж/моль	$\Delta S \kappa \pi W/MOREK$	АС кЛж/моль
Гидрокрекинг алканов С ₁₂ –С ₂₇	-63,17	30,88	-83,18
Гидрокрекинг изоалканов С ₁₂ -С ₂₇	-61,68	25,38	-78,22
Гидрирование алкенов в алканы	-145,11	-143,36	-52,22
Гидрокрекинг циклоалканов с образованием алканов C ₅ – C ₁₁	-61,71	-77,07	-11,77
Гидрирование диароматических углеводородов в моноароматические	-48,31	25,98	-65,14
Образование коксогенных структур (КГС)	87,89	525,93	-252,92

Исходя из условия обратимости реакций ($-70 \le \Delta G \le +70$ кДж/моль [8]) реакции гидрирования алкенов в алканы, гидрокрекинга циклоалканов с образованием алканов C₅–C₁₁, гидрирования диароматических углеводородов в моноароматические идут как в прямом, так и в обратном направлениях. Тогда как реакции гидрокрекинга алканов C₁₂–C₂₇, гидрокрекинга изоалканов C₁₂–C₂₇, образования КГС являются необратимыми.

Значение изменения энергии Гиббса в ходе реакций гидрокрекинга циклоалканов с образованием алканов C₅–C₁₁ позволяет сделать вывод, что данные реакции являются равновесными [7].

Таким образом, зная данные кинетические и термодинамические закономерности, можно создать необходимые оптимальные условия проведения процесса.

Одним из наиболее перспективных направлений интенсификации процесса гидрокрекинга является разработка принципиально новых катализаторов. Такой подход напрямую связан с кинетикой процесса, поскольку каталитически активные композиции снижают энергию активации реакций. Например, International Research Maatschappij B. V. Shell Разработан компанией «массивный катализатор» гидрокрекинга, представляющий собой катализатор без носителя, содержащий металлы VIII группы (особенно Ni и/или Co) и группы VIb (особенно Мо и/ или W), цеолит, и, необязательно, инертный тугоплавкий оксид. Термин «без носителя» подразумевает, что композиция представляет собой предварительно сформованный каталитический носитель, на который затем наносят металлы путем пропитки или осаждения, в отличие от традиционного катализатора, в котором металлы вместе с материалами носителя измельчаются и объединяются вместе под действием физических сил. Кристаллическая структура цеолитного компонента при этом остается неповрежденной, а металлы, главным образом, металл группы VIb, и особенно металлический молибден, внедряются внутрь пор цеолита [9].

Разработанная каталитическая композиция обладает очень высокой активностью при гидрировании моноароматических соединений, а также существенно лучшей селективностью по керосиновым и дизельным фракциям. Даже при достижении существенно более высокой степени гидрирования ароматических соединений количество потребляемого водорода остается ниже, чем для катализаторов традиционного приготовления.

Компанией Королевства Саудовская Аравия Saudi Arabian Oil Co совместно с американской Aramco Servises разработан «массивный катализатор» NiMo-MCM-41 для переработки углеводородной смеси вакуумного газойля/деметаллизированной нефти. Созданный катализатор состоит из каталитического материала-носителя, включающего мезопористый материал, каталитический металл в форме сульфида, состоящий из молибдена, которым пропитан носитель, и металл-промотор на носителе, включающем в себя никель, служащий для повышения каталитической конверсии. Также разработана двухступенчатая технологическая схема гидрокрекинга смеси вакуумного газойля/деметаллизированной нефти в присутствии описанного выше катализатора с предварительной гидроочисткой сырья.

Basf Catalysts LLC разработал катализатор гидрокрекинга на основе Y-цеолита, предназначенный для переработки широкого перечня сырья – сырой нефти, нефти, отбензиненной отгонов вакуумной перегонки, газойля коксования, рециклового газойля, гудронов, вакуумного газойля, деасфальтированных остатков и других остаточных продуктов с пределами выкипания от 340 до 565 °C. Характерной для данного процесса особенностью является протекание его при высоком давлении – от 104 до 345 атм, хотя можно использовать катализатор И при более высоких давлениях, ограниченных возможностями оборудования. Температура процесса равна 360-440 °С. Разработанный катализатор желательно применять в комплексе с предварительной гидроочисткой В двухстадийном процессе либо В одностадийном многослойном реакторе.

Тяжелые компоненты сырья блокируют активные центры и способствуют быстрой дезактивации катализатора, поэтому в последнее время активно развивается новый подход к переработке тяжелого углеводородного сырья наногетерогенный катализ. Где используются нано- и мезоразмерные каталитические системы, не стабилизированные носителем или подложкой. Предложено много вариантов гидрокрекинга с использованием таких катализаторов на основе смешанных оксидов и в присутствии металлов VIII группы, которые позволяют увеличить выход бензиновых и дизельных фракций. Как пример, научно-исследовательская группа из Китая провела гидрокрекинг, используя В качестве коллоидного катализатора нанопластинчатый WS₂. Процесс гидрокрекинг вакуумного остатка проводили в реакторе периодического действия при 400 °C и начальном давлении H₂ 70 bar. Сравнивали одно- и многослойные нано-пластинчатые WS₂ катализаторы с обычными насыпными коммерческими катализаторами. Однослойный WS₂, с удельной площадью поверхности 97,6 м²/г, показал наилучший результат. Выход средних дистиллятов и суммарный выход жидких продуктов составили 45,4 %мас. и 75,3 %мас. соответственно [13].

2.2 Характеристика сырья, получаемых продуктов, катализатора, реагентов

Сырьём установки гидрокрекинга вакуумного газойля является смесь, получаемая из вакуумного газойля Михайловской нефти пашийского горизонта (ДІІ) с пределами выкипания 350°С-530°С и тяжелого газойля коксования, получаемого на установке замедленного коксования. Ниже представлены характеристики сырья и получаемых на установке гидрокрекинга вакуумного газойля продуктов – углеводородного газа, лёгкого и тяжёлого бензинов, дизельного топлива, реактивного топлива и гидроочищенного вакуумного газойля, часть из которого является сырьем процесса каталитического крекинга (другая часть сырьём второй ступени установки гидрокрекинга), а также характеристики свежего и циркулирующего водородсодержащих газов.

Характеристика сырья приведена в таблице 2.2.

33

34 Таблица 2.2

Остаток	Выход ρ_4^{20} , (на кг/м ³		$\frac{20}{M^3}$ DV		DV	Температура, °С		Содержа-	Коксуемость,
	нефть), %мас.	KI / WI	ВУ ₅₀	ВУ ₈₀	ΒУ ₁₀₀	застыва- ния	вспышки	ние серы, %мас.	%
Выше 300°С	41,6	895,0	-	4,10	2,32	28	192	0,87	6,21
Выше 350°С	32,0	951,0	-	6,45	3,75	35	243	0,95	7,41
Выше 400°С	24,0	953,0	-	9,00	6,20	46	284	0,99	9,40

Характеристика остатков

Характеристики продуктов процесса представлены в таблице 2.3.

Таблица 2.3

Показатель качества	Лёгкий бензин	Тяжёлый бензин	Реактивное топливо	Дизельное топливо	Гидроочищенный вакуумный газойль
Плотность при	668	740	790	830	880
20°С, кг/м ³					
Молярная	78,4	115,	155,	215,6	342,6
масса, кг/кмоль		3	4		
Фракционный состав					
(разгонка по ГОСТ), °С					
НК	30	95	175	218	340
$t_{10\%}$	38	110	187	230	356
$t_{50\%}$	54	129	193	276	408
$t_{90\%}$	74	161	214	335	470
КК	85	180	227	354	500
Содержание серы,	0,0005	0,0005	0,001	0,001	0,002 (20)
% мас. (ppm)	(5)	(5)	(10)	(10)	

Характеристика продуктов процесса

Характеристики УВГ, ЦВСГ, СВСГ приведены в таблице 2.4.

Таблица 2.4

Состав УВГ, ЦВСГ и СВСГ						
Компонент	Содержание, % об.					
	УВГ	СВСГ	ЦВСГ			
Водород	1,6	99,52	92,0			
Метан	21,0	0,21	3,6			
Этан	11,1	0,1	1,5			
Пропан	22,6	0,07	1,8			
Изобутан	28,2	0,05	0,6			
Н-бутан	15,5	0,05	0,5			
Итого	100,0	100,00	100,0			

Изучению влияния на свойства катализаторов гидрокрекинга таких факторов, как природа активного металла и способы получения носителей и нанесения на них активного компонента посвящено множество научных работ. Так, например, в институте катализа им. Г.К. Борескова (г. Новосибирск) проводились исследования, в которых описываются результаты гидрокрекинга с использованием NiW катализаторов, а также результаты различного комбинирования NiMo и NiW катализаторов в составе трехслойных пакетов.

Наиболее оптимальным же вариантом трехслойного пакета является последовательность Mo-W-Mo с температурой процесса 380°C, так как в этом случае не только наблюдается наивысшая селективность, но и выход остатка – гидроочищенного сырья каталитического крекинга – имеет достаточно высокий порядок [12].

На проектируемой установке гидрокрекинга будут применяться несколько катализаторов, характеристики которых приведены в таблице 2.5.

Таблица 2.5

Катализатор		NiMo/Al ₂ O ₃	NiMo/AAC-	NiW/AAC-	NiMo/Y-	NiW/Y-
			Al ₂ O ₃	Al_2O_3	Al_2O_3	Al_2O_3
Содержание Ni, %мас.		3,5	2,5	2,5	2,5	2,5
Содержание Мо, %мас.		12,0	7,5	-	7,5	-
Содержание W, %мас.		-	-	14,4	-	14,4
S_{yd} , м ² /г	Носитель	230	244	244	353	353
	Катализатор	155	154	147	290	308
V _{пор} , см ³ /г	Носитель	0,76	0,55	0,55	0,56	0,56
	Катализатор	0,49	0,41	0,38	0,42	0,42
D _{пор} (средн.), Å	Носитель	132	90	90	47,8	47,8
	Катализатор	127	107	102	43,1	40,6

Содержание активных металлов в катализаторах и текстурные характеристики носителей и катализаторов

2.3 Выбор и обоснование технологического оформления процесса, условий его проведения

По способу технологического оформления процессы бывают одноступенчатыми, осуществляемыми в одну или две стадии, и двухступенчатыми.

Одноступенчатый процесс под давлением 5-10 МПа применяется для легкого гидрокрекинга вакуумного газойля с целью подготовки сырья каталитического крекинга. При этом одновременно с малосернистым сырьем каталитического крекинга получают значительное количество дизельного топлива. В одностадийном процессе гидрокрекинга в одном реакторе проводятся и гидроочистка сырья, и его гидрокрекинг. При этом применяются
оксидные или сульфидные катализаторы, малочувствительные к воздействию каталитических ядов.

Двухстадийная схема применяется для получения более широкого ассортимента продуктов (см. таблицу 2.6). В схемах двухстадийного процесса применяются два последовательно работающих реактора. В первом реакторе на гидрирующем катализаторе протекают реакции гидрогенолиза сера- и азотсодержащих соединений, а также гидрирования ароматических углеводородов. Во втором реакторе на бифункциональном катализаторе осуществляется гидрокрекинг предварительно подготовленного сырья.

Таблица 2.6

Показатель	Процесс гидрокрекинга		
	Одностадийный	Двухстадийный	
Давление, МПа	5	5	
Температура, °С:			
-I стадия	420-450	350-380	
-II стадия	-	380-420	
Поступило, %мас.			
-сырье	100	100	
-водород	0,9	1,1	
Bcero	100,9	101,1	
Получено, %мас.:			
-сероводород + аммиак	1,6	1,6	
-углеводородный газ	2,5	2,4	
-бензин	1,8	1,5	
-летнее дизельное топливо	34,2	43,4	
-сырье для каталитического крекинга	59,8	51,2	
-потери	1,0	1,0	
Всего	100,9	101,1	

Показатели процесса легкого гидрокрекинга

Двухступенчатый процесс является универсальным: с его помощью можно перерабатывать различные виды нефтяных дистиллятов с высоким выходом целевых продуктов. Как правило, такой процесс используется для производства бензина. При двухступенчатом гидрокрекинге на первой стадии происходит глубокая гидроочистка сырья. Гидрогенизат первой ступени после стабилизации и отделения легкокипящих фракций поступает в реактор второй ступени, где протекают реакции гидрокрекинга.

Технологические схемы двухступенчатого гидрокрекинга, предлагаемые различными лицензиарами, не имеют существенных различий. Наиболее типичными схемами двухступенчатого гидрокрекинга являются юникрекинг (UOP), ФИН-Басф и изокрекинг (Shevron). Отличаются эти процессы типом применяемого катализатора, конструкцией реактора, условиями сепарации ГПС, обвязкой основной аппаратуры и т. п. [3].

Фирма «UOP» разработала три варианта двухступенчатого гидрокрекинга. Поточные схемы фирмы «UOP» представлены на рис. 2.3, 2.4, 2.5. В каждой технологической схеме гидроочистка и гидрокрекинг разделены и

36

представляют собой отдельные реакционные зоны, так что не все сырье, которое проходит гидроочистку, направляется на гидрокрекинг. Эта особенность технологической схемы очень важна, и она возможна только в том случае, когда на установке предусматривается два реактора.

Первая технологическая схема является модификацией схемы двухступенчатого гидрокрекинга с полной конверсией, общими сепарацией и фракционированием продуктов реакции (рис. 2.3).

Двухступенчатый процесс гидрокрекинга (Юникрекинг) с частичной конверсией сырья [15]

Рис. 2.3

Во второй схеме предусматривается использование двух параллельных однопроходных реакторов также с общими сепарацией и фракционированием продуктов реакции (рис. 2.4).

В третьей технологической схеме используется двухступенчатый гидрокрекинг разработки «UOP» с измененным движением потоков (рис. 2.5). Каждая из указанных схем имеет определенные преимущества по сравнению с традиционной схемой установки гидрокрекинга с частичной конверсией сырья [15].

Однопроходный процесс гидрокрекинга (Юникрекинг) с параллельными реакторами [15]

Рис. 2.4

Двухступенчатый процесс гидрокрекинга (Юникрекинг) с измененным движением потоков [15]

Рис. 2.5

Самым перспективным является вариант юникрекинга с частичной конверсией, общими сепарацией и фракционированием продуктов реакции, поскольку он может обеспечивать наибольшие степени очистки и превращения исходного сырья.

Существенно снизить загрязнение аппаратуры позволяет горячая сепарация ГПС, выходящей из реактора гидрокрекинга. В этом случае тяжелые

ПАУ остаются растворенными в жидкой фазе горячего сепаратора, которая поступает на ректификацию. Конденсированные ароматические углеводороды могут быть выведены из ректификационной колонны в качестве нижнего погона или удалены из рециркулирующего потока дополнительной ректификацией или адсорбцией. В результате снижения ПАУ в рециркуляте уменьшается закоксовывание катализатора и загрязнение оборудования. Поэтому такой вариант сепарации будет использован в данном проекте [3].

Давление и кратность циркуляции ВСГ оказывают существенное влияние на гидрокрекинг, так как эти параметры определяют парциальное давление водорода в процессе. Повышение парциального давления водорода за счет увеличения общего давления (до 15-20 МПа) и кратности циркуляции ВСГ (до 1000-2000 нм³/м³) способствует более интенсивному протеканию реакций гидрирования олефинов, ароматических углеводородов и гетероатомных органических соединений. При этом интенсифицируются реакции гидрокрекинга и подавляются реакции коксообразования.

Температура и объемная скорость подачи сырья являются параметрами, определяющими глубину гидрокрекинга. Повышение температуры в большей степени ускоряет реакции распада, идущие с наибольшей энергией активации. В результате в продуктах гидрокрекинга увеличивается содержание легкокипящих фракций. Предпочтительнее проводить процесс при низких температурах (400-450 °C), так как при этом повышается селективность процесса и увеличивается продолжительность цикла реакции [1].

Объемная скорость в процессах гидрокрекинга изменяется в пределах 0,3-1 ч⁻¹. С ростом объемной скорости при прочих равных условиях снижается глубина гидрокрекинга исходного сырья, уменьшается степень гидрирования ароматических углеводородов и смол.

В результате соотнесения вышеизложенной информации с условиями проведения испытаний предлагаемых к использованию катализаторов принимаются следующие параметры процесса. В реакторе гидрокрекинга при кратности циркуляции ВСГ, равной 1200 нм³/м³ сырья, приняты давление 15 МПа, температура, равная 420 °С, и объемная скорость подачи сырья, равная 0,7 ч⁻¹. В реакторе гидроочистки приняты следующие параметры: температура 395 °С, объемная скорость подачи сырья 1,5 ч⁻¹, кратность циркуляции ВСГ 800 нм³/м³ сырья, давление 15 МПа.

В реакторе гидрокрекинга будет применяться трехслойный пакет катализаторов NiMo/Al₂O₃, NiW/AAC-Al₂O₃, NiMo/Y-Al₂O₃ (разработан в институте катализа им. Г.К. Борескова, г. Новосибирск) [12]. При сравнении результатов применения различных катализаторов видно, что послойная загрузка комбинации NiMo и NiW катализаторов при варианте трехслойного пакета с последовательностью Mo-W-Mo является наиболее оптимальной, так как в этом случае не только наблюдается наивысшая селективность по дизельной фракции, но и выход остатка – гидроочищенного сырья каталитического крекинга – имеет достаточно высокий порядок (см. таблицу 2.6).

На установке гидрокрекинга предусмотрен блок моноэтаноламиновой

очистки ВСГ и кислых УВГ, состоящий из двух колонн-абсорберов, в которых происходит очистка ВСГ и УВГ соответственно путем поглощения сероводорода моноэтаноламином и одной колонны-десорбера, в которой происходит регенерация раствора МЭА и выделение сероводорода.

Колонна фракционирования предназначена для разделения продуктовой смеси на индивидуальные продукты: УВГ, лёгкий и тяжёлый бензины, дизельное топливо, и гидроочищенный вакуумный газойль, являющийся сырьем для процесса каталитического крекинга.

Таблица 2.6

Выход продуктов гидрокрекинга ВГО в присутствии различных пакетов Ni-Mo и Ni-W катализаторов, %мас. [12]

Пакет	T °C	Селективность	Гар	Бензиновая	Дизельная	Остоток
катализаторов	1 _p , C	(диз. фр.), %мас.	1 a3	фракция	фракция	OCTATOR
	380	75,6	1,7	14,2	49,2	34,8
Mo-Mo-Mo	385	69,4	2,5	19,5	50,0	28,0
	390	62,1	3,2	19,8	49,8	19,8
	380	80,6	1,9	10,4	50,8	37,0
Mo-W-Mo	385	77,2	2,1	13,5	52,7	31,7
	390	69,7	3,1	19,6	52,3	25,0
	380	71,5	2,1	15,0	42,9	40,0
Mo-W-W	385	64,5	2,8	23,4	47,5	26,3
	390	58,8	3,5	29,9	47,6	19,0

2.4 Технологическая схема установки с элементами КИП и А и ее описание, краткая характеристика основного оборудования

Принципиальная схема установки двухступенчатого глубокого гидрокрекинга вакуумного газойля представлена на рис. 2.6. Спецификация на технологическую схему приведена в приложении 12 (см. рис. Пр12.1).

Сырьём установки является смесь вакуумного газойля и тяжёлого газойля установки замедленного коксования. Исходное сырьё прокачивается насосом H-1, смешивается с циркулирующим и свежим водородсодержащим газом и поступает в теплообменник T-1, где нагревается за счет тепла газопродуктовой смеси, выходящей из реактора P-1. Далее газосырьевая смесь нагревается в печи П-1, и с температурой 395 °С поступает в реактор P-1, где протекают реакции гидроочистки и лёгкого гидрокрекинга.

Катализатор в реакторе P-1 загружен в три слоя, между которыми вводится холодный водородсодержащий газ для съёма избыточного тепла реакции. Верхний слой (NiMo/Al₂O₃) является защитным и способствует протеканию реакций гидрообессеривания и деметаллизации.

Газопродуктовая смесь из реактора P-1 охлаждается в теплообменнике T-1 до 280°C, смешивается с охлажденной газопродуктовой смесью реактора P-2, после чего объединенная газопродуктовая смесь поступает в горячий сепаратор высокого давления C-1, в котором при данной температуре и давлении 10 МПа

содержащая водород, отделяется, конденсируется газопаровая фаза, И охлаждается в теплообменнике Т-3, конденсаторе-холодильнике воздушного охлаждения ABO-1, водяном холодильнике BX-1 и с температурой 50 °С поступает в холодный сепаратор высокого давления С-2 (9,8 МПа). В этом сепараторе происходит дополнительное отделение водородсодержащего газа от жидкой фазы. Газовая фаза из сепаратора С-2, содержащая водород, поступает в абсорбер К-2, и после очистки от сероводорода поступает на приём циркуляционного компрессора ЦК-1. Для поддержания высокой концентрации водорода в циркулирующем водородсодержащем газе часть его отдувают в общезаводскую сеть, заменяя его на свежий. Жидкая фаза из сепаратора С-2 поступает в холодный сепаратор низкого давления С-4. Жидкая фаза из сепаратора C-1 с температурой 280 °С поступает в горячий сепаратор низкого давления С-3, из которого газовая фаза после охлаждения теплообменнике Т-4, в аппарате воздушного охлаждения ABO-2 и в водяном холодильнике BX-2 до 50°С смешивается с газовой фазой из сепаратора С-4, после чего объединенный поток направляется в абсорбер К-1 на очистку от сероводорода.

Жидкая фаза из сепаратора С-4 нагревается последовательно в теплообменниках Т-4 и Т-3 и смешивается с жидкой фазой из сепаратора С-3, после чего объединенный поток нагревается в теплообменнике Т-6 за счет тепла дизельной фракции, отходящей из колонны фракционирования К-4; затем нестабильный гидрогенизат поступает в колонну стабилизации К-5.

С верха колонны К-5 отводятся газы реакции вместе с парами легкой бензиновой фракции, которые, охлаждаясь в ABO-5 и BX-5, поступают в емкость Е-4. С низа емкости насосом H-13 забирается сконденсированная легкая бензиновая фракция, которая в качестве рефлюкса возвращается в К-5. С верха емкости отводятся газы реакции, поступающие затем в К-1. С куба колонны К-5 насосом H-12 забирается стабильный гидрогенизат, который, нагреваясь в змеевиках печи П-3, поступает в колонну фракционирования К-4 в зону питания (4 тарелка).

С верха колонны К-4 отводится фракция 28-70 °С. Конденсация ее паров осуществляется в аппарате воздушного охлаждения АВО-4 и водяном холодильнике ВХ-4, затем фракция насосом Н-11 подается на орошение колонны К-4 на тарелку 48, а балансовое ее количество выводится с установки. С 34 тарелки колонны К-4 отводится фракция 70-180 °С и поступает на верхнюю тарелку стриппинг-колонны К-4/1. Фракция забирается насосом Н-10, охлаждается в АВО-12 и выводится с установки.

С 22 тарелки колонны К-4 отводится фракция 180-240 °С и поступает на верхнюю тарелку стриппинг-колонны К-4/2. Затем фракция забирается насосом Н-9, охлаждается в АВО-10 и выводится с установки.

С 12 тарелки колонны К-4 отводится фракция 240-360 °С и поступает на верхнюю тарелку стриппинг-колонны К-4/3. Фракция забирается насосом Н-8, охлаждается в АВО-9 и выводится с установки.

Избыточное тепло из колонны К-4 отводят циркуляционными орошениями:

- первое циркуляционное орошение забирается из кармана 10 тарелки

колонны К-4, насосом Н-6 прокачивается через АВО-8 и возвращается в колонну на 11 тарелку;

-второе циркуляционное орошение забирается из кармана 20 тарелки колонны К-4, насосом Н-5 прокачивается через АВО-7 и возвращается в колонну на 21 тарелку;

-третье циркуляционное орошение забирается из кармана 32 тарелки колонны К-4, насосом Н-4 прокачивается через АВО-6 и возвращается в колонну на 33 тарелку.

С низа колонны насосом H-7 отбирается гидроочищенный вакуумный газойль, часть которого выводится с установки, после прохождения ABO-11. Вторая часть отправляется на вторую ступень установки гидрокрекинга.

Сырьё второй ступени прокачивается насосом Н-7, смешивается с циркулирующим и свежим водородсодержащим газом и поступает в теплообменник Т-2, где нагревается за счет тепла газопродуктовой смеси, выходящей из реактора Р-2. Далее газосырьевая смесь нагревается в печи П-2, и с температурой 420 °C поступает в реактор Р-2, где протекают реакции глубокого гидрокрекинга.

Катализатор в реакторе P-2 загружен в четыре слоя, между которыми вводится холодный водородсодержащий газ для съёма избыточного тепла реакции. Над слоями катализаторов глубокого гидрокрекинга размещают защитный слой катализаторов.

Газопродуктовая смесь из реактора P-2 охлаждается в теплообменнике T-2 до 280 °C, смешивается с охлажденной газопродуктовой смесью реактора P-1.

В абсорберах К-1 и К-2 происходит очистка газов от сероводорода раствором моноэтаноламина. Он готовится в емкости Е-2 путем смешения свежего МЭА с химически очищенной водой. Раствор с низа колонн К-1 и К-2 направляется в колонну регенерации МЭА К-3, с верха которой уходит сероводород. С низа колонны регенерированный раствор МЭА поступает в емкость Е-2.

Принципиальная схема установки двухступенчатого глубокого гидрокрекинга вакуумного газойля

Рис. 2.6

2.5 Технологический расчет

2.5.1 Исходные данные для расчета

В основу технологического расчёта установки гидрокрекинга легли следующие исходные данные:

- Годовая производительность установки = 3000000 т/год

- Продолжительность сырьевого цикла = 340 суток

- Плотность сырья = 899 кг/м³

Параметры реактора 1:

- Давление ГСС на входе в реактор = 15 МПа

- Температура ГСС на входе в реактор = 395°С

- Объёмная скорость подачи сырья = $1,5 \text{ ч}^{-1}$

- Кратность циркуляции водородсодержащего газа = 800 нм³/м³ сырья Параметры реактора 2:

- Давление ГСС на входе в реактор = 15 МПа

- Температура ГСС на входе в реактор = 420°С

- Объёмная скорость подачи сырья = 0.7 ч^{-1}

- Кратность циркуляции водородсодержащего газа = 1200 нм³/м³ сырья

2.5.2 Материальный баланс установки и реакторов

Объемная часовая производительность установки определяется по формуле:

$$W_{\rm c} = \frac{G_{\rm rog}}{\tau_{\rm c} \cdot \rho_{\rm c} \cdot 24}$$

где W_c – объемная часовая производительность установки, м³/ч;

G_{год} – годовая производительность установки, кг/год;

 $\rho_{\rm c}$ – плотность сырья, кг/м³;

τ_с – продолжительность работы установки, сут;

 $G_{rod} = 3000000 \text{ т/год};$

 $\rho_{\rm c} = 899 \ {\rm kg/m^3};$

 $\tau_{\rm p} = 340$ суток.

$$W_{\rm c} = \frac{300000000}{340 \cdot 899 \cdot 24} = 408,8 \,\,{\rm m}^3/{\rm y}$$

Массовая часовая производительность рассчитывается по формуле:

$$G_c = W_c \cdot \rho_c,$$

где G_c – массовая часовая производительность сырья, кг/ч; W_c – объемная часовая производительность, м $^{3}\!/\!ч;$

 $\rho_{\rm c} = 899 \ {\rm kg/m^3}$

 $G_c = 408, 8 \cdot 899 = 363384$ кг/ч.

Водород в составе СВСГ, необходимый для проведения процесса гидрокрекинга, поступает со специальных установок производства водорода.

В таблице 2.7 приведена характеристика СВСГ, используемого на

Компоненты	СВСГ					
	<i>Мі</i> , кг/кмоль	Yi	$M_i \cdot y_i$	Ϋ́		
Водород	3	0,9952	2,9856	0,9514		
Метан	16	0,0021	0,0336	0,0107		
Этан	30	0,001	0,0300	0,0096		
Пропан	44	0,0007	0,0308	0,0098		
Изобутан	58	0,0005	0,0290	0,0092		
Н-бутан	58	0,0005	0,0290	0,0092		
Итого	-	1,0000	3,1380	1,0000		

Расчёт молярной массы СВСГ

Массовый расход водорода на всю установку определяем по формуле:

$$G_{H_2} = \frac{G_c \cdot C_{H_2}}{100}$$

где *G_{H2}* – массовый расход водорода, кг/ч;

 C_{H_2} – расход водорода в расчете на сырье (примем равным 4,0 % мас.)

$$G_{H_2} = \frac{367647 \cdot 4,0}{100} = 14706 \text{ кг/ч.}$$

Массовый расход СВСГ, подаваемого на установку определяем по формуле:

$$G_{\text{CBC}\Gamma} = \frac{G_{H_2}}{\bar{\Upsilon}}$$

где $G_{\text{СВСГ}}$ – массовый расход СВСГ, кг/ч;

Ý- концентрация водорода в СВСГ, массовые доли от единицы;

$$G_{\rm CBC\Gamma} = \frac{14706}{0.9289} = 15832 \text{ kg/y}$$

Расход СВСГ на сырье установки определяем по формуле:

$$C_{\text{СВСГ}} = \frac{G_{\text{СВСГ}}}{G_c} = \frac{15832}{367647} \cdot 100 = 4,31 \text{ %мас}$$

Массовый расход водорода в реакторе 1 определяем по формуле:

$$G_{H_2(1)} = \frac{G_{c(1)} \cdot C_{H_2(1)}}{100},$$

где G_{H_2} – массовый расход водорода в реакторе 1, кг/ч;

 $C_{H_2(1)}$ – расход водорода в расчете на сырье реактора 1 (примем равным 1,79 % мас.);

 $G_{c(1)}$ – массовый расход сырья реактора 1, кг/ч.

$$G_{H_2(1)} = \frac{352469 \cdot 1,79}{100} = 6324 \text{ kg/y};$$

Массовый расход СВСГ, подаваемого в реактор 1 определяем по формуле:

$$G_{\text{CBC}\Gamma(1)} = \frac{G_{H_2(1)}}{\bar{\Upsilon}_i},$$

где $G_{CBC\Gamma(1)}$ – массовый расход СВСГ в реакторе 1, кг/ч;

 \bar{Y}_i - концентрация водорода в СВСГ, массовые доли от единицы;

$$G_{\text{CBCF}(1)} = \frac{6324}{0,9289} = 6803 \text{ kr/y};$$

Расход СВСГ на сырье реактора 1 определяем по формуле:

$$C_{\text{CBC}\Gamma(1)} = \frac{G_{\text{CBC}\Gamma(1)}}{G_{\text{c}(1)}} = \frac{6803}{352469} = 1,93 \text{ %mac};$$

Массовый расход водорода в реакторе 2 определяем по формуле:

$$G_{H_2(2)} = \frac{G_{c(2)} \cdot C_{H_2(2)}}{100},$$

где $G_{H_{2}(2)}$ – массовый расход водорода в реакторе 2, кг/ч;

 $C_{H_{2(2)}}$ – расход водорода в расчете на сырье реактор 2 (примем равным 2,9 % мас.)

 $G_{c(2)}$ – массовый расход сырья реактора 2, кг/ч;

$$G_{H_2} = \frac{289076 \cdot 2.9}{100} = 8382 \frac{\mathrm{K}\mathrm{G}}{\mathrm{Y}}$$

Массовый расход СВСГ, подаваемого в реактор 2 определяем по формуле:

$$G_{\text{CBC}\Gamma(2)} = \frac{G_{H_2(2)}}{\bar{\Upsilon}_i},$$

где $G_{CBC\Gamma(2)}$ – массовый расход СВСГ в реакторе 2, кг/ч;

 \bar{Y}_i - концентрация водорода в СВСГ, массовые доли от единицы;

$$G_{\text{CBC}\Gamma(2)} = \frac{8382}{0,9289} = 9023 \frac{\text{K}\Gamma}{\text{Y}}$$

Расход СВСГ на сырье реактора 2 определяем по формуле:

$$C_{\text{CBC}\Gamma(2)} = \frac{G_{\text{CBC}\Gamma(2)}}{G_{\text{c}(2)}} = \frac{8382}{289076} = 3,1 \text{ %mac};$$

При заданной производительности установки по свежему сырью объем ЦВСГ определяем по формуле:

$$V_{\text{ЦВСГ}} = W_c \cdot K_c,$$

где $V_{\text{ЦВСГ}}$ – объемный расход ЦВСГ, нм³/ч;

 $K_{\rm ц}$ – кратность циркуляции ЦВСГ, нм³/м³.

При расчёте расхода ЦВСГ на установку учитывалось, что кратность циркуляции ВСГ в реакторе 1 и 2 различны. Поэтому был проведён расчёт ЦВСГ в каждом реакторе.

Данные для расчета молярной массы циркулирующего водородсодержащего газа содержатся в таблице 2.8.

47 Таблица 2.8

Компонент	<i>М_і,</i> кг/кмоль	<i>y</i> _i	$M_i \cdot y_i$	$ar{Y}_i$
Водород	2	0,920	1,840	0,4283
Метан	16	0,036	0,576	0,1341
Этан	30	0,015	0,450	0,1047
Пропан	44	0,018	0,792	0,1844
Изобутан	58	0,006	0,348	0,0810
Н-бутан	58	0,005	0,290	0,0675
Итого	-	1,000	4,296	1,0000

Расчет молярной массы ЦВСГ

Молярную массу ЦВСГ находим по формуле

$$M_{\text{ЦВСГ}} = \sum M_i \cdot y_i$$
 ,

где M_i – молярная масса компонента ЦВСГ, кг/кмоль;

у_i - мольная концентрация компонента в циркулирующем газе.

 $M_{\text{цвсг}} = 4,3 \text{ кг/кмоль.}$

Определим расход ЦВСГ в реакторе 1: На входе в реактор 1 $K_{II} = 800 \text{ нм}^3/\text{м}^3$ сырья.

 $V_{\text{ЦВСГ}} = W_{\text{c}} \cdot K_{\text{ц}} = 408,8 \cdot 800 = 327036 \text{ нм}^{3/\text{ч}}.$

Массовый расход циркулирующего водородсодержащего газа определяем из соотношения:

$$G_{\rm UBC\Gamma} = \frac{V_{\rm UBC\Gamma} \cdot M_{\rm UBC\Gamma}}{22.4}$$

где $G_{\text{цвсг}}$ – массовый расход ЦВСГ, кг/ч;

 $M_{\text{цвсг}}$ – молярная масса ЦВСГ, кг/кмоль.

$$G_{\text{ЦВСГ}} = \frac{327036 \cdot 4,3}{22.4} = 62721 \frac{\text{K}\Gamma}{\text{Y}}.$$

Определяем расход ЦВСГ в расчете на сырье:

$$C_{\text{ЦВСГ}} = \frac{G_{\text{ЦВСГ}} \cdot 100}{G_c};$$
$$C_{\text{ЦВСГ}} = \frac{62721 \cdot 100}{367647} = 17,79 \text{ %мас.}$$

Определим расход ЦВСГ в реакторе 2. На входе в реактор 2 $K_{\mu} = 1200 \text{ нм}^3/\text{м}^3$ сырья.

$$V_{\text{IIBC\Gamma}} = W_{\text{c}} \cdot K_{\text{II}} = 1200 \cdot 321,4 = 385716 \text{ HM}^{3/\text{y}}.$$

Массовый расход циркулирующего водородсодержащего газа определяем из соотношения:

$$G_{\text{ЦВСГ}} = \frac{V_{\text{ЦВСГ}} \cdot M_{\text{ЦВСГ}}}{22.4},$$

где G_{цвсг} – массовый расход ЦВСГ, кг/ч;

М_{цвсг} – молярная масса ЦВСГ, кг/кмоль.

$$G_{\text{ЦВСГ}} = \frac{385716 \cdot 4,3}{22,4} = 73975 \,\text{кг/ч}.$$

Определяем расход ЦВСГ в расчете на сырье:

$$C_{\text{ЦВСГ}} = \frac{G_{\text{ЦВСГ}} \cdot 100}{G_c};$$

 $C_{\text{ЦВСГ}} = \frac{73975 \cdot 100}{289076} = 25,6 \ \text{%мас.}$

Выход сероводорода зависит от содержания серы в сырье и продуктах и может быть определен по формуле:

$$G_{H_2S} = \frac{[S_0 - \sum S_i \cdot x_i] \cdot 34}{32}$$

где G_{H_2S} – выход сероводорода, % мас. на сырье;

 S_0 – содержание серы в исходном сырье, % мас.;

S_i – содержание серы в конечных продуктах, % мас.;

x_i – выход продуктов, в массовых долях от единицы;

34 – молярная масса сероводорода, кг/кмоль;

32 – атомная масса серы, кг/кмоль.

 S_0 – содержание серы в исходном сырье, % мас.;

Исходные данные для расчета выхода сероводорода:

S₀-0,95 % мас.;

S_Б – содержание серы в бензине, % мас.;

S_Б-0,0005 % мас.;

 $x_{\rm b}$ – выход бензина, в долях от единицы;

 $x_{\rm b} - 0,1036;$

 S_{PT} – содержание серы в реактивном топливе, % мас.;

S_{PT} – 0,001 % мас.;

*x*_{PT} – выход реактивного топлива, в долях от единицы;

 $x_{\rm PT} - 0,1477.$

 $S_{\text{ДT}}$ – содержание серы в дизельном топливе, % мас.;

S_{ДТ} – 0,001 % мас.;

*х*_{ДТ} – выход дизельного топлива, в долях от единицы;

 $x_{\rm ДT} - 0,3396.$

 $S_{\Gamma O B \Gamma}$ – содержание серы в гидроочищенном вакуумном газойле, % мас.;

 $S_{\Gamma O B \Gamma} - 0,002$ % мас.;

*х*_{ГОВГ} – выход дизельного топлива, в долях от единицы;

 $x_{\Gamma O B \Gamma} - 0,3569.$

$$G_{H_2S} = \frac{[0,95 - (0,0005 \cdot 0,1036 + 0,001 \cdot 0,1477 + 0,001 \cdot 0,3396 + 0,002 \cdot 0,3569] \cdot 34}{32} = 1,0$$
%mac.

Материальный баланс установки глубокого гидрокрекинга вакуумного газойля был взят на основании литературных данных [12] и представлен в таблице 2.9.

49

	~	<u> </u>			
Сырье и продукты	%мас. на сырье установки	%мас. на нефть	тыс. т/год	т/сут	кг/ч
Поступило:					
вакуумный газойль	83,73	20,07	2408,3	7083,2	295133
тяжелый газойль					
коксования	16,27	3,90	467,9	1376,1	57336
СВСГ	4,31	1,03	123,9	364,3	15178
Итого	104,31	25,00	3000,0	8823,5	367647
Получено:					
Газ	4,30	1,03	123,7	363,7	15156
28-70 °С	4,70	1,13	135,1	397,4	16557
70-180 °С	6,10	1,46	175,5	516,2	21509
180-240 °C	15,40	3,69	442,8	1302,4	54268
240-360 °C	35,40	8,49	1018,3	2994,9	124786
>360 °C	37,20	8,92	1069,9	3146,8	131118
Потери	1,21	0,29	34,7	102,0	4252
Итого	104,31	25,00	3000,0	8823,5	367647

Материальный баланс установки гидрокрекинга вакуумного газойля [12]

В таблице 2.10 представлен материальный баланс реактора 1.

Таблица 2.10

Материальный	баланс	реактора	1
--------------	--------	----------	---

Creary y Serroyce	Расход				
Статьи баланса	%мас.	тыс. т/год	кг/ч		
Взято:					
сырье	100,00	2876,1	352469		
СВСГ	1,93	55,6	6808		
ЦВСГ	17,79	511,8	62721		
Итого	119,73	3443,5	421998		
Получено					
Сероводород	0,91	26,1	3198		
УВГ	0,40	11,4	1399		
28-70 °C	1,43	41,0	5024		
70-180 °С	1,85	53,3	6530		
180-240 °C	4,65	133,6	16376		
240-360 °C	10,69	307,4	37675		
>360 °C	82,01	2358,9	289076		
ЦВСГ	17,79	511,8	62721		
Итого	119,73	3443,5	421998		

В таблице 2.11 представлен материальный баланс реактора 2.

50 Таблица 2.11

	Расход			
Статьи оаланса	%мас.	тыс. т/год	кг/ч	
Взято:				
сырье	100,0	2358,9	289076	
СВСГ	3,1	73,6	9023	
ЦВСГ	25,6	603,6	73975	
Итого	128,7	3036,1	372074	
Получено				
Сероводород	0,12	2,90	355	
УВГ	3,59	84,6	10371	
28-70 °C	4,05	95,7	11722	
70-180 °C	5,27	124,3	15236	
180-240 °C	13,22	311,8	38211	
240-360 °C	30,41	717,3	87908	
>360 °C	46,46	1095,9	134297	
ЦВСГ	25,60	603,6	73975	
Итого	128,7	3036,1	372074	

Материальный баланс реактора 2

2.5.3 Технологический расчет реакторов

Существенное значение имеет правильный выбор конструкции реактора. Для процесса гидрокрекинга тяжелых видов сырья не могут быть успешно применены реакторы с радиальным движением реагирующей смеси из-за невозможности оптимального распределения жидкой фазы газосырьевой смеси по объему катализатора, в них используют аксиальный ввод газосырьевой смеси в слой катализатора.

При аксиальном вводе сырья диаметр реактора и высота слоя катализатора зависят от гидравлического сопротивления слоя катализатора и допустимого значения условной скорости подачи сырья на свободное сечение аппарата, при котором начинается шевеление катализатора. Установлено, что оптимальный перепад давления, который можно рекомендовать для определения диаметра реактора с аксиальным вводом сырья, составляет 0,004 – 0,01 МПа на 1 м высоты слоя катализатора.

Процессы гидрокрекинга вакуумного газойля и другого тяжелого сырья характеризуется высокоэкзотермичным характером превращения углеводородов и протекают со значительным тепловым эффектом. Для снижения градиента температуры по высоте реакционной зоны слой катализатора разбивают на три – пять секций и применяют охлаждение реагирующей смеси между секциями. Высоту каждой секции катализатора принимают такой, чтобы температура в ней повышалась не более чем на 25 °C. По ходу сырьевой смеси по реактору меняются скорости и типы реакций, уровни отложения кокса и металлов на катализаторе и активность катализатора, снижается выделение теплоты, поэтому увеличивают высоты слоев катализатора сверху вниз. Неравномерная послойная загрузка катализатора в реактор обусловлена снижением реакционной способности сырья по ходу процесса. Для предотвращения дезактивации катализатора гидрокрекинга тяжелыми металлами практикуется размещение в верхней части реактора защитного слоя широкопористого катализатора деметаллизации.

Реактор гидрокрекинга представляет собой массивный цилиндрический аппарат со сферическими днищами, в которых имеются штуцера для ввода газосырьевой смеси и вывода газопродуктовой смеси, штуцер для установки многозонной термопары и штуцер для выгрузки катализатора. Высота типового реактора гидрокрекинга находится в пределах 16 - 35 м, внутренний диаметр 2-4 м, толщина стенки – от 50 до 225 мм в зависимости от рабочего давления. Их изготавливают из двухслойной или многослойной стали с внутренним слоем из высоколегированной стали, стойкой к водородной и сульфидной коррозии. Внутри реактора имеется несколько (3-5) решеток, на которых размещают слой катализатора.

Расчёт размеров реактора 1. Объем катализатора в реакторах каталитических процессов со стационарным слоем катализатора находим из соотношения:

$$V_k = \frac{W_c}{V_0},$$

 V_k – объем катализатора, м³;

W_c – объемная производительность установки или реактора, м³/ч;

 V_0 – объемная скорость подачи сырья, ч⁻¹.

 $V_k = \frac{408,8}{1,5} = 272,5 \text{ m}^3.$

В реакторе 1 поддерживается давление 15 МПа, поэтому принимаем внутренний диаметр реактора равным 2,8 м. При данном диаметре слоя катализатора общую высоту слоя катализатора определяем из выражения:

$$H_k = \frac{V_k}{F_k},$$

где H_к – общая высота слоя катализатора, м;

F_к – площадь сечения слоя катализатора, м².

$$H_k = \frac{272,5}{6,15} = 44,3$$
 м.

Толщину стенки реактора примем равной 0,2 м. Принимаем высоту устройств ввода ХЦВСГ между слоями катализатора равной 0,75 м, по высоте реактора 1 таких устройств будет два – для обеспечения требуемой кратности циркуляции и съёма избыточного тепла реакции.

Кривизну днищ реактора принимаем равной 1,4 м, что соответствует половине внутреннего диаметра. Находим общую высоту реактора 1 как сумму высот слоя катализатора, устройств ввода ХЦВСГ и радиусов полусферических днищ реактора:

$$H_{\rm p} = 44,3 + 2 \cdot 1,4 + 2 \cdot 0,75 = 48,6$$
 м.

Принимаем высоту реактора 1 равной 48,6 м.

Расчёт размеров реактора 2. Объем катализатора в реакторах каталитических процессов со стационарным слоем катализатора находим из

соотношения:

$$V_k = \frac{321,4}{0,7} = 459,2 \text{ m}^3.$$

В реакторе 2 поддерживается давление 15 МПа, поэтому принимаем внутренний диаметр реактора равным 3,2 м. При данном диаметре слоя катализатора общую высоту слоя катализатора определяем из выражения:

$$H_k = \frac{459,2}{8,04} = 57,1$$
 м.

Толщину стенки реактора примем равной 0,2 м. Принимаем высоту устройств ввода ХЦВСГ между слоями катализатора равной 0,75 м, по высоте реактора 2 таких устройств будет три – для обеспечения требуемой кратности циркуляции и съёма избыточного тепла реакции.

Кривизну днищ реактора принимаем равной 1,6 м, что соответствует половине внутреннего диаметра. Находим общую высоту реактора 2 как сумму высот слоя катализатора, устройств ввода ХЦВСГ и радиусов полусферических днищ реактора:

$$H_{\rm p} = 57,1 + 2 \cdot 1,6 + 3 \cdot 0,75 = 62,6$$
 м.

Принимаем высоту реактора 2 равной 62,6 м.

2.5.4 Тепловой баланс реакторов

Для правильной эксплуатации установок гидрокрекинга и решения ряда вопросов, определением тепловой мощности связанных с печи И технологическим расчетом реакторов (приход теплоты в реактор, расход теплоты из реактора, скорость движения сырья и др.), необходимо знать расход и состав газопаровых и жидких фаз газосырьевой и газопродуктовой смесей. Такие расчеты необходимы для определения количества сырья и продуктов реакции, которые в условиях высокой температуры и большого количества циркулирующего водородсодержащего газа остаются в жидком состоянии. Это следует принимать во внимание при определении энтальпий компонентов газосырьевой и газопродуктовой смесей и составлении тепловых балансов реакторов.

Так как процесс глубокого гидрокрекинга осуществляется при высоком давлении, а сырьем является вакуумный газойль, то обязателен расчет по определению агрегатного состояния компонентов газосырьевой смеси на входе в реактор, и газопродуктовой смеси на выходе из реактора.

Состав паровой и жидкой фаз многокомпонентной смеси в условиях однократного испарения в реакторе рассчитывают на основании известных уравнений:

– для жидкой фазы: $x_i = \frac{\alpha_i}{1 + e \cdot (K_i - 1)};$

– для паровой фазы $y_i = x_i \cdot K_i$,

где x_i – мольная концентрация компонента жидкой фазы;

y_i – мольная концентрация компонента паровой фазы;

α_i – мольная концентрация компонента исходной смеси;

е – мольная доля отгона;

K_i – константа фазового равновесия компонента.

Перед определением составов паровой и жидкой фаз газосырьевой смеси при условиях на входе в реактор и газопродуктовой смеси при условиях на выходе из реактора необходимо предварительно определить состав ГСС и ГПС по отдельным компонентам. В приложении 1 представлен компонентный состав ГСС и ГПС для реактора P-1 (см. таблицу П1.1, таблицу П1.2) и реактора P-2 (см. таблицу П1.3, таблицу П1.4).

Состав паровой и жидкой фаз газосырьевой и газопродуктовой смеси рассчитываем с помощью ПЭВМ. В приложении 2 представлены результаты этих расчетов для реактора Р-1 (см. таблицу П2.1, таблицу П2.2) и реактора Р-2 (см. таблицу П2.3, таблицу П2.4). В приложении 3 представлен материальный баланс однократного испарения многокомпонентной газосырьевой смеси для реактора Р-1 (см. таблицу П3.1) и реактора Р-2 (см. таблицу П3.2). Приходная статья материального баланса заполняется на основе таблицы П3.3 и таблицы П3.4 для реакторов Р-1 и Р-2 соответственно.

Число кмолей отдельных компонентов паровой фазы определяется по формуле

$$n_i^n = \Sigma n_i \cdot e \cdot y_i,$$

где n_i^n – число кмолей компонента паровой фазы, кмоль/ч;

 $\sum n_i$ – число кмолей, кмоль/ч;

е – мольная доля отгона.

Число кмолей отдельных компонентов жидкой фазы определяется по формуле

$$n_{\mathbf{i}^{\mathsf{m}}} = \sum n_{i} \cdot (1-e) \cdot x_{i},$$

где n_{i}^{*} – число кмолей компонентов жидкой фазы.

Масса каждого компонента паровой фазы определяется по формуле

$$G_{i^n} = \sum n_i \cdot e \cdot y_i \cdot M_i,$$

где G_i^n – масса компонента паровой фазы, кг/ч;

M_i – молярная масса компонента паровой фазы, кг/кмоль.

Масса каждого компонента жидкой фазы определяется по формуле

$$g_{i^{\mathfrak{K}}} = \sum n_i \cdot (1-e) \cdot x_i \cdot M_i,$$

где $g_{i^{*}}$ – масса компонента жидкой фазы, кг/ч;

M_i – молярная масса компонента жидкой фазы, кг/кмоль.

При составлении теплового баланса реакторного блока необходимо учитывать изменение энтальпий паров и газов при изменении давления. В приложении 4 представлены данные для расчета молярной массы газообразных продуктов реакции (см. таблицу П4.1). Расчет парциальных давлений компонентов ГСС и ГПС представлен в таблицах П4.2 и П4.3 для реактора P-1 и в таблицах П4.4 и П4.5 для реактора P-2.

Так как процесс глубокого гидрокрекинга проходит при высоком давлении, то в тепловые расчеты необходимо вносить поправку на изменение энтальпии паров и газов (Δ H) от давления. Искомая энтальпия при давлении π (H_{π}) равна

$$\mathbf{H}_{\pi} = \mathbf{H}_0 - \Delta \mathbf{H} \; ,$$

где Н₀ – энтальпия при нормальном давлении.

Энтальпия нефтяных паров при нормальном давлении рассчитывается по формуле

$$H_0 = [\alpha \cdot (4 - \rho_{15}^{15}) - 73,8] \cdot 4,187,$$

где $\alpha - (50, 2 + 0, 109 \cdot t + 0, 00014 \cdot t^2);$

t – температура нефтяных паров, °С.

Энтальпии нефтяных газов и легких парафиновых углеводородов при повышенном давлении определяются по соответствующим номограммам [2, с. 125-129].

Энтальпия водородсодержащих и углеводородных газов определяется как сумма произведений энтальпий каждого компонента на их массовую концентрацию, или как произведение средней теплоемкости смеси газов на их температуру.

Энтальпия водорода находится по формуле

$$H_{H_2} = C_{H_2} \cdot t,$$

где C_{H_2} – средняя массовая теплоемкость водорода, равная 14,6 кДж/(кг·°С); t – температура, °С.

Энтальпия водорода как идеального газа не зависит от давления. Поправку к энтальпии по давлению находим по формуле:

$$\Delta H = 4, 4 \cdot \frac{T_{\rm \kappa p} \cdot P_{\rm np}}{T_{\rm np}^2 \cdot M}$$

Псевдокритические параметры нефтяных фракций определяем по номограммам [2, с. 133] в зависимости от их молярной массы и К - характеризующего фактора.

$$K = 1,216 \cdot \frac{T_{\rm cp. MOJ}^{\frac{1}{3}}}{\rho_{15}^{15}}$$

Среднюю молярную температуру кипения фракций находим по формулам:

 $t_{\rm cp. \ мол.} = t_{\rm cp. \ об.} - \Delta t;$

$$t_{\rm cp. MOЛ.} = \frac{t_{10\%} + t_{50\%} + t_{90\%}}{3}$$

где $t_{10\%}$, $t_{50\%}$, $t_{90\%}$ - температуры отгона 10%, 50%, 90% фракции по ГОСТ,

 Δt находим по графику [3, с. 40] в зависимости от тангенса кривой разгонки по ГОСТ:

$$tg_{
m yгла \ наклона \ ГОСТ} = rac{t_{90\%} + t_{10\%}}{90 - 10}.$$

Находим приведенную температуру T_{np} и приведенное давление P_{np} по формулам:

$$T_{\rm np} = \frac{T}{T_{\rm nc. \ \kappa p}};$$
$$P_{\rm np} = \frac{P}{P_{\rm nc. \ \kappa p}}.$$

Расчёт псевдокритических параметров нефтепродуктов приведен в приложении 5 (см. таблицу П5.1).

Расчёт энтальпий газов и нефтепродуктов (СВСГ, ЦВСГ, УВГ, сырья, ЛБ, ТБ, РТ, ДТ, ГО ВГ) в условиях реактора Р-1 представлен в таблицах П5.2 – П5.10. Энтальпии нефтепродуктов в условиях реактора Р-2 представлены в таблицах П5.11 – П5.15.

При сравнении энтальпий нефтепродуктов в условиях реакторов 1 и 2 существенных расхождений не обнаружено, поэтому для определения энтальпий нефтепродуктов при различных температурах будем использовать только данные, полученные для реактора Р-1.

При гидрокрекинге вакуумного газойля возникает необходимость в разделении общего объема катализатора на слои и в охлаждении продуктов реакции после каждого слоя до заданных условий процесса. Именно поэтому катализатор располагают либо в двух реакторах, либо в одном реакторе, но несколькими слоями, между которыми подают поток холодного водородсодержащего газа. Для данного процесса число слоёв катализатора было принято равным трем и четырем для реакторов 1 и 2 соответсвенно.

Тепловой эффект реакций гидрокрекинга может определяться по эмпирическому уравнению, связывающему величину теплового эффекта (q_p) и глубину превращения исходного сырья (\bar{Y}) в процессе получения летнего дизельного топлива:

$$q_n = 5,208 \cdot \bar{\Upsilon} - 0,0181 \cdot \bar{\Upsilon}^2$$

где $\bar{\Upsilon}$ - глубина превращения исходного сырья, % мас.

Глубина превращения исходного сырья в реакторе P-1 составляет 18%. Определяем тепловой эффект реакций, протекающих в 1 реакторе:

 $q_p = 5,208 \cdot 18,0 - 0,0181 \cdot 18,0^2 = 87,9$ кДж/кг.

Глубина превращения исходного сырья в реакторе P-2 составляет 42%. Определяем тепловой эффект реакций гидрокрекинга:

 $q_p = 5,208 \cdot 42,0 - 0,0181 \cdot 42,0^2 = 186,8$ кДж/ч.

Потери теплоты из реактора Р-1 в окружающую среду определяем по формуле

$$Q = F \cdot K \cdot \Delta t ,$$

где Q – потери теплоты из реактора, кДж/ч;

К – коэффициент теплопередачи, кДж/($M^2 \cdot C \cdot q$)

 $K = 12 \ \kappa Дж/(M^2 \cdot C \cdot q).$

F – поверхность реактора, м²;

 Δt – перепад температур, °С.

Поверхность реактора Р-1 рассчитаем по формуле

$$F = 2 \cdot \pi \cdot R \cdot H + 2 \cdot \pi \cdot R^2 \cdot \theta,$$

где F – наружная поверхность реактора, м²;

R – наружный радиус реактора, м; R = 1,6 м;

Н – высота цилиндрической части реактора, м;

Н = 45 м.

 $F = 2 \cdot 3,14 \cdot 1,6 \cdot 45 + 2 \cdot 3,14 \cdot 1,6^2 \cdot 1,384 = 474,7 \text{ м}^{2}$. Перепад температур рассчитаем по формуле

$$\Delta t = t_{cp} - t_{MUH},$$

где Δt – перепад температур, °C;

 t_{cp} – средняя температура среды внутри реактора, °C; t_{cp} = 400 °C;

 $t_{_{MUH}}$ – средняя минимальная температура окружающей среды (зимой), °C; $t_{_{MUH}}$ = –20 °C;

Для реактора P-2:

$$F = 2 \cdot 3,14 \cdot 1,8 \cdot 57,9 + 2 \cdot 3,14 \cdot 1,8^2 \cdot 1,384 = 682,4 \text{ м}^{2}$$

 $\Delta t = 427 - (-20) = 447 \ ^{\circ}\text{C}$
 $Q = 682,4 \cdot 447 \cdot 12 = 3664316 \text{ кДж/ч.}$

Исходя из значения принятой температуры газосырьевой смеси на входе в реактор и агрегатного состояния ее компонентов рассчитываем приходную статью теплового баланса реактора. Расходную статью теплового баланса рассчитываем, задаваясь температурой ГПС на выходе из реактора. Целью расчета теплового баланса является определение температуры ГПС на выходе из реактора и количества теплоты, которую необходимо вывести из реактора потоками холодного ВСГ для поддержания нужной температуры ГСС на входе в каждый слой катализатора. Если в реакторе находится газопарожидкостная смесь, то при определении энтальпий это должно приниматься во внимание.

При составлении теплового баланса реактора гидрокрекинга тяжелых видов сырья расходы паровой и жидкой фаз ГСС на входе в реактор и ГПС на выходе из него берем из материальных балансов процесса однократного испарения ГСС при температуре и давлении на входе в реактор и ГПС при условиях на выходе из реактора. Тепловой баланс реактора P-1 представлен в таблице 2.12.

Таблица 2.12

Статьи баланса	Расход, кг/ч	Температура, ℃	Энтальпия, кДж/кг	Кол-во теплоты, млн кДж/ч
Взято				, ,
сырье (ж/ф)	246874	395	1171,5	289,21
сырье (п/ф)	105595	395	980,0	103,49
СВСГ	6808	395	9208,0	62,69
ЦВСГ	62721	395	4945,9	310,21
Теплота реакции	-	_	87,9	30,97
Итого	421998	-	-	796,58

Тепловой баланс реактора Р-1

Статьи баланса	Расход, кг/ч	Температура,	Энтальпия,	Кол-во
		°C	кДж/кг	теплоты,
				млн кДж/ч
Получено:				
Газ	1399	405	1218,0	3,90
Сероводород	3198	405	482,0	0,67
28-70 °С (ж/ф)	3815	405	1325,1	5,06
28-70 °С (п/ф)	1209	405	1172,5	1,42
70-180 °С (ж/ф)	5391	405	1289,8	6,95
70-180 °С (п/ф)	1139	405	1114,6	1,27
180-240 °С (ж/ф)	14137	405	1264,9	17,88
180-240 °С (п/ф)	2239	405	1079,1	2,42
240-360 °С (ж/ф)	34077	405	1244,5	42,41
240-360 °С (п/ф)	3598	405	1053,1	3,79
>360 °C (ж/ф)	245082	405	1209,3	296,39
>360 °С (п/ф)	43994	405	1023,1	45,01
ЦВСГ	62721	405	4945,9	310,21
Потери теплоты в окр. среду	-	-	-	2,39
Итого	421998	-	-	734,97

Продолжение таблицы 2.12

Из теплового баланса реактора рассчитываем количество теплоты, подлежащей съему:

$$\Delta Q = Q_{\text{прих}} - Q_{\text{pacx}};$$

∆Q = 796,58 – 734,97 = 61,6 МДж/ч.

Расход холодного циркулирующего водородсодержащего газа, подаваемого на охлаждение продуктов реакции, определяем из уравнения

$$\Delta Q = G_{\text{LIBC}\Gamma}^{\text{OXA}} \cdot (H_{t_2} - H_{t_1}).$$

где t_2 и t_1 – температуры охлаждающего ЦВСГ на выходе из реактора и на входе в реактор соответственно;

 H_{t_2} и $H_{t_1}-$ энтальпии охлаждающего ЦВСГ при температурах t_=405 °C и t_=50 °C

$$G_{\text{ЦВСГ}}^{\text{охл}} = \frac{\Delta Q}{(H_{t_2} - H_{t_1})} = \frac{61600000}{(4945,9 - 2125,6)} = 21229 \text{ кг/ч.}$$

Тепловой баланс реактора Р-2 представлен в таблице 2.13.

Таблица 2.13

Статьи баланса	Расход, кг/ч	Температура, °С	Энтальпия, кДж/кг	Кол-во теплоты, млн кДж/ч
Взято				
сырье (ж/ф)	210698	420	1247,4	262,82
сырье (п/ф)	78378	420	1072,3	84,05

Тепловой баланс реактора Р-2

Продолжение таблицы 2.13

Статьи баланса	Расход, кг/ч	Температура, °С	Энтальпия, кДж/кг	Кол-во теплоты, млн кДж/ч
СВСГ	9023	420	9559,3	86,26
ЦВСГ	73975	420	5151,2	381,06
Теплота реакции	-	-	186,8	54,00
Итого	372074	-	-	868,18
Получено:				
Газ	10371	435	1322,7	13,72
Сероводород	355	435	517,7	0,18
28-70 °С (ж/ф)	7481	435	1419,62	10,62
28-70 °С (п/ф)	4241	435	1286,34	5,46
70-180 °С (ж/ф)	11057	435	1382,2	15,28
70-180 °С (п/ф)	4179	435	1222,8	5,11
180-240 °С (ж/ф)	28512	435	1355,5	38,65
180-240 °С (п/ф)	9698	435	1183,9	11,48
240-360 °С (ж/ф)	66853	435	1333,2	89,13
240-360 °С (п/ф)	21055	435	1155,4	24,33
>360 °С (ж/ф)	119271	435	1306,0	155,77
>360 °С (п/ф)	15026	435	1122,4	16,86
ЦВСГ	73975	435	5277,3	390,39
Потери теплоты в окр. среду	-	-	-	3,66
Итого	372074	-	-	773,32

∆Q = 868,18 - 773,32 = 94,7 МДж/ч.

Расход холодного циркулирующего водородсодержащего газа, подаваемого на охлаждение продуктов реакции, определяем из уравнения

$$\Delta Q = G_{\text{ЦВСГ}}^{\text{охл}} \cdot (H_{t_2} - H_{t_1}),$$

где t_2 и t_1 – температуры охлаждающего ЦВСГ на выходе из реактора и входе в реактор соответственно;

 H_{t_2} и H_{t_1} – энтальпии охлаждающего ЦВСГ при температурах t₂=435 °С и t₁=50 °С.

$$G_{\text{ЦВСГ}}^{\text{охл}} = \frac{\Delta Q}{(H_{t_2} - H_{t_1})} = \frac{94700000}{(5277, 3 - 2125, 6)} = 30035,4 \text{ kr/y}.$$

2.5.5 Гидравлический расчет реакторов

Правильность выбора диаметра и высоты слоя катализатора проверяется гидравлическим расчетом. Цель гидравлического расчета – определение перепада давлений в слое катализатора и сравнение рассчитанных перепадов с практическими данными.

Гидравлический расчет ведем по формуле Эргуна:

$$\frac{\Delta P}{H} = 150 \cdot \frac{(1 - \varepsilon^2) \cdot W \cdot \mu}{\varepsilon^3 \cdot d^2} + 1,75 \cdot \frac{(1 - \varepsilon) \cdot \rho \cdot W^2}{\varepsilon^3 \cdot d},$$

где ΔP – перепад давления в слое катализатора; Н – высота слоя катализатора, м;

d – диаметр шарика катализатора, м;

W – линейная скорость газопаровой смеси, отнесенная к полному сечению аппарата, м/с;

 $\rho-$ плотность потока паров ГСС и ГПС рабочих условиях, кг/м³;

 ε – порозность катализатора (относительная величина, выраженная в долях от единицы);

µ – динамическая вязкость парогазовой смеси, Па·с.

В процессе гидрокрекинга происходят изменения в химическом составе парогазовой смеси, поэтому рекомендуется находить средние арифметические значения линейной скорости, динамической вязкости и плотности ГСС на входе в реактор и ГПС на выходе из него.

Объемный расход ГСС на входе в реактор находим по уравнению:

$$V_{\Gamma CC}^{\rm BX} = \frac{22.4 \cdot (t_{\rm BX} + 273) \cdot z_{\Gamma CC} \cdot (N_{\Gamma CC}^{\rm BX} + N_{\rm LBC\Gamma}^{\rm OX/I}) \cdot 0.1}{273 \cdot 3600 \cdot P_{\Gamma CC}^{\rm BX}},$$

и ГПС на выходе из реактора по уравнению:

$$V_{\Gamma\Pi C}^{\text{BbIX}} = \frac{22,4 \cdot (t_{\text{BbIX}} + 273) \cdot z_{\Gamma\Pi C} \cdot (N_{\Gamma\Pi C}^{\text{BbIX}} + N_{\text{ЦВСГ}}^{\text{OXЛ}}) \cdot 0,1}{273 \cdot 3600 \cdot P_{\Pi C}^{\text{BbIX}}},$$

где $V_{\Gamma CC}^{BX}$ и $V_{\Gamma \Pi C}^{BbIX}$ – объемный расход ГСС или ГПС, м³/с; $N_{\Gamma CC}^{BX}$ и $N_{\Gamma \Pi C}^{BbIX}$ – число кмолей газов и паров ГСС и ГПС, кмоль/ч;

 $N_{\text{ШВСГ}}^{100}$ – количество охлаждающего ЦВСГ, кмоль/ч;

 $z_{\Gamma CC}$ и $z_{\Gamma \Pi C}$ – коэффициент сжимаемости ГСС и ГПС;

 $P_{\Gamma CC}^{BX}$ и $P_{\Gamma \Pi C}^{BblX}$ – давление на входе в реактор и на выходе из реактора, МПа;

За диаметр гранул, не имеющих форму шара, обычно принимается величина, определяемая из соотношения:

$$d = d_{\text{рш}} \cdot \psi$$
,

где $d_{\text{рш}}$ – диаметр равновеликого по объёму шара, м;

 ψ – фактор экструдатов или коэффициент несферичности.

Коэффициент несферичности равен отношению поверхности экструдата катализатора (F_т) к поверхности равновеликого по объёму шара (F_{рш}):

$$\Psi = \frac{F_{\rm T}}{F_{\rm pur}}.$$

Поверхность экструдата и поверхность равновеликого по объёму шара находим, приравнивая объём экструдата к объёму равновеликого по объёму

шара и рассчитываем поверхность последнего:

$$V_{\rm T} = V_{\rm put} = \frac{\pi \cdot d_{\rm put}^3}{6}.$$

Объём экструдата катализатора (V_т) находим по формуле:

$$V_{\rm T}=\frac{\pi\cdot d_{\rm T}^2\cdot l}{4}.$$

Поверхность экструдата определяем по формуле:

$$M = \frac{2 \cdot \pi \cdot d_T^3}{4} + \pi \cdot d_T \cdot l_T.$$

Рассчитываем поверхность равновеликого по объёму шара:

$$F_{\rm pur} = \pi \cdot d_{\rm pur}^2.$$

Для определения коэффициента сжимаемости паров ГСС и ГПС предварительно вычисляем приведенные температуру и давление для ГСС и ГПС. Расчет для реактора P-1 представлен в приложении 6 (см. таблицу П6.1 и П6.2).

Рассчитаем приведенные температуру и давление ГСС и ГПС:

$$T_{\rm np} = \frac{T}{T_{\rm nc. \kappa p.}};$$

$$P_{\rm np} = \frac{P}{P_{\rm nc. \kappa p.}};$$

$$T_{\rm np}^{\Gamma CC} = \frac{395 + 273}{91,31} = 7,32;$$

$$T_{\rm np}^{\Gamma \Pi C} = \frac{405 + 273}{114,18} = 5,94;$$

$$P_{\rm np}^{\Gamma CC} = \frac{15}{1,95} = 7,68;$$

$$P_{\rm np}^{\Gamma \Pi C} = \frac{15}{2,02} = 7,41.$$

По графику [2, с. 135] определяем $z_{\Gamma\Gamma\Gamma}$ и $z_{\Gamma\Gamma\Gamma}$

$$\begin{aligned} z_{\Gamma CC} &= 1; \\ z_{\Gamma \Pi C} &= 1. \end{aligned}$$

$$V_{\Gamma CC}^{BX} = \frac{22.4 \cdot (395 + 273) \cdot 1 \cdot (18705 + 4941) \cdot 0.1}{273 \cdot 3600 \cdot 15} = 2.40 \frac{\text{M}^3}{\text{c}}; \\ V_{\Gamma \Pi C}^{BbIX} &= \frac{22.4 \cdot (405 + 273) \cdot 1 \cdot (15963 + 4941) \cdot 0.1}{273 \cdot 3600 \cdot 15} = 2.15 \frac{\text{M}^3}{\text{c}}. \end{aligned}$$

Определяем скорость газопаровой смеси в реакторе по формуле:

$$W = \frac{V_c}{0.785 \cdot d^2},$$

где W – скорость парогазовой смеси в реакторе, м/с; d – диаметр слоя катализатора, м;

d = 2,8 м.

$$W = \frac{2,28}{0,785 \cdot 2,8^2} = 0,37 \frac{M}{c}.$$

Плотность газопарового потока определяется из соотношения

$$\rho = \frac{G}{3600 \cdot V_c},$$

$$ρ_{\Gamma CC} = \frac{173751}{3600 \cdot 2,28} = 21,2 \text{ кг/м}^3;$$

$$\rho_{\Gamma\Pi C} = \frac{116733}{3600 \cdot 2,28} = 14,24 \frac{\kappa\Gamma}{M^3}.$$

$$\rho = \frac{\rho_{\Gamma C C} + \rho_{\Gamma\Pi C}}{2},$$

$$\rho = \frac{21,2 + 14,24}{2} = 17,72 \frac{\kappa\Gamma}{M^3}.$$

Для определения вязкости смесей паров ароматических и нафтеновых углеводородов с парами алканов, алкенов и алкинов можно воспользоваться формулой Фроста:

$$\mu = T \cdot (6,6 - 25,5 \cdot lgM) \cdot 10^{-8}.$$

Молярная масса смеси углеводородов может быть найдена как отношение общей массы газопаровой смеси к общему числу кмолей газопаровой смеси:

$$M_{\Gamma CC}^{BX} = \frac{G_{\Gamma CC}^{BX} + G_{IJBC\Gamma}^{OXJ}}{N_{\Gamma CC}^{BX} + N_{IJBC\Gamma}^{OXJ}},$$
$$M_{\Gamma CC}^{BX} = \frac{173751 + 21229}{18705 + 4941} = 8,25 \frac{\kappa \Gamma}{\kappa \text{моль}}.$$

Находим вязкость паров ГСС на входе в реактор:

$$\mu_{\Gamma CC} = (395 + 273) \cdot (6,6 - 25,5 \cdot lg8,25) \cdot 10^{-8} = 3,03 \cdot 10^{-5} \,\Pi a \cdot c;$$
$$M_{\Gamma \Pi C}^{B \text{bIX}} = \frac{116733 + 21229}{15963 + 4941} = 6,6 \frac{\kappa \Gamma}{\kappa \text{моль}}.$$

Находим вязкость паров ГПС на выходе из реактора:

$$\mu_{\Gamma\Pi C} = (405 + 273) \cdot (6,6 - 25,5 \cdot lg6,6) \cdot 10^{-8} = 3,22 \cdot 10^{-5} \,\Pi a \cdot c.$$
$$\mu = \frac{3,03 \cdot 10^{-5} + 3,22 \cdot 10^{-5}}{2} = 3,13 \cdot 10^{-5} \,\Pi a \cdot c.$$

В связи с применением в реакторе Р-1 трех различных катализаторов все дальнейшие расчёты сведены в таблицу 2.14.

61

Гидравлический расчёт реактора 1

Показатель	NiMo/Al ₂ O ₃	NiW/AAC- Al ₂ O ₃	NiMo/Y- Al ₂ O ₃
Объём слоя катализатора, м ³	136,3	81,8	54,5
Высота слоя Н, м	13,39	8,04	5,36
8	0,45	0,4	0,33
Насыпная пл.	660	720	700
Кажущаяся пл.	1200	1200	1050
<i>d</i> _т , мм	5	5	7
$l_{ ext{t}}$, мм	7,5	6,9	9,5
<i>F</i> _т , м ²	157	147,6	285,74
<i>V</i> _т , м ³	294,38	270,83	730,84
$d_{ m pm}$, мм	8,25	8,03	11,18
<i>F</i> _{рш} , м ²	214,0	202,4	392,3
ψ	0,734	0,729	0,728
<i>d</i> ,мм	0,006	0,006	0,008
ΔP_{H}	1804	2899	3827
$\Delta P, \Pi a$	24164	23298	20502

Порозность катализатора находим по формуле:

$$\varepsilon = 1 - \frac{\gamma_{\rm H}}{\gamma_{\rm rr}}$$

где $\gamma_{\rm H}$ – насыпная плотность катализатора, кг/м³;

 $\gamma_{\kappa}-$ кажущаяся плотность катализатора, кг/м³;

 $\Delta P = (24164 + 23298 + 20502) \cdot 10^6 = 0,068 \text{ MIIa}.$

Потеря напора давления в реакторе не превышает предельно допустимых 0,3 МПа. Из этого можно сделать вывод, что габариты реактора выбраны верно, в пределах допустимых значений потерь напора.

Для реактора P-2:

Для определения коэффициента сжимаемости паров ГСС и ГПС предварительно вычисляем приведенные температуру и давление для ГСС и ГПС. Расчет представлен в приложении 6 (см. таблицу П6.3 и П6.4).

Рассчитаем приведенные температуру и давление ГСС и ГПС

$$T_{\rm np} = \frac{T}{T_{\rm nc. \kappap.}};$$

$$P_{\rm np} = \frac{P}{P_{\rm nc. \kappap.}};$$

$$T_{\rm np}^{\Gamma CC} = \frac{420 + 273}{81,21} = 8,53;$$

$$T_{\rm np}^{\Gamma \Pi C} = \frac{435 + 273}{104,4} = 6,78;$$

$$P_{\rm np}^{\Gamma CC} = \frac{15}{1,95} = 7,65;$$

$$P_{\rm np}^{\Gamma \Pi C} = \frac{15}{2,06} = 7,29.$$

По графику [2, с. 135] определяем $z_{\Gamma \Gamma C}$ и $z_{\Gamma \Pi C}$

 $z_{\Gamma CC} = 1;$ $z_{\Gamma \Pi C} = 1;$ $V_{\Gamma CC}^{BX} = \frac{22,4 \cdot (420 + 273) \cdot 1 \cdot (22274 + 6991) \cdot 0,1}{273 \cdot 3600 \cdot 15} = 3,08 \frac{\text{M}^3}{\text{c}};$ $V_{\Gamma \Pi C}^{B \text{blX}} = \frac{22,4 \cdot (435 + 273) \cdot 1 \cdot (18806 + 6991) \cdot 0,1}{273 \cdot 3600 \cdot 15} = 2,78 \frac{\text{M}^3}{\text{c}}.$

Определяем скорость газопаровой смеси в реакторе:

$$W = \frac{2,93}{0,785 \cdot 3,4^2} = 0,32 \frac{M}{c}$$

Плотность газопарового потока:

$$\rho_{\Gamma CC} = \frac{160161}{3600 \cdot 2,93} = 15,19 \frac{\kappa_{\Gamma}}{M^{3}};$$

$$\rho_{\Gamma CC} = \frac{136169}{3600 \cdot 2,93} = 12,92 \frac{\kappa_{\Gamma}}{M^{3}};$$

$$\rho_{\Gamma CC} = \frac{\rho_{\Gamma CC} + \rho_{\Gamma \Pi C}}{2};$$

$$\rho_{\Gamma CC} = \frac{15,19 + 12,92}{2} = 14,05 \frac{\kappa_{\Gamma}}{M^{3}}.$$

Молярная масса смеси углеводородов:

$$M_{\Gamma CC}^{BX} = \frac{160161 + 30035}{22274 + 6991} = 6,50 \frac{\kappa \Gamma}{\kappa \text{моль}}.$$

Находим вязкость паров ГСС на входе в реактор:
$$\mu_{\Gamma CC} = (405 + 273) \cdot (6,6 - 25,5 \cdot lg6,50) \cdot 10^{-8} = 3,31 \cdot 10^{-5} \text{ Па·с};$$
$$M_{\Gamma \Pi C}^{B \text{bIX}} = \frac{136169 + 30035}{18806 + 6991} = 6,44 \frac{\kappa \Gamma}{\kappa \text{моль}}.$$

Находим вязкость паров ГПС на выходе из реактора:

$$\mu_{\Gamma\Pi C} = (435 + 273) \cdot (6,6 - 25,5 \cdot lg6,6) \cdot 10^{-8} = 3,35 \cdot 10^{-5} \Pi a \cdot c$$
$$\mu = \frac{3,31 \cdot 10^{-5} + 3,35 \cdot 10^{-5}}{2} = 3,33 \cdot 10^{-5} \Pi a \cdot c.$$

В связи с применением в реакторе 2 трёх различных катализаторов все дальнейшие расчёты сведены в таблицу 2.15.

Таблица 2.15

Показатель	NiMo/Al ₂ O ₃	NiW/AAC-Al ₂ O ₃	NiMo/Y-Al ₂ O ₃	NiMo/Y-Al ₂ O ₃
Объём слоя катализатора, м ³	91,8	183,7	91,8	91,8
Высота слоя Н, м	6,63	13,26	6,63	6,63
ε	0,45	0,4	0,33	0,33
Насыпная пл.	660	720	700	700
Кажущаяся пл.	1200	1200	1050	1050
<i>d</i> ,мм	0,006	0,006	0,008	0,008
ΔP_{H}	1347	2164	2811	2811
ΔP , Πα	8932	28704	18644	18644

Гидравлический расчёт реактора 2

 $\Delta P = (8932 + 28704 + 18644 \cdot 2) \cdot 10^6 = 0,075 \text{ MIIa}.$

Потеря напора давления в реакторе не превышает предельно допустимых 0,3 МПа. Из этого можно сделать вывод, что габариты реактора выбраны верно, в пределах допустимых значений потерь напора.

2.5.6 Механический расчет толщины корпуса и днища аппарата

Расчетная толщина стенки корпуса реактора будем вести по формуле

$$S = \frac{p \cdot D}{2 \cdot \varphi \cdot [\sigma] - P} + c$$

где р – расчетное давление, МПа;

D – внутренний диаметр, мм;

с – общая прибавка на коррозию, мм;

[σ] – допускаемое напряжение, МПа;

ф – коэффициент прочности сварного шва.

Расчетное давление для колонных аппаратов принимаем с учетом рабочего и гидростатического давления

Допускаемое напряжение определяется по формуле

где *η* – поправочный коэффициент равный 0,9-1,0;

 σ^* – нормативно допускаемое напряжение.

Примем поправочный коэффициент равный 0,9.

Для стали 12Х18Н10Т согласно ГОСТ 34233.1-2017 при рабочей температуре 430 °С нормативно допускаемое напряжение равно 134 МПа.

Согласно ГОСТ 14249-89 определяются все прочностные расчеты.

Следовательно, допустимое напряжение будет равно

$$[\sigma] = 0.95 \cdot 134 = 127.3$$
 M Π a.

Коэффициент прочности сварного шва *ф* зависит от типа сварки. Для автоматической сварки значение *ф*=1.

Общая прибавка на коррозию рассчитывается по формуле

 $c = c_1 + c_2 + c_3$

где c₁ – прибавка на коррозию;

с₂ – прибавка на допуск листа;

с₃ – конструктивная прибавка.

Прибавка на коррозию с₁ зависит от срока эксплуатации аппарата, скорости коррозии т и рассчитывается по формуле

$$c_1 = v \cdot \tau$$
.

Обычно срок службы аппаратов составляет 10-15 лет, а скорость коррозии составляет 0,1-0,2 мм/год.

Прибавка на допуск листа с₂ лежит в интервале 0,4-0,8 мм. Принимаем прибавку на допуск листа равной 0,8 мм.

$$c = 1,5 + 0,8 + c_{3}$$

Для реактора Р-2 толщина стенки равна

$$S_1 = \frac{15.4200}{2.1.127, 3-15} + 2,3 + c_3 = 263, 2 + c_3.$$

Примем толщину стенки аппарата равную 265,0 мм. Тогда конструктивная прибавка с₃ равна

Определим допускаемое давление при принятой толщине стенки по формуле

$$p_{1} = \frac{2 \cdot [\sigma] \cdot \phi \cdot (S - c_{1} - c_{2})}{D + S - c_{1} - c_{2}};$$

$$p_{1} = \frac{2 \cdot 127, 3 \cdot 1 \cdot (265, 0 - 1, 5 - 0, 8)}{4200 + 265, 0 - 1, 5 - 0, 8} = 15, 16 \text{ MIIa}.$$

Следовательно, реактор Р-2 способен выдерживать рабочее давление.

Для реактора Р-1 толщина стенки равна 15.3600

$$S_2 = \frac{1335000}{2 \cdot 1 \cdot 127, 3 - 15} + 2, 3 + c_3 = 224, 7 + c_3.$$

Примем толщину стенки аппарата равную 227 мм. Тогда конструктивная прибавка с₃ равна

с₃=227-224,7=2,3 мм.

Определим допускаемое давление при принятой толщине стенки по формуле

$$p_2 = \frac{2 \cdot 127, 3 \cdot 1 \cdot (227 - 1, 5 - 0, 8)}{3600 + 227 - 1, 5 - 0, 8} = 15,19$$
 МПа.

Следовательно, реактор Р-1 способен выдерживать рабочее давление.

2.5.7 Расчет узла сепарации ГПС

Целью расчета является определение состава паровой и жидкой фаз в условиях однократного испарения, составление материального баланса и определение размеров сепаратора.

Расчёт горячего сепаратора высокого давления:

Условия проведения горячей сепарации:

— Температура – 280 °С.

— Давление – 10,0 МПа.

В приложении 7 представлен состав и расход газопродуктовой смеси на входе в сепаратор C-1 (см. таблицу П7.1).

В газосепараторе осуществляется процесс однократного испарения. Основные уравнения однократного испарения, на основании которых определяем состав газовой и жидкой фаз, выглядят следующим образом:

– для жидкой фазы
$$x_i = \frac{\alpha_i}{1 + e \cdot (K_i - 1)};$$

– для паровой фазы $y_i = x_i \cdot K_i$,

где x_i – мольная концентрация компонента жидкой фазы; y_i – мольная концентрация компонента паровой фазы;

α_i – мольная концентрация компонента исходной смеси; е – мольная доля отгона;

К_і – константа фазового равновесия компонента.

Результаты расчета состава фаз на выходе из сепаратора представлены в таблицу П7.2.

Расчет материального баланса однократного испарения газожидкостной смеси в газосепараторе ведем в следующей последовательности.

Рассчитаем число кмолей газовой фазы по формуле

$$N^{\Gamma\Phi} = e \cdot N^{\Gamma \mathcal{K} \mathcal{C}}$$

где $N^{\Gamma \phi}$ – число кмолей газовой фазы, кмоль/ч;

 $N^{\Gamma \mathcal{K} C}$ – число кмолей сырья – газожидкостной смеси, кмоль/ч;

е – мольная доля отгона.

Рассчитаем число кмолей жидкой фазы по формуле

$$N^{\mathcal{W}\Phi} = (1-e) \cdot N^{\Gamma \mathcal{W}C},$$

где $N^{\mathcal{K}\Phi}$ – число кмолей жидкой фазы, кмоль/ч;

Рассчитаем число кмолей каждого компонента газовой фазы по формуле

$$N_i^{\Gamma\Phi} = y_i \cdot N^{\Gamma\Phi}$$

 $N_{i}^{\Gamma \Phi}$ – число кмолей газовой фазы, кмоль/ч;

у_i – мольная концентрация компонента в газовой фазе.

Рассчитаем число кмолей каждого компонента жидкой фазы по формуле

$$N_i^{\mathcal{K}\Phi} = x_i \cdot N^{\mathcal{K}\Phi},$$

где $N_i^{\mathcal{K}\Phi}$ – число кмолей компонента жидкой фазы, кмоль/ч;

x_i – мольная концентрация компонента в жидкой фазе.

Рассчитаем массу каждого компонента газовой фазы по формуле

$$G_i^{\Gamma\Phi} = M_i \cdot N_i^{\Gamma\Phi},$$

где $G_i^{\Gamma\Phi}$ масса компонента газовой фазы, кг/ч;

*М*_{*i*} – молярная масса компонента, кг/кмоль.

Рассчитаем массу каждого компонента жидкой фазы по формуле

$$G_i^{\mathcal{K}\Phi} = M_i \cdot N_i^{\mathcal{K}\Phi},$$

где масса компонента жидкой фазы, кг/ч.

Затем определяем сумму масс газовой и жидкой фаз. Результаты расчетов представлены в таблице П7.3.

Рассчитываем сечение горизонтального газосепаратора по формуле:

$$S_c = \frac{V_{\rm m}}{0.5 \cdot W_{\rm dom}}$$

где S_c – сечение сепаратора, м²;

V_п – объемный расход газовой или газопаровой смеси, м³/с;

0,5 – коэффициент заполнения жидкостью вертикального сепаратора;

W_{доп} – допустимая линейная скорость газовой фазы в сепараторе, м/с. Объемный расход газовой или газопаровой фазы рассчитаем по формуле

$$V_{\rm m} = \frac{22, 4 \cdot N^{\Gamma \Phi} \cdot (t + 273) \cdot z \cdot 0, 1}{273 \cdot 3600 \cdot P},$$

где N^{ГФ} – число кмолей газовой фазы, кмоль/ч;

t – температура в сепараторе, °C;

0,1 – атмосферное давление, МПа;

Р – давление в сепараторе, МПа;

z – коэффициент сжимаемости.

Для этого рассчитаем критические параметры парогазовой фазы ГПС. Расчёт представлен в таблице П7.4.

$$T_{\rm np} = \frac{553}{59} = 9,4;$$

$$P_{\rm np} = \frac{10}{2.07} = 4,83.$$

По графику [2, с. 135] находим, что z = 1. $V_{\Pi} = \frac{22,4 \cdot 31604 \cdot (280 + 273) \cdot 1 \cdot 0,1}{273 \cdot 3600 \cdot 10} = 2,7 \frac{\text{м}^3}{\text{c}}.$

Допустимую линейную скорость газового потока определим по уравнению

$$W_{\text{доп}} = 0,0334 \cdot \sqrt{\frac{\rho_{\text{ж}}}{\rho_{\text{п}}}},$$

где $\rho_{\rm m}$ – плотность жидкой фазы при температуре в сепараторе, кг/м³; $\rho_{\rm n}$ – плотность газовой фазы в сепараторе, кг/м³.

Плотность жидкой фазы рассчитываем по формуле

$$\rho_{\mathfrak{K}} = \frac{G_{\mathrm{A}\mathrm{B}} + G_{\mathrm{T}\mathrm{B}} + G_{\mathrm{P}\mathrm{T}} + G_{\mathrm{A}\mathrm{T}} + G_{\mathrm{\Gamma}\mathrm{O}\ \mathrm{B}\mathrm{\Gamma}}}{\frac{G_{\mathrm{A}\mathrm{B}}}{\rho_{\mathrm{A}\mathrm{B}}} + \frac{G_{\mathrm{T}\mathrm{B}}}{\rho_{\mathrm{T}\mathrm{B}}} + \frac{G_{\mathrm{P}\mathrm{T}}}{\rho_{\mathrm{P}\mathrm{T}}} + \frac{G_{\mathrm{A}\mathrm{T}}}{\rho_{\mathrm{A}\mathrm{T}}} + \frac{G_{\mathrm{\Gamma}\mathrm{O}\ \mathrm{B}\mathrm{\Gamma}}}{\rho_{\mathrm{\Gamma}\mathrm{O}\ \mathrm{B}\mathrm{\Gamma}}},$$

где $G_{ЛБ}$, $G_{TБ}$, G_{PT} , $G_{ДT}$ и $G_{\Gamma O B\Gamma}$ – массовый расход легкого бензина, тяжелого бензина, реактивного топлива, дизельного топлива и ГО ВГ соответственно в жидкой фазе сепаратора, кг/ч;

ρ_{ЛБ}, ρ_{ТБ}, ρ_{РТ}, р_{ДТ} и ρ_{ГОВГ} – плотность легкого бензина, тяжелого бензина, дизельного топлива и ГО ВГ соответственно, кг/м³;

$$\rho_{\rm m} = \frac{14570 + 19795 + 50098 + 116318 + 407157}{\frac{14570}{438,2} + \frac{19795}{554,7} + \frac{50098}{633,2} + \frac{116318}{694,8} + \frac{407157}{770,8}} = 729,8\frac{\rm kg}{\rm m^3}.$$

Плотность нефтепродуктов при температуре в сепараторе определим по уравнению

$$\rho^t = \rho_0 - \alpha \cdot (t - 20),$$

где ρ_{π} – плотность жидкой фазы при температуре в сепараторе, кг/м³; ρ_{o} – плотность жидкой фазы при 20 °C, кг/м³;

t – температура в сепараторе, °C; t = 280°C;

α – температурная поправка [2, с. 136];

Плотность газовой или газопаровой фазы найдем из соотношения

$$\rho_{\rm m} = \frac{G^{\,\Gamma\Phi}}{3600 \cdot V_{\rm m}}$$

где G^{ГФ} – массовый расход газовой (газопаровой фазы), кг/ч; G^{ГФ} = 160282 кг/ч.

$$\rho_{\Pi} = \frac{178346}{3600 \cdot 2.7} = 18.3 \frac{\text{K}\Gamma}{\text{M}^3};$$
$$W_{\text{доп}} = 0.0334 \cdot \sqrt{\frac{729.8}{18.3}} = 0.21 \frac{\text{M}}{\text{c}};$$
$$S_c = \frac{2.7}{0.5 \cdot 0.21} := 26.01 \text{ M}^2.$$

Зная сечение газосепаратора, рассчитываем его диаметр по формуле

$$d = \sqrt{\frac{4 \cdot S_c}{\pi}},$$

где d_c – диаметр сепаратора, м;

$$d = \sqrt{\frac{4 \cdot 26,01}{3,14}} = 5,76 \text{ M}.$$

Применять сепаратор с таким диаметром на заводе нецелесообразно, так как он будет очень металлоёмким вследствие необходимости поддержания в нём высокого давления. Логичным будет использовать 3 параллельно включенных сепаратора

$$V_{\rm m} = \frac{2.7}{3} = 0.9 \frac{{\rm M}^3}{{\rm c}};$$

$$S_c = \frac{0.9}{0.5 \cdot 0.21} = 8.67 {\rm M}^2;$$

$$d = \sqrt{\frac{4 \cdot 8.67}{3.14}} = 3.32 {\rm M}.$$

В [2, с. 136] выбираем диаметр сепаратора. Он равен 3400 мм. Объемный расход жидкой фазы определяем из соотношения:

$$V_{\mathrm{w}\mathrm{\varphi}} = \frac{g_{\mathrm{w}\mathrm{\varphi}}}{\rho_{\mathrm{w}}^t \cdot 60 \cdot 4}$$

где g_{жф} – массовый расход жидкой фазы, кг/ч;

 $ho_{\mathtt{m}}^t$ - плотность жидкой фазы при температуре t, кг/м³;

$$V_{\mathrm{ж}\phi} = \frac{615726}{729,8\cdot 60\cdot 4} = 3,52\frac{\mathrm{M}^3}{\mathrm{M}\mathrm{H}}.$$

Тогда линейную скорость движения жидкой фазы определяем по формуле:

$$W_{\mathrm{m}\phi} = \frac{V_{\mathrm{m}\phi}}{0.5 \cdot S_c} = \frac{3.52}{0.5 \cdot 8.67} = 0.81 \frac{\mathrm{M}}{\mathrm{M}\mathrm{H}}$$

По формуле определяем длину горизонтального сепаратора:

 $l = \tau \cdot W_{\mathrm{ж} \Phi} = 10 \cdot 0,81 = 8,1$ м.

С помощью расчетов установлено, что диаметр каждого из четырёх параллельно включенных сепараторов должен быть не менее 3,4 м, а длина сепаратора – не менее 8,1 м.

Расчёт холодного сепаратора высокого давления. Условия проведения сепарации:

− Температура – 50 °C.

– Давление – 9,8 МПа.

В приложении 7 (см. таблицу П7.5) представлен состав и расход газопродуктовой смеси на входе в сепаратор С-2. Результаты расчета состава фаз на выходе из сепаратора представлены в таблице П7.6.

Расчет материального баланса однократного испарения газожидкостной смеси в газосепараторе представлен в таблице П7.7.

Для определения коэффициента сжимаемости рассчитаем критические параметры парогазовой фазы ГПС. Расчёт представлен в таблице П7.8.

По графику [2, с. 135] находим, что z = 1,0.

$$V_{\Pi} = \frac{22,4 \cdot 31421 \cdot (50 + 273) \cdot 1 \cdot 0,1}{273 \cdot 3600 \cdot 10} = 1,61 \frac{M^3}{c}.$$
Плотность жидкой фазы рассчитываем по формуле
$$\rho_{\mathcal{K}} = \frac{1438 + 1469 + 3573 + 7912 + 14938}{\frac{1438}{641,5} + \frac{1469}{718,6} + \frac{3573}{771,9} + \frac{7912}{814,4} + \frac{14938}{867,4} = 853,6 \frac{K\Gamma}{M^3};$$

$$W_{\text{доп}} = 0,0334 \cdot \sqrt{\frac{853,6}{3,14}} = 0,19 \frac{M}{c};$$

$$S_c = \frac{1,58}{0,5 \cdot 0,19} := 16,78 \text{ M}^2.$$

Зная сечение газосепаратора, рассчитываем его диаметр по формуле

$$d = \sqrt{\frac{4 \cdot 16,78}{3,14}} = 4,62 \text{ M}.$$

Применять сепаратор с таким диаметром на заводе нецелесообразно, так как он будет очень металлоёмким вследствие необходимости поддержания в нём высокого давления. Логичным будет использовать 6 параллельно включенных сепараторов:

$$V_{\rm fr} = \frac{1,61}{6} = 0,27 \frac{{\rm M}^3}{{\rm c}};$$
$$S_c = \frac{0,27}{0,5 \cdot 0,19} := 2,85 {\rm M}^2;$$
$$d = \sqrt{\frac{4 \cdot 2,85}{3,14}} = 1,9 {\rm M}.$$

В [2, с. 136] выбираем диаметр сепаратора. Он равен 2000 мм.

$$V_{\mathrm{ж}\phi} = \frac{31421}{853,6\cdot 60\cdot 4} = 0,18\frac{\mathrm{M}^3}{\mathrm{M}\mathrm{H}}.$$

Тогда линейную скорость движения жидкой фазы определяем по формуле:

$$W_{\mathrm{ж}\phi} = rac{V_{\mathrm{ж}\phi}}{0.5 \cdot S_c} = rac{0.18}{0.5 \cdot 2.85} = 0.12$$
 м/мин.

По формуле определяем длину горизонтального сепаратора:

 $l = \tau \cdot W_{\mathrm{ж} \mathrm{\varphi}} = 35 \cdot 0,12 = 4,35$ м.

С помощью расчетов установлено, что диаметр каждого из шести параллельно включенных сепараторов должен быть не менее 2 м, а длина сепаратора – не менее 4,35 м.

Расчёт горячего сепаратора низкого давления. Условия проведения горячей сепарации:

- Температура 270 °С.
- Давление 0,5 MПа.

В приложении 7 (см. таблицу П7.9) представлен состав и расход газопродуктовой смеси на входе в сепаратор С-3.

Результаты расчета состава фаз на выходе из сепаратора представлены в таблице П7.10.

Расчет материального баланса однократного испарения газожидкостной смеси в газосепараторе представлен в таблице П7.11.

Определим коэффициент сжимаемости. Для этого рассчитаем критические параметры парогазовой фазы ГПС. Расчёт представлен в таблице П7.12.

$$T_{\rm np} = \frac{543}{109,5} = 5;$$

$$P_{\rm np} = \frac{0,5}{2,456} = 0,2.$$

$$\text{По графику [2, c. 135] находим, что z = 1}$$

$$V_{\rm n} = \frac{22,4 \cdot 722 \cdot (270 + 273) \cdot 1 \cdot 0,1}{273 \cdot 3600 \cdot 0,5} = 1,8 \frac{\text{M}^3}{c},$$

$$\rho_{\rm re} = \frac{14275 + 19451 + 49371 + 114797 + 406918}{14275 + 19451 + 49371 + 114797 + 406918} = 722,6 \frac{\text{Kr}}{\text{M}^3}.$$

$$\rho_{\rm re} = \frac{9663}{3600 \cdot 1,8} = 1,5 \frac{\text{Kr}}{\text{M}^3}.$$

$$W_{\rm don} = 0,0334 \cdot \sqrt{\frac{722,6}{1,5}} = 0,74 \text{ m/c}.$$

$$S_c = \frac{1,8}{0,5 \cdot 0,74} \coloneqq 4,93 \text{ m}^2.$$

$$d = \sqrt{\frac{4 \cdot 4,93}{3,14}} = 2,51 \text{ m}.$$

В [2, с. 136] выбираем диаметр сепаратора. Он равен 2600 мм. Объемный расход жидкой фазы:

$$V_{\mathrm{x}\phi} = \frac{606063}{722,6\cdot 60\cdot 4} = 3,49\frac{\mathrm{M}^3}{\mathrm{M}\mathrm{H}}.$$

Тогда линейную скорость движения жидкой фазы определяем по формуле:

$$W_{\mathrm{ж}\phi} = \frac{V_{\mathrm{ж}\phi}}{0.5 \cdot S_c} = \frac{3,49}{0.5 \cdot 4,93} = 1,42$$
 м/мин.

По формуле определяем длину горизонтального сепаратора:

 $l = \tau \cdot W_{\mathrm{ж} \mathrm{\varphi}} = 10 \cdot 1,\!42 = 14,\!2$ м

Расчёт холодного сепаратора низкого давления С-4. Условия проведения сепарации:

— Температура – 50 °С.

Давление – 0,5 МПа.

В приложении 7 (см. таблицу П7.13) представлен состав и расход
газопродуктовой смеси на входе в сепаратор С-4.

Результаты расчета состава фаз на выходе из сепаратора представлены в таблице П7.14.

Расчет материального баланса однократного испарения газожидкостной смеси в газосепараторе представлен в таблице П7.15.

Определим коэффициент сжимаемости. Для этого рассчитаем критические параметры парогазовой фазы ГПС. Расчёт представлен в таблице П7.16.

$$T_{\rm np} = \frac{323}{154,3} = 1,2;$$
$$P_{\rm np} = \frac{0,5}{2.87} = 0,1.$$

По графику [2, с. 135] находим, что z = 1.

$$V_{\pi} = \frac{22,4 \cdot 15 \cdot (50 + 273) \cdot 1 \cdot 0,1}{273 \cdot 3600 \cdot 0,4} = 0,05 \frac{\text{M}^3}{\text{c}};$$
$$\rho_{\text{K}} = \frac{1367 + 1460 + 3571 + 7910 + 14935}{\frac{1367}{641,5} + \frac{1460}{718,6} + \frac{3571}{771,9} + \frac{7910}{814,4} + \frac{14935}{867,4}} = 829,1 \frac{\text{Kr}}{\text{M}^3}.$$

Плотность газовой или газопаровой фазы найдем из соотношения

$$\rho_{\Pi} = \frac{592}{3600 \cdot 0.03} = 5.2 \frac{\text{KF}}{\text{M}^3};$$
$$W_{\text{доп}} = 0.0334 \cdot \sqrt{\frac{829.1}{5.2}} = 0.42 \frac{\text{M}}{\text{c}};$$
$$S_c = \frac{0.03}{0.5 \cdot 0.54} = 0.24 \text{ M}^2.$$

Зная сечение газосепаратора, рассчитываем его диаметр по формуле

$$d = \sqrt{\frac{4 \cdot 0.24}{3.14}} = 0.56 \text{ M}.$$

В [2, с. 136] выбираем диаметр сепаратора. Он равен 600 мм. Объемный расход жидкой фазы определяем

$$V_{\mathrm{x}\phi} = \frac{30014}{829,1\cdot 60\cdot 4} = 0,18\frac{\mathrm{M}^3}{\mathrm{M}\mathrm{H}}$$

Тогда линейную скорость движения жидкой фазы определяем по формуле:

$$W_{\mathrm{ж}\phi} = \frac{V_{\mathrm{ж}\phi}}{0.5 \cdot S_c} = \frac{0.18}{0.5 \cdot 0.24} = 1.46$$
 м/мин.

По формуле определяем длину горизонтального сепаратора:

$$l = \tau \cdot W_{\mathrm{ж}\phi} = 10 \cdot 1,46 = 14,6$$
 м.

С помощью расчетов установлено, что диаметр сепаратора должен быть не менее 0,6 м, а длина сепаратора – не менее 14,6 м.

2.5.8 Расчет сырьевых теплообменников «ГСС-ГПС»

Для определения температуры смеси сырья на входе в Т-1 «ГСС-ГПС» необходимо определить температуру смешения сырья, ЦВСГ и СВСГ.

Исходные данные для расчета:

- Расход сырья $G_c = 352469 \text{ кг/ч};$

- Расход ЦВСГ $G_{\text{ЦВСГ}} = 62721 \text{ кг/ч};$

- Расход СВСГ $G_{CBC\Gamma} = 6808 \text{ кг/ч.}$

- Температура сырья – 100 °С;

- Температура ЦВСГ – 50 °С;

- Температура CBC Γ – 50 °C;

Температуру смешения данных компонентов находят в следующей последовательности:

- сначала определяют количество теплоты (Q_{см}), пришедшее с компонентами в узел смешения при их температурах:

 $Q_{\rm CM} = G_{\rm c} \cdot h_{\rm c} + G_{\rm LBC\Gamma} \cdot H_{\rm LBC\Gamma} + G_{\rm CBC\Gamma} \cdot H_{\rm CBC\Gamma}.$

- затем задаются двумя температурами (t_1 и t_2) в пределах ожидаемых её значений и находят количество теплоты смеси компонентов при этих температурах:

- при температуре t₁

$$Q_{\rm CM}^{t_1} = G_{\rm c} \cdot h_c^{t_1} + G_{\rm c} \cdot H_{\rm LBC\Gamma}^{t_1} + G_{\rm c} \cdot H_{\rm CBC\Gamma}^{t_1};$$

•- при температуре t₂

$$Q_{\rm CM}^{t_2} = G_{\rm c} \cdot h_c^{t_2} + G_{\rm c} \cdot H_{\rm LIBC\Gamma}^{t_2} + G_{\rm c} \cdot H_{\rm CBC\Gamma}^{t_2};$$

- затем строят вспомогательный график в координатах $Q_{\mbox{\tiny CM}}$ - $t_{\mbox{\tiny CM}}$ и с его помощью находят искомую температуру.

Определим количество теплоты, пришедшее с компонентами в узел смешения:

$$\begin{split} Q_{\rm cm} &= 352469 \cdot 195, 5 + 62721 \cdot 4465 + 6808 \cdot 2125 = 238 \ \text{МДж/ч.} \\ \text{Зададимся } t_1 &= 60 \ ^\circ\text{C} \ \text{и} \ t_2 = 80 \ ^\circ\text{C}. \\ h_c^{60} &= 117, 3 \ \text{кДж/кг}; \\ h_c^{60} &= 156, 4 \ \text{кДж/кг}; \\ H_{\text{ЦВСГ}}^{60} &= 5358, 8 \ \text{кДж/кг}; \\ H_{\text{ЦВСГ}}^{60} &= 7145, 0 \ \text{кДж/кг}. \ \text{Рассчитаем } Q_{\rm cm} \ \text{при } t_1 = 60 \ ^\circ\text{C}: \\ Q_{\rm cm} &= 352469 \cdot 117, 3 + 62721 \cdot 5358, 8 + 6808 \cdot 588, 6 = 237 \ \text{МДж/ч}. \\ \text{Рассчитаем } Q_{\rm cm} \ \text{при } t_2 = 80 \ ^\circ\text{C}: \\ Q_{\rm cm} &= 352469 \cdot 156, 4 + 62721 \cdot 7145, 0 + 6808 \cdot 1177, 1 = 317 \ \text{МДж/ч}. \end{split}$$

Находим температуру смешения компонентов с помощью функций ПЭВМ. Она равна 58,7 °С.

Расчет теплообменника Т-1 «ГСС-ГПС». Газосырьевая смесь перед входом в печь П-1 нагревается в теплообменнике за счет тепла газопродуктовой смеси, выходящей из реактора 1.

Исходные данные для расчета:

Расход газосырьевой смеси $G_{\Gamma CC} = 377629$ кг/ч, в том числе:

- сырье 352469 кг/ч;
- ЦВСГ 62721 кг/ч, СВСГ 6808 кг/ч;

Расход газопродуктовой смеси $G_{\Gamma\Pi C} = 421998 \text{ кг/ч}$, в том числе:

- легкий бензин 5024 кг/ч;
- тяжелый бензин 6530 кг/ч;
- реактивное топливо 16376 кг/ч;
- дизельное топливо 37675кг/ч;
- ГО ВГ 343 кг/ч;
- сероводород 3198 кг/ч;
- ЦВСГ 62721 кг/ч;
- УВГ 1400 кг/ч.

Схема теплообмена:

ΓCC: 58,7 ⁰C → tΓΠC: 280 ⁰C ← 405 ⁰C

Материальный баланс однократного испарения ГПС при 280°С представлен в приложении 8 (см. таблицу П8.1).

Материальный баланс однократного испарения ГПС при 405°С представлен в таблице П8.2.

Температуру нагрева ГСС определяем из теплового баланса теплообменника:

$$Q_{\text{прих}} = Q_{\text{расх}}$$

где $Q_{\text{прих}}$ - количество тепла, переданного ГПС, кДж/ч;

 Q_{pacx} - количество тепла, принятого ГСС, кДж/ч;

Количество передаваемого тепла в теплообменнике найдем по формуле $Q_{\text{пер}}^{\Gamma\Pi C} = \left[\Sigma \left(G_i^{405} \cdot H_i^{405} + g_i^{405} \cdot h_i^{405} \right) - \Sigma \left(G_i^{280} \cdot H_i^{280} + g_i^{280} \cdot h_i^{280} \right) \right] \cdot \eta$, где G_i^{405} – расход компонента в парах при 405 °C, кг/ч;

 g_i^{405} – расход компонента в жидкой фазе при 405 °С, кг/ч;

 G_i^{280} – расход компонента в парах при 280 °С, кг/ч;

 g_i^{280} - расход компонента в жидкой фазе при 280 °С, кг/ч;

 H_i^{405} – энтальпия компонента в парах при 405 °C, кДж/кг;

 h_i^{405} – энтальпия компонента в жидкой фазе при 405 °C, кДж/кг;

 H_i^{280} – энтальпия компонента в парах при 280 °C, кДж/кг;

 h_i^{280} – энтальпия компонента в жидкой фазе при 280 °C, кДж/кг;

 η – коэффициент использования теплоты; η = 0,95.

 $Q_{\text{nep}}^{\Gamma\Pi\text{C}} = [(1504 \cdot 1210,8 + 5095 \cdot 1044,4 - 759 \cdot 1094,2 - 5840 \cdot 904,2) + (3460 \cdot 1150,2 + 17573 \cdot 992,8 - 1677 \cdot 1032,4 - 19355 \cdot 859,5) + (4002 \cdot 1139,8 + 40652 \cdot 938,1 - 2894 \cdot 1029,3 - 41759 \cdot 812,1) + (15707 \cdot 1086,7 + 227956 \cdot 890,1 - 8161 \cdot 977,9 - 235502 \cdot 771,0) + 3452 \cdot (434,9 - 380,1) + 159 \cdot (2090,0 - 1970,0) + 66871 \cdot (2757,7 - 2469,0) + 5324 \cdot (1105,4 - 1007,4)] \cdot 0,95 = 57,42 \frac{\text{MA} \times 1029}{\text{M}}.$

Количество тепла, принятого ГСС, определяется по формуле

$$Q_{\rm np}^{\rm FCC} = \Sigma \Big(G_i^t \cdot H_i^t + g_i^t \cdot h_i^t \Big) - \Sigma (G_j^{58,7} \cdot H_j^{58,7} + g_j^{58,7} \cdot h_j^{58,7} \Big),$$

где $g_j^{58,7}$ – энтальпия компонента в жидкой фазе при 58,7 °C, кДж/кг;

 $H_j^{58,7}$ – энтальпия компонента при 58,7 °C, кДж/кг;

 G_i^t – расход паров компонента при температуре t_x, кг/ч;

 g_i^t – расход компонента в жидкой фазе при температуре t_x , кг/ч;

 H_i^t – энтальпия паров компонента при t_x , кДж/кг;

 h_i^t – энтальпия компонента в жидкой фазе при t_x, кДж/кг.

Для нахождения температуры t_x необходимо построить зависимость $Q_{\text{pacx}} = f(t)$.

Задаемся $t_x = 300$ °С и $t_x = 400$ °С.

Материальный баланс однократного испарения ГСС при 300 °С представлен в таблице П8.3.

Материальный баланс однократного испарения ГСС при 400 °С представлен в таблице П8.4.

Рассчитаем Q_{pacx} при $t_1 = 300$ °C:

 $Q_{\text{pacx}}^{\Gamma \text{CC}} = 30367 \cdot 888,7 + 291485 \cdot 677,7 - 321852 \cdot 136,2 + 52745$

 \cdot (2239,9 - 543,5) + 3032 \cdot (4286,4 - 1045,4) = 399 МДж/ч. Рассчитаем Q_{pacx} при t_2 = 400 °С:

 $Q_{\text{pacx}}^{\Gamma \text{CC}} = 132371 \cdot 1160,0 + 189481 \cdot 973,4 - 321852 \cdot 136,2 + 52745$

 $(2961,6 - 543,5) + 3032 \cdot (5725,4 - 1045,4) = 531 MДж/ч.$

С помощью функций ПЭВМ рассчитаем t_x. Она равна 153,9 °C. Схема теплообмена:

ГСС: 58,7 [°]C →153,9 [°]C ГПС: 280 [°]C ← 405 [°]C

 $\Delta t_6 = 251 \text{ °C}; \Delta t_M = 221 \text{ °C}.$

Так как отношение $\Delta t_6 < 2$, то найдем среднюю разницу температур по уравнению:

$$\Delta t_{\rm cp} = \frac{\Delta t_{\rm f} + \Delta t_{\rm M}}{2}$$

Рассчитаем поверхность теплообмена по формуле:

$$F = \frac{Q}{K \cdot \Delta t_{\rm cp}},$$

где К – коэффициент теплопередачи; К = 250 Вт/(м² · °C) [2, с. 137]. $F = \frac{206706775}{250 \cdot 234,8} = 3500 \text{ м}^2.$

2.5.9. Расчет печи нагрева ГСС по укрупненным показателям

Расчет печи, служащей для нагрева газосырьевой смеси перед входом в реактор, сводится к определению тепловой мощности, поверхности нагрева, числа труб в конвекционной и радиантной камерах, низшей теплоты сгорания топлива, коэффициента полезного действия и расхода топлива.

Исходные данные для расчета печи для нагрева сырья:

- Топливо – газообразное следующего состава: $CH_4-1,0\%,\ C_2H_6-4,0\%,\ C_3H_8-25,0\%,\ i-C_4H_{10}-44,0\%,\ n-C_4H_{10}-26,0\%$ (% мас.)

Расход ГСС – 421998 кг/ч;

в том числе: сырье – 352469 кг/ч, ЦВСГ –62721 кг/ч, СВСГ – 6808 кг/ч;

- Температура газосырьевой смеси 153,9 °С;
- Температура выхода 395 °С.

Материальный баланс однократного испарения при t = 153,9 °C и P = 15,0 МПа представлен в приложении 9 (см. таблицу П9.1).

Материальный баланс однократного испарения при t = 395 °C и P = 15,0 МПа представлен в таблице П9.2.

Полезная тепловая мощность печи определяется по формуле

$$\begin{split} Q_{\text{полезн}} &= \Sigma (G_i^{395} \cdot H_i^{395} + g_i^{395} \cdot h_i^{395}) - \Sigma (G_j^{153,9} \cdot H_j^{153,9} + g_j^{153,9} \cdot h_j^{153,9}) = \\ &= (69710 \cdot 1020,3 + 252142 \cdot 821,2 - 1863 \cdot 554,2 - 319989 \cdot 316,0) + \\ &+ 52745 \cdot (2621,7 - 1162,4) + 3032 \cdot (5004,8 - 2243,8) = 440 \text{ MДж/ч.} \\ &\text{Примем КПД } \eta = 0,8. \end{split}$$

Полную тепловую мощность печи вычислим по формуле

$$Q_{\text{полн}} = \frac{Q_{\text{полезн}}}{\eta} = \frac{440126183}{0.8} = 550 \frac{\text{МДж}}{\text{ч}}$$

Низшая теплота сгорания газообразного топлива может быть рассчитана по правилу аддитивности:

$$Q_p^{\rm H} = \sum_{i=1}^n \overline{Q_{p_i}^{\rm H}} \cdot \overline{y_i},$$

где $\overline{Q_{p_1}^{H}}$ – теплота сгорания компонентов топлива, МДж/кг [15, с. 148]; $\overline{y_l}$ - массовая доля компонентов сырья.

 $Q_p^{\text{H}} = 0.01 \cdot 50.08 + 0.04 \cdot 47.55 + 0.25 \cdot 46.42 + 0.44 \cdot 45.96 + 0.26 \cdot 45.79 = 48 \frac{\kappa \mu}{\kappa}.$

Расход газообразного топлива определяется по формуле

$$B = \frac{Q_{\text{полн}}}{Q_p^{\text{H}} \cdot \eta} = \frac{550,158 \cdot 103}{48 \cdot 0,8} = 14318,5 \frac{\text{K}\text{G}}{\text{H}}.$$

Определим количество теплоты, воспринимаемое сырьём через трубы конвекционной камеры печи по формуле:

$$Q_k = 0,25 \cdot Q_{\text{полн}} = 137 \text{ МДж/ч.}$$

Определим количество теплоты, воспринимаемое сырьём через трубы радиантной камеры по формуле:

$$Q_{\rm p} = Q_{\rm полн} - Q_{\kappa} = 413 \,\,{\rm MДж/ч}.$$

Поскольку теплонапряженность конвекционных и радиантных труб различается, площадь их поверхности будем считать отдельно. Согласно справочным данным, теплонапряженность (К) радиантных труб может составлять 45-60 кВт/м², а конвекционных – 10-25 кВт/м². При этом 1кВт по системе СИ равен 3600 кДж/ч. Исходя из этих данных, рассчитаем поверхности труб радиантной и конвекционной секций и суммарную площадь поверхности труб печи:

$$F_p = \frac{Q_p}{K} = \frac{413000000}{57 \cdot 3600} = 2012 \text{ m}^2;$$

$$F_k = \frac{Q_k}{K} = \frac{137000000}{23 \cdot 3600} = 1661 \text{ m}^2;$$

$$F_{\text{общ}} = F_p + F_k = 2012 + 1661 = 3672 \text{ м}^2.$$

2.5.10 Расчет воздушного конденсатора-холодильника и водяного холодильника

Производим расчет ABO-1, в котором газопаровая фаза охлаждается с 150 до 100 $^{0}\mathrm{C}.$

Температура ГПС на входе в холодильник – 150 °С; температура ГПС на выходе из холодильника – 100 °С. Схема теплообмена:

$$150 \ ^{\circ}C \qquad 111C \qquad \qquad 100 \ ^{\circ}C \\ 55 \ ^{\circ}C \qquad Bo_{3}gyx \qquad 25 \ ^{\circ}C \\ 25 \ ^{\circ}C \qquad 25 \ ^{\circ}C \\ 100 \ ^{\circ}C \qquad 25 \ ^{\circ}C \\ 100 \ ^{\circ}C \qquad 25 \ ^{\circ}C \\ 100 \ ^{\circ}C \qquad 100 \ ^{\circ}C \qquad 100 \ ^{\circ}C \\ 100 \ ^{\circ}C \qquad 100 \ ^{\circ}C \ ^{\circ}C \qquad 100 \ ^{\circ}C \ ^{\circ}C \qquad 100 \ ^{\circ}C \ ^{\circ}C \ ^{\circ}C \ ^{\circ}C \qquad 100 \ ^{\circ}C \ ^{\circ}C$$

Количество теплоты газожидкостной смеси при 150 ⁰C и при 100 ⁰C соответственно на входе и на выходе в АВО-1 представлено в приложении 10 (см. таблицу П10.1 и П10.2).

Количество теплоты, которое отводится определяем по формуле: $Q_{pacx} = Q_{nap}^{150} + Q_{жид}^{150} - (Q_{nap}^{100} + Q_{жид}^{100}) = 410198 + 8251 - 364109 - 5908 = 48432 MДж/ч.$ Определим необходимую поверхность аппарата:

$$F = \frac{Q_{pacx}}{K \cdot \Delta t_{cp}},$$

где К— коэффициент теплопередачи, принимаем по литературным данным; К=470 кДж/(м² ч ⁰С);

 t_{cp} - средний температурный напор в аппарате, ⁰С.

$$t_6 = 150 - 55 = 95 \,{}^{0}\text{C};$$

 $t_{M} = 100 - 25 = 75 \,{}^{0}\text{C}.$

Так как $\frac{\Delta t_6}{\Delta t_M} = \frac{95}{75} = 1,3 < 2$ средний температурный напор находим по формуле [9]

$$\Delta t_{cp} = \frac{\Delta t_{6} + \Delta t_{M}}{2} = \frac{95 + 75}{2} = 85 \text{ °C};$$

$$F = \frac{Q_{\text{pacx}}}{K \cdot \Delta t_{\text{cp}}} = \frac{48432 \cdot 10^3}{85 \cdot 470} = 1212 \text{ m}^2.$$

Принимаем к установке аппарат воздушного охлаждения АВО-1 (ТУ 26-02-1089-88).

Расчет ВХ-1. Производим расчет водяного холодильника ВХ-1, предназначенного для конденсации и охлаждения газопаровой фазы, выходящей из АВО-1, в котором газопаровая фаза охлаждается со 100 ⁰C до 50 ⁰C.

Расчет количества теплоты газожидкостной смеси при 50 ⁰C соответственно на входе в ABO-1 и на выходе из него представлен в таблице П10.3. Количество теплоты, которое отводится, определяем по формуле:

$$Q_{\text{pacx}} = Q_{\text{пар}}^{100} + Q_{\text{жид}}^{100} - (Q_{\text{пар}}^{50} + Q_{\text{жид}}^{50}) = 364109 + 5908 - 292059 - 3363 = 74596 MДж/ч.$$

Определим необходимую поверхность аппарата:

$$F = \frac{Q_{pacx}}{K \cdot \Delta t_{cp}},$$

где К— коэффициент теплопередачи, принимаем по литературным данным [13] 630 кДж/(M^2 ч 0 C);

 t_{cp} - средний температурный напор в аппарате, ⁰С. Схема теплообмена:

$$100^{\circ}C \qquad \qquad \Gamma\PiC \qquad \qquad 50^{\circ}C$$

 $\Delta t_6 = 100 - 55 = 45^0$ C;

$$\Delta t_{M} = 50 - 30 = 20^{\circ} C.$$

Так как $\frac{\Delta t_6}{\Delta t_M} = \frac{45}{20} = 2,3 > 2$ средний температурный напор находим по формуле [9]

$$\Delta t_{cp} = \frac{\Delta t_6 - \Delta t_M}{2,3lg \frac{\Delta t_6}{\Delta t_M}} = 33 \ {}^{0}\text{C};$$
$$F = \frac{Q_{pacx}}{K \cdot \Delta t_{cp}} = \frac{74596 \cdot 10^3}{630 \cdot 33} = 3643.3 \ \text{m}^2.$$

Α.

Α.

2.5.11 Материальный баланс колонны фракционирования катализата

Нестабильный гидрогенизат, получаемый при сепарации продуктов реакции, включает гидроочищенный вакуумный газойль, а также компоненты дизельного и реактивного топлив, бензин и газы реакции.

Стабилизацию нестабильного гидрогенизата осуществляют в ректификационной колонне, с верха которой отводится углеводородный газ и сероводород, а снизу – стабильный гидрогенизат. Стабильный гидрогенизат затем направляется в колонну фракционирования. Ниже представлен материальный баланс колонны стабилизации (см. таблицу 2.16).

Таблица 2.16

Iviai										
Статьи баланса	% мас.	Расход, кг/час								
Поступило:										
Нестабильный гидрогенизат	100,00	638135								
Итого:	100,00	638135								
Получено:										
Газы	0,37	2361								
Бензин-отгон	0,29	1851								
Стабильный гидрогенизат	99,24	633285								
Потери	0,10	638								
Итого:	100,00	638135								

Материальный баланс колонны стабилизации

Материальный баланс колонны фракционирования рассчитывается в соответствии с материальным балансом колонны стабилизации. Материальный баланс колонны фракционирования представлен в таблице 2.16.

Таблица 2.16

1			()	
Взято:	кг/ч	%мас на сырье колонны	%мас на нефть	
Стабильный гидрогениз	зат 633285	100,00	43,06	
Итого	633285	100,00	43,06	
Получено:				
УВГ	274	0,04	0,02	
28-70 °С	13900	2,19	0,95	
70-180 °С	20914	3,30	1,42	
180-240 °С	53142	8,39	3,61	
240-360 °C	123371	19,48	8,39	
>360 °C	421685	66,59	28,67	
Итого	633285	100,00	43,06	

Материальный баланс колонны фракционирования (К-4)

2.5.12 Лабораторный контроль качества сырья, получаемой продукции, газов

Лабораторный контроль качества сырья, получаемой продукции, газов представлен в приложении 11 (см. таблицу П11.1).

3. МЕРОПРИЯТИЯ ПО БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ УСТАНОВКИ.

3.1 Анализ опасных и вредных производственных факторов, возникающих при ведении процесса

Производство товарных топлив на комбинированной установке гидрокрекинга является пожаро- и взрывоопасным.

Опасность данного производства обусловлена химизмом процесса гидрокрекинга и гидроочистки, парового риформинга, параметрами проведения технологического процесса, свойствами, обращающихся веществ на установке, и особенностями применяемого оборудования и агрегатов.

Процессы гидрокрекинга и гидроочистки проводятся при высоких температурах до 430 °C и давлении до 200 кг/см² (изб.).

Гидрокрекинг протекает с выделением тепла, теплосъем которого управляем в процессе нормальной работы установке.

В случае повышения температуры по слоям катализатора в реакторе выше регламентированного значения может начаться неуправляемая химическая реакция, которая может привести к физическому повреждению реактора, его узлов, утечке газа, в присутствии источника воспламенения ведущей к пожару или взрыву на установке.

Практически все вещества, перерабатываемые и получаемые на установке, являются пожаро- и взрывоопасными и токсичными: водород, углеводородные газы, сероводород, нефтепродукты в парах и жидкости.

Большая мощность установки по сырью подразумевает соответствующие объемы пожаро- и взрывоопасных и токсичных веществ, обращающихся на установке.

Учитывая параметры проведения технологического процесса и свойства обращающихся на установке веществ, применяемое оборудование должно обеспечивать герметичность и надежность.

Процесс относится к вредным для здоровья обслуживающего персонала производствам, так как связан с переработкой и получением токсичных продуктов.

К основным опасным факторам относятся:

- проведение технологического процесса при повышенном давлении и температуре;

- высокая взрывопожароопасность нефтепродуктов, взрывоопасность паров нефтепродуктов, наличие горючих и токсичных газов;

- способность получаемых продуктов воспламеняться от источника огня и самовоспламеняться;

- возникновение пожара и взрыва при выбросе нефтепродуктов в результате разгерметизации фланцевых соединений, торцевых и сальниковых узлов насосов и запорной арматуры;

- возможная загазованность воздуха рабочей зоны в случае разгерметизации трубопроводов и аппаратов;

- наличие колодцев, приямков и других низких мест на территории установки с возможностью образования в них высокой степени загазованности;

- неправильное выполнение работ при выгрузке катализатора, его осернении, что может привести к образованию взрывоопасных концентраций и возгоранию продуктов на катализаторе;

- термические ожоги водяным паром, конденсатом и горячими продуктами;

- движущиеся машины и механизмы, подвижные части производственного оборудования;

- применение трубчатых печей с открытым огневым нагревом;

- повышенный уровень шума;

- возможность образования пирофорных соединений;

- наличие процесса коррозии и эрозии в аппаратах и трубопроводах;

- наличие электрооборудования, работающего под высоким напряжением;

- поражение работающих электрическим током в случае выхода из строя заземления токоведущих частей, пробоя изоляции;

- повышенный уровень статического электричества вследствие транспортировки нефтепродуктов, обладающих способностью накапливать заряды статического электричества.

Ниже приведен перечень и характеристика токсичных веществ (в соответствии с ГН 2.2.5.3532-18), обращающихся на установке.

Сероводород (ПДК = 10 мг/м^3 , класс опасности 2). Является отравляющим (токсичным) газом с остронаправленным механизмом действия. Вдыхание сероводорода даже в очень низких концентрациях может вызвать летальный исход. Возможны две формы отравления – острая (разовое воздействие) и подострая (кратковременные многократные воздействия).

Острое отравление сероводородом – вдыхание воздуха или газа, содержащего 0,06 – 0,10 % сероводорода (600 – 1000 ppm об.), в течение 1 минуты может вызвать острое отравление и смерть.

Подострое отравление сероводородом вызывается вдыханием воздуха или газа, содержащего 0,01 – 0,06 % сероводорода (100 – 600 ppm об.), в течение 1 часа и более, постоянно или периодически.

Карбонил никеля (ПДК = 0,003 мг/м³, класс опасности 1). Является токсичным и летучим веществом, промышленный канцероген. Кратковременное воздействие этого вещества в низких концентрациях может вызвать тяжелое заболевание или смерть. Карбонил никеля образуется, когда диспергированный никель находится в среде, содержащей оксиды углерода. При нормальной работе образование карбонила никеля маловероятно из-за высоких температур. Однако во время останова возможность образования карбонила никеля возрастает из-за снижения температуры в реакторе.

Диметилдисульфид (ПДК = 50 мг/м³, класс опасности 4). Представляет собой воспламеняющуюся жидкость (категория 2) с запахом, которая токсична при проглатывании, вдыхании и впитывании через кожу. Вещество используется для сульфидирования катализатора. Может вызвать раздражение

верхних дыхательных путей. При контакте с кожей может вызвать аллергическую реакцию.

Метилдиэтаноламин (ПДК = 5 мг/м³, класс опасности 3). Умеренно опасное по степени воздействия на организм вещество. Обладает слабым раздражающим действием на кожу и выраженным на слизистые оболочки глаз. Пары продукта вызывают симптомы раздражения слизистых оболочек верхних дыхательных путей. Проникает через неповрежденные кожные покровы. Может вызывать аллергическую реакцию у высокочувствительных лиц при длительном и повторном контакте кожей. Может оказывать влияние на репродуктивную функцию. Горючая жидкость.

Свежий и отработанный катализатор ISOCRACKING (ПДК = 0,05 мг/м³, класс опасности 1). Представляет собой твердый материал, содержащий никель. Необходимо избегать вдыхания пыли катализатора. Вызывает раздражение кожи и глаз. Может вызвать аллергические реакции кожи и органов дыхания. Канцероген.

3.2 Мероприятия, обеспечивающие безопасное ведение технологического процесса

Для обеспечения безопасной эксплуатации комбинированной установки гидрокрекинга и защиты обслуживающего персонала проектом предусмотрены технические решения, направленные на уменьшение вероятности аварийных ситуаций, или на их исключение, предусмотрена оптимальная технологическая схема установки с высокой степенью автоматизации процесса, позволяющей обеспечить стабильную работу оборудования, постоянство технологического режима.

Проектом предусмотрены следующие мероприятия, обеспечивающие безаварийную эксплуатацию производства:

Осуществление технологического процесса предусматривается В герметичной аппаратуре. Герметичность аппаратуры должна проверяться перед комбинированной установки пуском регулярно контролироваться И обслуживающим персоналом осмотре процессе при визуальном в эксплуатации.

Расчетное давление аппаратов, работающих под давлением до 100 кгс/см², принято с учетом необходимого превышения его над рабочим давлением в соответствии с требованиями нормативной документации.

Расчетное давление аппаратов, работающих при давлении свыше 100 кгс/см², принято с учетом не менее 10% запаса над рабочим давлением.

Для обеспечения взрывобезопасности технологической системы при пуске или остановке комбинированной установки гидрокрекинга предусмотрены специальные меры, предотвращающие образование в системе взрывоопасных смесей и исключающие образование застойных зон, такие как продувка инертным газом и пропарка.

Отбор проб предусмотрен через герметизированные пробоотборники.

Предусмотрены необходимые автоматические блокировки для защиты исключающие аварийной оборудования, возникновение ситуации при отклонениях основных параметров процесса, нарушении работы OT оборудования, при внеплановом отключении подачи сырья, воздуха КИП и энергоресурсов (электроэнергии, водяного пара, оборотной воды) на установку, а также при прекращении подачи циркулирующего и подпиточного газа. Предусмотрена сигнализация параметров, характеризующих безопасное ведение процесса.

За вибрацией вращающихся частей машинного оборудования предусмотрен автоматический вибромониторинг.

Для насосов, перемещающих горючие продукты, предусмотрено их дистанционное отключение, на линиях всасывания и нагнетания установлены пневмоотсекатели с дистанционным управлением.

Предусмотрено оснащение насосов, перекачивающих ЛВЖ, блокировками, исключающими пуск и прекращающими работу насосов при отсутствии в корпусе перемещаемой жидкости, а также системой контроля над состоянием подшипников по температуре с сигнализацией предельного значения и блокировками, отключающими насосы при превышении этого параметра. Все насосы для перекачки ЛВЖ оснащены двойными торцевыми уплотнениями или предусмотрен выбор герметичных насосов.

Предусмотрено оснащение колонн средствами автоматического регулирования и контроля уровня, температуры кубовой жидкости И температуры поступающего сырья, а также средствами сигнализации об взрывобезопасность опасных отклонениях параметров, определяющих процесса.

Для аппаратов периодического действия предусмотрены меры, обеспечивающие взрывобезопасное проведение операций подключения (отключения) к непрерывной технологической линии.

Предусмотрено оснащение аппаратуры, содержащей жидкую фазу, системами контроля и регулирования в ней уровня жидкости. Предусмотрена сигнализация по достижении минимального и максимального уровня.

Выбор конструктивного и материального исполнения уплотнений машинного оборудования, аппаратуры и фланцевых соединений предусмотрен с учетом особенностей технологического процесса и требования действующих нормативных документов.

Для защиты аппаратов от превышения давления предусмотрена система предохранительных клапанов, состоящая из рабочего и резервного клапана с переключающим устройством. Рабочий и резервный клапаны выбраны с равной пропускной способностью, обеспечивающей полную защиту аппарата от превышения давления выше допустимого.

Установочные давления предохранительных клапанов приняты равными расчётным давлениям аппаратов с учётом противодавления в той системе, в которую направляется сброс от предклапана. Расчетное давление оборудования, неснабжённого предохранительными устройствами, выбрано не ниже, чем максимальное давление источника Сбросы от предклапанов, установленных на аппаратах и трубопроводах с нейтральными средами (инертный газ, водяной пар, вода), направляются в атмосферу в безопасное место. Сбросы горючих газов и паров направляются в закрытую факельную систему.

Для удаления жидких продуктов из технологических систем при останове, ремонте оборудования предусмотрена система дренажа. Дренаж аппаратов и трубопроводов выполнен с учетом особенностей процесса.

На случай возникновения аварийной ситуации предусмотрено отключение электрооборудования со щита операторной.

В помещении управления будет смонтирован съемный пол (фальшпол). Пол должен быть неэлектропроводным, антистатическим; металлические основания опор пола должны быть подсоединены к системе заземления.

Предусмотрена механизация всех трудоёмких процессов по загрузке и выгрузке, реагентов и ремонту оборудования.

Предусмотрена теплоизоляция от ожогов в зонах обслуживания всех аппаратов, оборудования и трубопроводов, имеющих температуру наружных поверхностей выше 60 °C.

Трубчатые печи, в которых процесс нагрева ведется с применением открытого огня, являются одним из наиболее опасных видов оборудования.

Противоаварийная автоматическая защита топочного пространства печей и нагреваемых змеевиков обеспечивается:

- системами регулирования заданного соотношения топлива и воздуха, идущего на его горение;

- сигнализацией и блокировками, прекращающими подачу топлива при отклонениях давления топливного газа и воздуха от нормативного, при недопустимом снижении объема циркуляции продуктов через змеевики, при превышении предельно допустимой температуры продукта на выходе из печи, при недопустимом снижении разрежения в дымовом тракте, а также при погасании пламени горелок;

- блокировкой по прекращению подачи сырья и топлива в печь при прогаре змеевика, характеризующемся повышением температуры дымовых газов на «перевале» печи, падением давления продукта в змеевике, снижением содержания кислорода в дымовых газах после печи. Для прекращения горения продуктов из прогоревшего змеевика в объем печи предусмотрена автоматическая подача водяного пара.

Для поддержания оптимального режима горения топливного газа в печах предусмотрен автоматический контроль содержания кислорода и оксида углерода в дымовых газах.

Для изоляции печей с открытым огневым процессом от проникновения к горелкам взрывоопасной газовой среды при авариях на наружной установке, предусмотрена паровая завеса, включающаяся дистанционно.

Для предотвращения разрушения корпуса и футеровки печей предусмотрены «взрывные клапаны», расположенные на неогневой стороне корпусов и срабатывающие при повышении давления в объемах печей.

Для продувки трубопроводов и оборудования печного блока на факел и свечу перед пуском и остановом на ремонт предусмотрен подвод инертного газа.

Для обеспечения раннего оповещения об опасности или потенциально опасных условиях и принятия мер предосторожности для уменьшения риска наиболее уязвимые зоны обеспечиваются техническими средствами обнаружения газа и возгорания.

В системе обнаружения возгорания используются датчики пожарной сигнализации и индикаторы дыма.

Обеспечивается световая и звуковая сигнализация, срабатывающая при обнаружении возгорания, токсичных и горючих газов на территории блока.

3.3 Пожарная безопасность

В таблице 3.1 представлены категорирование и классификация помещений, зданий и наружных установок по взрывопожарной и пожарной опасности в соответствии с СП 12.13130.2009.

Таблица 3.1

Категорирование и классификация помещений, зданий и наружных установок по взрывопожарной и пожарной опасности

Наименование объектов	Категорирование помещений, зданий	Класси и нар	фикация помещений ужных установок
(с указанием расположения оборудования в помещении или на наружной установке)	и наружных установок по взрывопожарной и пожарной опасности по СП 12.13130.2009	класс зоны	категория и группа взрывоопасных смесей
Здание компрессорной, в т.ч.:			
 Компрессорная №1 	А	B-Ia	IIC-T1 + IIA-T3
 Компрессорная №2 	А	B-Ia	IIC-T1 + IIA-T3
 Водяная насосная №1 	B4	B-Ia	IIA-T3
 Водяная насосная №2 	А	B-Ia	IIB-T3 + IIC-T1
 Водяная насосная №3 	B4		
Наружная установка			
• печи:			
зона горелок	ГН		IIB-T3, IIA-T3 +
змеевик	АН	B-Iг	IIC-T1, IIB-T3 + IIC-T1
• аппаратура	АН	B-Ir	IIA-T2, IIA-T3, IIB-T3, IIC-T1, IIA-T3 + IIC-T1, IIB-T3 + IIC-T1

Электрические и электронные КИП, размещенные во взрывоопасных зонах, будут оснащены искробезопасными цепями и предохранительными барьерами, размещенными в контроллерной.

Распределительные устройства и трансформаторная подстанция будут размещены в отдельном помещении с соблюдением особых требований (подъем полов, гарантированный подпор воздуха и т.д.).

Кабели приняты с изоляцией и оболочкой, не распространяющей горение, и, при необходимости, бронированные. Прокладка основных потоков кабелей выполняется открыто, в основном, по кабельным эстакадам.

Электроосвещение установки будет иметь дистанционное управление из ЦПУ и местное – по зонам обслуживания.

Для подключения сварочных аппаратов предусмотрены коммутационные ящики, сеть для подключения нормально обесточена.

В пределах взрывоопасных зон нулевой рабочий и нулевой защитный проводники не будут соединяться между собой.

Для защиты от статического электричества на установке будут смонтированы заземляющие и экранирующие устройства.

Пожаротушение предлагается осуществлять воздушно-механической пеной средней кратности, подаваемой сверху, на основе синтетического фторсодержащего пленкообразующего пенообразователя.

Охлаждение стенок аппарата, на котором произошел пожар, а также стенок соседних аппаратов, предлагается подачей огнетушащего вещества лафетными стволами. Возможность подачи воды или пены низкой кратности на значительное расстояние (80-120 м) позволяет защищать аппараты и территорию обвалования. Модификации с электрическим приводом и удаленным управлением позволяют осуществлять тушение оператором из безопасной зоны.

4. МЕРОПРИЯТИЯ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ НА УСТАНОВКЕ

4.1 Краткая характеристика объекта проектирования или исследования

Проектируемый нефтеперерабатывающий завод мощностью 12 млн т/год по сырой нефти будет выпускать следующий ассортимент продукции: автомобильный бензин, реактивное топливо, дизельное топливо, сжиженные газы (пропан и бутан), анодный кокс, элементная сера. Набор технологических установок, составляющих завод, а также параметры их эксплуатации будут обеспечивать соответствие продукции всем требованиям технического регламента Таможенного союза.

Завод будет находиться вблизи Михайловского нефтяного месторождения, расположенного в Кинель-Черкасском районе Самарской области Российской Федерации. Ближайшими населенными пунктами являются город Отрадный, а также села и поселки: Кинель-Черкассы, Кротовка, Кабановка, Тимашево, Черновка, Садгород. Связь с областным центром осуществляется по автодороге республиканского значения и по железнодорожной магистрали, соединяющей Среднее Поволжье с Уралом. Железнодорожная станция расположена в восточной части села Кинель-Черкассы, в 4 км от центра. Площадь района составляет 2468,7 кв. км.

целях обеспечения безопасности населения B И В соответствии с Федеральным законом "О санитарно-эпидемиологическом благополучии населения" от 30.03.99 N 52-ФЗ, вокруг объектов и производств, являющихся источниками воздействия на среду обитания И здоровье человека устанавливается специальная территория с особым режимом использования (санитарно-защитная зона), размер которой обеспечивает уменьшение воздействия загрязнения на атмосферный воздух до значений, установленных гигиеническими нормативами и до величин приемлемого риска для здоровья населения. По своему функциональному назначению санитарно-защитная зона защитным барьером, обеспечивающим уровень является безопасности населения при эксплуатации объекта в штатном режиме.

Размер санитарно-защитной зоны устанавливается в соответствии с главой VII и приложениями 1-6 к СанПиН 2.2.1/2.1.1.1200-03, и для проектируемого НПЗ, относящегося к 1 классу, составляет 1000 м.

4.2 Характеристика качества компонентов окружающей среды в районе расположения объекта

Климатические условия расположения объекта. Средняя по Самарской области температура воздуха за 2018 год составила +4,9 °С. Абсолютные значения максимальной температуры воздуха в летний период составили +34,2...+39,5 °С. Самое низкое значение минимальной температуры воздуха отмечалось в феврале величиной -31,5 °С. По климатическим нормам

среднегодовое количество осадков по Самарской области равняется 494 мм.

В холодную часть года преобладают ветра юго-западного и южного, в теплую – северного, западного и северо-западного направлений. Средняя скорость ветра – 4,5 м/сек [29].

Гидрогеологические условия. Водные объекты Кинель – Черкасского района характеризуют 15 рек, 71 родник, порядка 300 прудов. Наиболее значимым объектом является река Большой Кинель. Гидрографическая сеть территории Кинель-Черкасского района представлена реками: Малый Кинель, Кутулук, Сарбай, Березовка, Козловка, Заводская, Солянка, Черновка, Шумарка, Осиновка, Ветлянка, Кувайка, Куртамак. Характерной чертой водного режима реки Большой Кинель является высокое весеннее половодье и низкая устойчивая межень. Начало весеннего половодья приходится на первую половину апреля. Практически все расположенные на территории Кинельрайона родники используются Черкасского для нецентрализованного хозяйственно - питьевого водоснабжения населения района [30].

Родники из четвертичных аллювиальных отложений, приуроченные к уступам надпойменных террас, ложбинам стока, оврагам и овражкам. Большинство родников нисходящие. По дебитам они классифицируются как малые и незначительные (от 0,01 до 0,8 л/с) [31].

В целом воды характеризуются безнапорным характером, однако под линзами глинистых отложений приобретают местный напор до 10–25 м. Коэффициенты фильтрации водовмещающих пород колеблются от 2 до 27 м/сут [32].

Объем сброса загрязненных сточных вод в поверхностные водные объекты ежегодно составляет в пределах 170 тыс. тонн [30].

Геологическая характеристика. Михайловское месторождение приурочено к брахиантиклинальной складке широтного простирания, сложенной отложениями девона, карбона и Перми, протяженностью 7 км, шириной 3 км. Складка по пермским слоям имеет пологое, симметричное утроение с углами падения около 2°.

Промышленная нефтеносность Михайловского месторождения связана с песчаниками угленосной свиты нижнего карбона и терригенной толщей девона. В разрезе угленосной свиты, подобно соседнему Мухановскому месторождению, выделяются три пласта песчаников: І — мощностью 76 м, II — 12-20 м, III — 18 м к IV —10-12 м. Пласты II, III и IV промышленно нефтеносны, в то время как I пласт содержит воду. При опробовании девонских песчаников также получены крупные фонтанные притоки нефти из I и IV пластов [33].

4.3 Оценка уровней воздействия объекта проектирования на компоненты окружающей среды

Основным объектом проектирования является установка глубокого гидрокрекинга вакуумного газойля мощностью 3 млн. т/год, поэтому оценка

влияния на окружающую среду будет вестись относительно именно этой установки.

Выбросы вредных веществ в атмосферу. В таблице 4.1 приведены данные о количестве выбросов загрязняющих веществ в атмосферу от источников комбинированной установки гидрокрекинга ННПЗ (мощность по сырью составляет 2000 тыс. т/год).

Таблица 4.1

	ПДК в ат нас	мосферном еленных ме	воздухе ст	Класс	Выбросы
Наименование вещества Углеводороды: предельные: C ₁ -C ₅ C ₆ -C ₁₀ C ₁₁ -C ₁₉ Аммиак NH ₃ Сероводород H ₂ S	макси- мально- разовая, мг/м ³	средне- суточная, мг/м ³	ОБУВ, _{мг/м} ³	опасности ГОСТ 12.1.007- 76*	проектный усредненный, т/год
Углеводороды: предельные: С1-С5	-	-	50	4	62,635
C ₆ -C ₁₀	-	-	30	4	18,94
C ₁₁ -C ₁₉	1,0	-	-	4	7,07
Аммиак NH ₃	0,2	0,04	-	4	0,016
Сероводород H ₂ S	0,008	-	-	2	0,76
Диоксид серы SO ₂	0,5	0,05	-	3	255,09
Оксид углерода СО	5,0	-	-	4	337,17
Оксид азота NO	0,4	0,06	-	3	117,77
Диоксид азота NO ₂	0,2	0,04	-	3	175,13
Бенз/а/пирен (3,4-бензпирен)	-	1,0	-	1	8,67x10 ⁻⁵

Перечень вредных веществ, выбрасываемых в атмосферу на установке гидрокрекинга ННПЗ [34]

В соответствии с мощностью проектируемой установки гидрокрекинга в 3000 тыс. т/год, произведен пересчет выбросов, который представлен в таблице 4.2 (продолжительность рабочего цикла принята такой же).

Характеристика подземных и поверхностных вод в районе расположения. Федеральным государственным бюджетным учреждением «Приволжское УГМС» (ФГБУ «Приволжское УГМС») на территории Самарской области проводятся стационарные наблюдения за качеством воды 12 наиболее крупных рек, в том числе реки Большой Кинель. По результатам наблюдений за 2018 год река Большой Кинель характеризовалась как «грязная» (класс качества 4А). Анализ состояния загрязненности донных отложений ХОП водотоков за 2018 год показал, что содержание ДДТ зафиксировано в количестве 0,656 мг/кг; ДДЭ – 0,154 мг/кг; альфа-ГХЦГ – 0,046 мг/кг. В связи с этим, для хозяйственнопитьевых целей используются только подземные воды [29].

Таблица 4.2

Вещество	ПДКр.з.,	ПДКм.р.,	Класс	Суммарный выброс вещества		
	M17M	MI7M	опасности	г/с	т/год	
Углеводороды: предельные: C ₁ -C ₅	-	-	4	3,152	93,953	
C ₆ -C ₁₀	-	-	4	0,953	28,410	
C ₁₁ -C ₁₉	-	1,0	4	0,356	10,605	
Аммиак NH ₃	0,04	0,2	4	0,001	0,024	
Сероводород H ₂ S	-	0,008	2	0,038	1,140	
Диоксид серы SO ₂	0,05	0,5	3	12,837	382,635	
Оксид углерода СО	-	5,0	4	16,967	505,755	
Оксид азота NO	0,06	0,4	3	5,926	176,655	
Диоксид азота NO ₂	0,04	0,2	3	8,813	262,695	
Бенз/а/пирен (3,4-бензпирен)	1,0	-	1	4×10 ⁻⁶	0,0001	

Перечень вредных веществ, выбрасываемых в атмосферу на проектируемой установке гидрокрекинга

В таблице 4.3 представлены перечень и характеристика загрязняющих веществ в сточных водах установки. Сбор и отведение сточных вод, образующихся на установке после реконструкции, предусмотрены в существующую промливневую канализацию (самотечную).

Дождевые сточные воды с отбортованных площадок, а также пожарный расход поступают в существующий коллектор промливневой канализации на установке.

Таблица 4.3

	1 1	I ,	1	
Вещество	ПДК в.,	ПДКв.р.,	Класс	Суммарный сброс,
	мг/дм ³	мг/дм ³	опасности	т/год
Гидросульфид аммония	3	0,5	2	97,823
Сероводород	0,003	-	4	40,116
Цианиды	0,035	0,05	2	56,456

Характеристика загрязняющих веществ в сточных водах

Промышленные и коммунальные отходы. Замена катализаторов в реакторах комбинированной установки должна осуществляться 1 раз в 3 года. Отработанные катализаторы направляются на специализированные предприятия для извлечения цветных металлов.

Отработанные инертные керамические шары, классифицируемые как керамические изделия, потерявшие потребительские свойства, направляются на захоронение на полигоне отходов.

Отработанные индустриальные масла, образуются при техническом обслуживании насосного оборудования. Отработанные масла затариваются в металлические бочки и направляются на установку сжигания отходов «Факел», где используются в качестве топлива.

Освещение территории и помещений планируется осуществлять люминистцентными, натриевыми и ртутными лампами для наружного освещения, эксплуатация которых приведет к периодическому образованию отходов в виде отработанных ламп, которые направляются на лицензированное предприятие по демеркуризации ртутьсодержащих отходов.

В процессе жизнедеятельности персонала установки ожидается образование бытовых отходов, классифицируемых как мусор от бытовых помещений организаций, несортированный – бумага, тряпье, стеклобой, пластмассы и т.д. Мусор бытовых помещений направляется на захоронение на полигоне отходов ОАО «Новокуйбышевский НПЗ».

Перечень и характеристика отходов установки гидрокрекинга представлены в таблице 4.4.

Таблица 4.4

Наименование отхода	Класс опасности отхода	Состав отхода, % масс.	Кол-во отхода за период
Отработанные	IV	$Al_2O_3 - 86,1$	387,62 кг
катализаторы		$SiO_{2} - 12,0$	
		$Na_2O - 0,2$	
		$TiO_2 - 0,2$	
		$Fe_2O_3 - 0, 1$	
		CaO - 0,6	
		MgO - 0.4	
		$K_2O - 0, 1$	
Масла индустриальные	III	Углеводороды - 97,95	12,78 кг
отработанные		Механические примеси - 1,02	
		Присадка - 1,03	

Характеристика отходов с установки

Продолжение таблицы 4.4

Наименование отхода	Класс	Состав отхода, % масс.	Кол-во отхода за
	опасности		период
	отхода		
	15.7	0: 75	0(02
Отработанные	IV	S1 - 75	96,93 кг
керамические изделия, потерявшие		Al ₂ O ₃ - 20	
потребительские свойства		K ₂ O ₃ - 5	
	т		4.70
Отраоотанные ртутные	1	Ртуть - 0,06; Латунь - 0,65;	4,/8 КГ
лампы		Вольфрам - 0,02; Сталь	
		никелированная - 0,07;	
		Медь - 0,30; Люминофор -	
		1,63; Стекло СЛ-11 -	
		90,84; Мастика - 2,98;	
		Алюминий - 2,84; Припой	
		оловянно-свинцовый -	
		0,29; Платинит - 0,01;	
		Гетинакс - 0,31	
Бытовые отходы	V	-	23,74 кг

4.4 Перечень мероприятий по снижению негативного воздействия объекта на окружающую среду

Мероприятия по предупреждению и уменьшению выбросов загрязняющих веществ в атмосферу.

Для защиты окружающей среды предусматриваются следующие мероприятия:

- технологический процесс проводится в герметичном оборудовании, поэтому неорганизованные выбросы за счет неплотности технологического оборудования сведены к минимуму;

- освобождение аппаратуры от газообразных продуктов при сбросе давления осуществляется в закрытую факельную систему через факельный сепаратор;

- сбросы от предохранительных клапанов осуществляются в закрытую факельную систему через факельную емкость;

- в атмосферу производится сброс от предохранительных клапанов воздуха, азота и водяного пара;

- дренирование аппаратов и оборудования, содержащих нефтепродукты, осуществляется в закрытую дренажную систему с дальнейшей откачкой собранного нефтепродукта по линии некондиции;

- для перекачки нефтепродуктов и токсичных продуктов применяются насосы с двойным торцевым уплотнением или герметичные;

- дымовые газы печей удаляются через дымовые трубы, высоты которых обеспечивают необходимую степень рассеивания в атмосфере в соответствии с санитарными нормами;

снижения выбросов загрязняющих веществ атмосферу для В предусмотрена система автоматического управления режимами горения печей, установлены автоматические анализаторы, В том числе осуществляющие непрерывный контроль содержания О₂ и СО в дымовых газах печей;

- для снижения содержания SO₂ в дымовых газах печей в качестве топлива используется очищенный углеводородный газ.

Для предотвращения аварий (аварийного выброса вредных веществ в атмосферу) на комбинированной установке предусматривается:

- максимальная автоматизация процесса и отключение аварийного оборудования при срабатывании блокировок;

- выбор расчетного давления аппаратов в соответствии с рекомендациями Лицензиара при давлении выше 100 кг/см²;

- разделение установки на технологические блоки и применение быстродействующих пневматических отсекателей и запорнорегулирующих клапанов для отключения этих блоков;

Охрана поверхностных и подземных вод от загрязнений. Для защиты почв от загрязнений нефтепродуктами предусматриваются следующие мероприятия:

- укладка монолитного цементобетонного покрытия на свободной от застройки территории установки;

- устройство температурных швов в монолитном покрытии во избежание возникновения трещин в нем в период эксплуатации;

- вертикальная планировка выполнена с условием, что все стоки направлены через дождеприемные колодцы в промливневую канализацию;

- устройство бетонного поребрика вокруг аппаратов или групп аппаратов, в которых обращаются нефтепродукты;

- прокладка сети подземной канализации с нормативными уклонами для обеспечения стока транспортируемых сред;

- уплотнение стыковых соединений чугунных трубопроводов;

- герметизация местных переходов трубопроводов через стенки колодцев;

- при аварийных разливах нефтепродуктов организуется их сбор и вывоз с территории установки.

ЗАКЛЮЧЕНИЕ

На большинстве зарубежных нефтеперерабатывающих заводов с глубокой переработкой нефти наличие процесса гидрокрекинга является важным условием. Помимо увеличения глубины переработки нефти гидрокрекинг процессов, считается одним ИЗ основных влияющих на гибкость технологической схемы предприятия и качество его товарной продукции. Данный процесс позволяет из любого сырья с высокими выходами получать широкий ассортимент качественных компонентов основных нефтепродуктов, в том числе востребованные низкосернистые средние дистилляты, которые могут без дальнейшей обработки использоваться для производства автомобильных и авиашионных топлив.

Не менее важной является роль процесса гидрокрекинга в подготовке вакуумного газойля для дальнейшей переработки на установке каталитического крекинга, поскольку в этом случае отпадает необходимость включения в технологическую схему отдельной установки гидроочистки тяжелого сырья.

В России процесс гидрокрекинга не имеет широкого распространения, поскольку требует довольно больших капитальных затрат на модернизацию существующих технологических схем. Тем не менее, ведутся разработки отечественных установок и особенно катализаторов процесса, которые уже могут конкурировать по эффективности с зарубежными аналогами.

Рассмотренные в данной работе тенденции развития общемировой и отечественной переработки позволяют все же заключить, что внедрение процесса гидрокрекинга в структуру современного российского НПЗ является эффективным решением как проблемы ухудшения качества перерабатываемого сырья, так и задач по обеспечению ужесточающихся требований к товарной продукции.

- 1. Заботин Л.И. Химия и технология вторичных процессов переработки нефти.-Учеб.пособ.–Самара: Самар. гос. техн. ун-т, 2014. 332 с.;
- 2. Власов В.Г. Гидроочистка, гидрообессеривание и гидрокрекинг нефтяного сырья.-Учебно-методическое пособие. Самара: Самар. гос. техн. ун-т, 2014. 139 с.;
- 3. Капустин В.М., Гуреев А.А. Технология переработки нефти. В 2 ч. Часть вторая. Деструктивные процессы. М.: КолосС, 2007. 334 с.;
- 4. Жоров Ю. М. Моделирование физико-химических процессов нефтепереработки и нефтехимии. М.: Химия, 1978. 354с.;
- 5. Дик. П. П. NiMo катализаторы гидрокрекинга вакуумного газойля, обеспечивающие высокий выход дизельной фракции. // Диссертация на соискание ученой степени кандидата химических наук. Новосибирск 2016 С. 21-22;
- 6. Суханов В.П. Переработка нефти: учебник для средних прф. техн. уч. заведений. Москва. Высшая школа 1979г.-335с.;
- Н.С. Белинская, Г.Ю. Силко, Е.В. Францина, Е.Н. Ивашкина, Э.Д. Иванчина. Разработка формализованной схемы превращений углеводородов и кинетической модели процесса гидродепарафинизации дизельных топлив. // Известия Томского политехнического университета. - 2013. Т. 322. № 3 - С. 131-132;
- 8. Сайкс П. Механизмы реакций в органической химии // пер. с англ. 3-е изд. М.: Химия, 1977. 319 с.;
- 9. Т. Э. Назаров, Л. В. Долматов. Развитие катализаторов гидрокрекинга. // Башкирский химический журнал. 2013.- Том 20. № 2 С. 120-123;
- 10. Д. И. Орочко, А. Д. Сулимов, Л. Н. Осипов. Гидрогенизационные процессы в нефтепереработке. Издательство «Химия», М., 1971 г. 151 с.;
- А. И. Абдуллин, И. Р. Сираев. Гидрокрекинг как процесс получения дизельного топлива. // Вестник технологического университета. - 2016.-Т.19, №10 – 41 с.;
- П.П. Дик, В.Ю. Перейма, О.В. Климов, Г.И. Корякина, С.В. Будуква, К.А. Леонова, Е.Ю. Герасимов, И.Г. Данилова, А.С. Носков. Гидрокрекинг вакуумного газойля на трехслойных пакетах, состоящих из нанесенных сульфидных NiMo и NiW катализаторов. // Катализ в промышленности. 2014.-№ 5.- С. 67-72;
- А. И. Фатхутдинов, Д. А. Ибрагимова, И. А. Иванова, З. Ф. Шарафиева, А. А. Мухаметзянова, А. В. Павлов. Катализаторы в процессах гидрокрекинга остаточного сырья.//Вестник технологического университета. - 2017.- Т.20, №7. – С.76.;
- 14. Интернет pecypc: https://www.kntgroup.ru;
- 15. Капустин В.М., Чернышева Е.А., Тимин Е.Н. Проблемы переработки тяжелого и остаточного сырья.//Oil&Gas Journal Russia. 2018.-№6.-С.70-77.;

- 16. Капустин В.М., Чернышева Е.А. Современная российская нефтепереработка: итоги и перспективы.//Ресурсно-инновационное развитие России: экономика и энергетика. 2019.-№1.-С. 49-56;
- 17. Мишуков Е.А., Линник Ю.Н. Сравнительный анализ глубины переработки нефти по индексу Нельсона в различных странах.//Вестник университета. 2019.-№11.-С. 77-81.;
- 18. Накамура Д. Обзор нефтеперерабатывающей промышленности мира в 2008.//Oil&Gas Journal Russia. 2009.-№1-2.–С. 38.;
- 19. Центральное диспетчерское управление топливно-энергетического комплекса. http://www.cdu.ru/tek_russia/articles;
- В.А. Пильщиков, Ал.А. Пимерзин, А.А. Пимерзин. Процессы нефтехимического синтеза в нефтепереработке: учебное пособие. – Самара: Самар. гос. техн. ун-т, 2017. – 332 с.;
- 21. Заботин, Л.И. Проектирование нефтеперерабатывающих заводов : учеб. пособие / Л. И. Заботин, А. А. Пимерзин, А. В. Можаев; Самар.гос.техн.ун-т, Химическая технология переработки нефти и газа.-Самара, 2018.- 129 с.;
- 22. Томина, Н.Н. Методы очистки нефтяных фракций : учеб. пособие / Н. Н. Томина, Н. М. Максимов, А. А. Пимерзин; Самар.гос.техн.ун-т.- Самара, 2014.- 292 с.;
- Н. Л. Солодова, А. И. Абдуллин, Е. А. Емельянычева. Алкилирование изопарафинов олефинами.//Вестник Казанского технологического университета. – 2013.-С. 253-258.;
- 24. Патент RU 2693464 С1. Катализатор изомеризации н-бутана в изобутан, способ его приготовления и процесс получения изобутана с использованием данного катализатора.//Ечевский Г.В., Коденев Е.Г., Аксенов Д.Г., Токтарев А.В., Овчинникова Е.В., Чумаченко В.А. – 2018.;
- 25. Интернет pecypc: http://www.olkat.ru;
- 26. Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ. Ч. II. СПб.: АНО НПО «Профессионал». 2005, 2007. 1142 с.;
- А.В. Лавренов, Т.Р. Карпова, Е.А. Булучевский, Е.Н. Богданец. Гетерогенная олигомеризация легких алкенов: 80 лет в нефтепереработке. Обзор.//Катализ в промышленности. – 2016.-№ 4.-С.16.;
- 28. Antunes B.M., Rodrigues A.E, Lina Z., Portugal I., Silva C.M. Fuel Process. Technol. 2015.-Vol.138.-P. 86.;
- 29. Доклад об экологической ситуации в Самарской области за 2018 год. Выпуск 29. - Самара, 2019. - 222 с.;
- 30. Инвестиционный паспорт Кинель-Черкасского района. Самара: Администрация Кинель-Черкасского района, 2018. – 76 с.;
- Г.С. Розенберг, С.В. Саксонов. Редкие и охраняемые гидробиоценозы. Самара: СамНЦ РАН, 2007. – 200 с.;

- Георгиевский В.Ю. Научно-прикладной справочник: Основные гидрологические характеристики рек бассейна Нижней Волги. Самара, 2015. 129 с.;
- 33. Электронный pecypc http://www.nftn.ru;
- 34. Базовый проект установки гидрокрекинга вакуумного газойля ННПЗ.

ПРИЛОЖЕНИЯ

Приложение 1

Таблица П1.1

Компонентный состав ГСС на входе в реактор 1 при 395 °С и 15 МПа

Наименование продукта	Расход, кг/ч	H ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	н-С ₄ Н ₁₀	изо-С ₄ Н ₁₀	Сырье
Сырье	352469	-	-	-	-	-	-	352469
СВСГ	6808	6324	107	95	98	92	92	-
ЦВСГ	62721	26864	8409	6570	11563	4234	5081	-

Таблица П1.2

Компонентный состав ГПС на выходе из реактора 1 при 405 °С и 15 МПа

Наименование	Расход,	Ц	СЦ	С.Н	CIL	H-	ИЗО-	ЦS	28 70 °C	70-180	180-240	240-360	>360
продукта	кг/ч	112	C114	C2116	C3118	C_4H_{10}	C_4H_{10}	1125	20-70 C	°C	°C	°C	°C
Сероводород	3198	-	-	-	-	-	-	3198	-	-	-	-	-
Газ	1399	1	112	111	331	299	545	-	-	-	-	-	-
28-70 °С	5024	-	-	-	-	-	-	-	5024	-	-	-	-
70-180 °C	6530	-	-	-	-	-	-	-	-	6530	-	-	-
180-240 °C	16376	-	-	-	-	-	-	-	-	-	16376	-	-
240-360 °C	37675	-	-	-	-	-	-	-	-	-	-	37675	-
>360 °C	289076	-	-	-	-	-	-	_	_	_	-	-	289076
ЦВСГ	62721	26864	8409	6570	11563	4234	5081	-	-	_	_	-	-

Таблица П1.3

Компонентный состав ГСС на входе в реактор 2 при 420 °С и 15 МПа

Наименование продукта	Расход, кг/ч	H ₂	CH ₄	C_2H_6	C_3H_8	н-С ₄ Н ₁₀	изо-С ₄ Н ₁₀	Сырье
Сырье	289076	-	-	-	-	-	-	289076
СВСГ	9023	8382	141	126	130	122	122	-
ЦВСГ	73975	31684	9918	7749	13638	4994	5992	_

Таблица П1.4

Компонентный состав ГПС на выходе из реактора 2 при 435 °C и 15 МПа

Наименование	Расход	H2	CH4	C2H6	C3H8	H-	Изо-С4Н10	H2S	28-70	70-180 °C	180-240 °C	240-360	>360 °C
продукта	, кг/ч					C4H10			°C			°C	
Газ	10371	8	829	822	2455	2219	4038	-	-	-	-	-	-
Сероводород	355	-	-	-	-	-	-	355	-	-	-	-	-
28-70 °С	11722	-	-	-	-	-	-	-	11722	-	-	-	-
70-180 °С	15236	-	-	-	-	-	-	-	-	15236	-	-	-
180-240 °С	38211	-	-	-	-	-	-	-	-	-	38211	-	-
240-360 °C	87908	-	-	-	-	-	-	-	-	-	-	87908	-
>360 °C	134297	-	-	-	-	-	-	-	-	-	-	-	134297
ЦВСГ	73975	31684	9918	7749	13638	4994	5992	-	-	-	-	-	-

Приложение 2

Таблица П2.1

Определение состава паровой и жидкой фаз ГСС на входе в реактор 1 при 395 °C, 15 МПа и е = 0,955

Наименование компонента	Расход, кг/ч	M_i , кг/кмоль	<i>N</i> _i , кмоль/ч	a_i	K _i	X_i	Y_i
Водород	33188	2	16594	0,8872	5,00	0,1840	0,9200
Метан	8516	16	532	0,0285	2,00	0,0146	0,0291
Этан	6665	30	222	0,0119	1,65	0,0073	0,0121
Пропан	11661	44	265	0,0142	1,45	0,0099	0,0144
Изобутан	5173	58	89	0,0048	1,35	0,0036	0,0048
Н-бутан	4326	58	75	0,0040	1,30	0,0031	0,0040
Сырье	352469	380	928	0,0496	0,02	0,7775	0,0156
Итого	421998		18705			1,0000	1,0000

Таблица П2.2

Определение состава паровой и жидкой фаз ГПС на выходе из реактора 1 при 405 °C, 15,0 МПа и е = 0,913

Наименование компонента	Расход, кг/ч	<i>М</i> _i , кг/кмоль	<i>Ni</i> , кмоль/ч	a _i	K _i	X _i	Y _i
Водород	26865	2	13432	0,8410	4,90	0,1843	0,9031
Метан	8521	16	533	0,0333	2,15	0,0163	0,0350
Этан	6681	30	223	0,0139	1,75	0,0083	0,0145
Пропан	11894	44	270	0,0169	1,55	0,0113	0,0175
Изобутан	5625	58	97	0,0061	1,35	0,0046	0,0062
Н-бутан	4533	58	78	0,0049	1,25	0,0040	0,0050
Сероводород	3198	34	94	0,0059	1,6	0,0038	0,0061
28-70 °C	5024	78	64	0,0040	0,03	0,0354	0,0011
70-180 °С	6530	115	57	0,0036	0,02	0,0340	0,0007
180-240 °C	16376	155	105	0,0066	0,015	0,0659	0,0010
240-360 °C	37675	215	175	0,0110	0,01	0,1146	0,0011
>360 °C	289076	343	844	0,0528	0,017	0,5177	0,0088
Итого	421998		15973			1,0000	1,0000

Таблица П2.3

Определение состава паровой и жидкой фаз ГСС на входе в реактор 2 при 420 °C, 15 МПа и е = 0,964

Наименование компонента	Расход, кг/ч	M_i , кг/кмоль	<i>N_i</i> , кмоль/ч	a_i	K _i	X_i	Y_i
Водород	40066	2	20033	0,8994	4,5	0,2057	0,9255
Метан	10060	16	629	0,0282	2,25	0,0128	0,0288
Этан	7875	30	263	0,0118	1,95	0,0062	0,0120
Пропан	13768	44	313	0,0140	1,75	0,0082	0,0143
Изобутан	5116	58	88	0,0040	1,45	0,0028	0,0040
Н-бутан	6114	58	105	0,0047	1,5	0,0032	0,0048
Сырье	289076	343	844	0,0379	0,014	0,7613	0,0107
Итого	372074		22274			1,0000	1,0000

Наименование компонента	Расход, кг/ч	M_i , кг/кмоль	<i>N_i</i> , кмоль/ч	a_i	K_i	X_i	Y_i
Водород	31692	2	15846	0,8426	4,3	0,2077	0,8930
Метан	10748	16	672	0,0357	2,4	0,0156	0,0373
Этан	8571	30	286	0,0152	2,15	0,0074	0,0158
Пропан	16093	44	366	0,0194	1,95	0,0103	0,0202
Изобутан	10030	58	173	0,0092	1,55	0,0061	0,0094
Н-бутан	7213	58	124	0,0066	1,45	0,0047	0,0068
Сероводород	355	34	10	0,0006	1,8	0,0003	0,0006
28-70 °С	11722	78	150	0,0080	0,045	0,0693	0,0031
70-180 °C	15236	115	133	0,0071	0,03	0,0696	0,0021
180-240 °C	38211	155	246	0,0131	0,027	0,1327	0,0036
240-360 °C	87908	215	408	0,0217	0,025	0,2246	0,0056
>360 °C	134297	343	392	0,0208	0,01	0,2517	0,0025
Итого	372074		18806			1,0000	1,0000

Определение состава паровой и жидкой фаз ГПС на выходе из реактора 2 при 435 °C, 15,0 МПа и е = 0,926

Приложение 3

Таблица ПЗ.1

Материальный баланс однократного испарения ГСС при 395 °C, 15 МПа и е = 0,955

	Приход				Расход								
Компонент	Газопарожидкостная смесь					Газопар	овая фаза		Жидкая фаза				
	кг/ч	ā	кмоль/ч	a _i	кг/ч	Ϋ́	кмоль/ч	Y _i	кг/ч	Ä	кмоль/ч	X_i	
Водород	33188	0,0786	16594	0,8872	32880	0,1892	16440	0,9200	307	0,0012	154	0,1840	
Метан	8516	0,0202	532	0,0285	8322	0,0479	520	0,0291	195	0,0008	12	0,0146	
Этан	6665	0,0158	222	0,0119	6482	0,0373	216	0,0121	184	0,0007	6	0,0073	
Пропан	11661	0,0276	265	0,0142	11297	0,0650	257	0,0144	364	0,0015	8	0,0099	
Изо Бутан	5173	0,0123	89	0,0048	5000	0,0288	86	0,0048	173	0,0007	3	0,0036	
Н-бутан	4326	0,0103	75	0,0040	4176	0,0240	72	0,0040	150	0,0006	3	0,0031	
Сырьё	352469	0,8352	928	0,0496	105595	0,6077	278	0,0156	246874	0,9945	650	0,7775	
Итого	421998	1,0000	18705	1,0000	173751	1,0000	17869	1,0000	248247	1,0000	836	1,0000	

Таблица ПЗ.2

Материальный баланс однократного испарения ГСС при 420 °С, 15 МПа и е = 0,964

	Приход				Расход								
Компонент	Газопарожидкостная смесь					Газопар	овая фаза		Жидкая фаза				
	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ Ч	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ Ч	
Водород	40066	0,1077	20033	0,8994	39733	0,2481	19867	0,9255	332	0,0016	166	0,2057	
Метан	10060	0,0270	629	0,0282	9894	0,0618	618	0,0288	166	0,0008	10	0,0128	
Этан	7875	0,0212	263	0,0118	7726	0,0482	258	0,0120	149	0,0007	5	0,0062	
Пропан	13768	0,0370	313	0,0140	13478	0,0842	306	0,0143	290	0,0014	7	0,0082	
Изобутан	5116	0,0137	88	0,0040	4986	0,0311	86	0,0040	129	0,0006	2	0,0028	
Н-бутан	6114	0,0164	105	0,0047	5965	0,0372	103	0,0048	150	0,0007	3	0,0032	
Сырье	289076	0,7769	844	0,0379	78378	0,4894	229	0,0107	210698	0,9943	615	0,7613	
Итого	372074	1,0000	22274	1,0000	160161	1,0000	21466	1,0000	211914	1,0000	808	1,0000	

Таблица ПЗ.3

Материальный баланс однократного испарения ГПС при 405°С, 15 МПа и е = 0,913

	Приход				Расход								
Компонент	Газопарожидкостная смесь					Газопар	овая фаза		Жидкая фаза				
	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ч	кг/ч	ā	Xi	
Водород	26865	0,0637	13432	0,8410	26355	0,2258	13178	0,9031	509	0,0017	255	0,1843	
Метан	8521	0,0202	533	0,0333	8162	0,0699	510	0,0350	360	0,0012	22	0,0163	
Этан	6681	0,0158	223	0,0139	6338	0,0543	211	0,0145	343	0,0011	11	0,0083	
Пропан	11894	0,0282	270	0,0169	11209	0,0960	255	0,0175	685	0,0022	16	0,0113	
Изобутан	5625	0,0133	97	0,0061	5257	0,0450	91	0,0062	369	0,0012	6	0,0046	
Н-бутан	4533	0,0107	78	0,0049	4214	0,0361	73	0,0050	319	0,0010	6	0,0040	
Сероводород	3198	0,0076	94	0,0059	3019	0,0259	89	0,0061	179	0,0006	5	0,0038	
28-70 °С	5024	0,0119	64	0,0040	1209	0,0104	15	0,0011	3815	0,0125	49	0,0354	
70-180 °С	6530	0,0155	57	0,0036	1139	0,0098	10	0,0007	5391	0,0177	47	0,0340	
180-240 °C	16376	0,0388	105	0,0066	2239	0,0192	14	0,0010	14137	0,0463	91	0,0659	
240-360 °C	37675	0,0893	175	0,0110	3598	0,0308	17	0,0011	34077	0,1116	158	0,1146	
>360 °C	289076	0,6850	844	0,0528	43994	0,3769	128	0,0088	245082	0,8028	715	0,5177	
Итого	421998	1,0000	15973	1,0000	116733	1,0000	14591	1,0000	305265	1,0000	1382	1,0000	
Материальный баланс однократного испарения ГПС при 435 °C, 15 МПа и е = 0,926

	Приход							Pac	ход			
Компонент	Газ	опарожид	костная см	есь		Газопар	овая фаза		Жидкая фаза			
	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ Ч	кг/ч	ā	кмоль/ч	кг/ч	ā	кмоль/ Ч
Водород	31692	0,0852	15846	0,8426	31117	0,2285	15559	0,8930	574	0,0024	287	0,2077
Метан	10748	0,0289	672	0,0357	10404	0,0764	650	0,0373	344	0,0015	22	0,0156
Этан	8571	0,0230	286	0,0152	8266	0,0607	276	0,0158	305	0,0013	10	0,0074
Пропан	16093	0,0433	366	0,0194	15463	0,1136	351	0,0202	629	0,0027	14	0,0103
Изобутан	10030	0,0270	173	0,0092	9541	0,0701	165	0,0094	489	0,0021	8	0,0061
Н-бутан	7213	0,0194	124	0,0066	6839	0,0502	118	0,0068	374	0,0016	6	0,0047
Сероводород	355	0,0010	10	0,0006	340	0,0025	10	0,0006	15	0,0001	0	0,0003
28-70 °С	11722	0,0315	150	0,0080	4241	0,0311	54	0,0031	7481	0,0317	96	0,0693
70-180 °С	15236	0,0409	133	0,0071	4179	0,0307	36	0,0021	11057	0,0469	96	0,0696
180-240 °C	38211	0,1027	246	0,0131	9698	0,0712	62	0,0036	28512	0,1209	184	0,1327
240-360 °С	87908	0,2363	408	0,0217	21055	0,1546	98	0,0056	66853	0,2834	311	0,2246
>360 °C	134297	0,3609	392	0,0208	15026	0,1103	44	0,0025	119271	0,5056	348	0,2517
Итого	372074	1,0000	18806	1,0000	136169	1,0000	17423	1,0000	235905	1,0000	1383	1,0000

108

Приложение 4

Таблица П4.1

Компонент	M_i ,	y_i	$M_i \cdot y_i$	$ar{Y}_i$
	кг/кмоль			
Водород	2	0,9952	1,9904	0,9289
Метан	16	0,0021	0,0336	0,0157
Этан	30	0,001	0,0300	0,0140
Пропан	44	0,0007	0,0308	0,0144
Изобутан	58	0,0005	0,0290	0,0135
Н-бутан	58	0,0005	0,0290	0,0135
Итого	72		42,0120	1,0000

Расчет молярной массы УВГ

Таблица П4.2

Расчет парциальных давлений компонентов ГСС на входе в реактор

Компоненты	кг/ч	<i>Мі</i> , кг/кмоль	<i>N_i</i> , кмоль/час	Y_i	<i>P</i> _{<i>i</i>} , МПа
Сырье	352469	380	928	0,0496	0,74
СВСГ	6808	2,1	3177	0,1699	2,55
ЦВСГ	62721	4,3	14600	0,7805	11,71
Итого	421998		18705	1,0000	15,00

Таблица П4.3

Расчет парциальных давлений компонентов ГПС на выходе из реактора

Компоненты	кг/ч	<i>Мi</i> , кг/кмоль	<i>N</i> _{<i>i</i>} , кмоль/час	Y_i	P_i , МПа
Газ	3198	42,01	76	0,0048	0,07
Сероводород	1399	34,00	41	0,0026	0,04
28-70 °C	5024	78,01	64	0,0040	0,06
70-180 °C	6530	114,90	57	0,0036	0,05
180-240 °C	16376	155,35	105	0,0066	0,10
240-360 °C	37675	215,25	175	0,0110	0,16
>360 °C	289076	342,57	844	0,0529	0,79
ЦВСГ	62721	4,30	14600	0,9146	13,72
Итого	421998		15963	1,0000	15,00

Таблица П4.4

Расчет парциальных давлений компонентов ГСС на входе в реактор 2

Компоненты	кг/ч	<i>М</i> _{<i>i</i>} , кг/кмоль	<i>N_i</i> , кмоль/час	Y_i	<i>Р</i> _{<i>i</i>} , МПа
ΓΟ ΒΓ	289076	342,57	844	0,0379	0,57
СВСГ	9023	2,1	4211	0,1891	2,84
ЦВСГ	73975	4,3	17219	0,7731	11,60
Итого	372074		22274	1,0000	15,00

Компоненты	KL/H	<i>Mi</i> ,	N_i ,	N_i , КМОЛЬ/Час Y_i 2470,0131100,00061500,00801330,00712460,01314080.0217	
Romionentin	KI / 4	кг/кмоль	кмоль/час	I i	МΠа
Газ	10371	42,01	247	0,0131	0,20
Сероводород	355	34,00	10	0,0006	0,01
28-70 °С	11722	78,01	150	0,0080	0,12
70-180 °С	15236	114,90	133	0,0071	0,11
180-240 °C	38211	155,35	246	0,0131	0,20
240-360 °C	87908	215,25	408	0,0217	0,33
>360 °C	134297	342,57	392	0,0208	0,31
ЦВСГ	73975	4,30	17219	0,9156	13,73
Итого	372074		18806	1,0000	15,00

Расчет парциальных давлений компонентов ГПС на выходе из реактора 2

Приложение 5

Таблица П5.1

Нефтепродукт	$ ho_4^{20}$	$ ho_{15}^{15}$	α	t _{ср об} , °C	t _{cp oб} , K	Δt	t _{ср мол} , K	K	М	Т _{пс∙кр} ., °С	Т _{пс-кр} ., К	Р _{пс-кр} ., МПа
Сырье	0,899	0,903	0,000647	421,2	694	11,2	683	11,9	380	613	886	1,1
28-70 °С	0,668	0,673	0,0009	54,6	328	3,33	324	12,4	78,01	215	488	3,37
70-180 °C	0,74	0,744	0,000844	132,2	405	4	401	12,1	114,90	313	586	2,75
180-240 °C	0,79	0,794	0,000778	196	469	2,7	466	11,9	155,35	387	660	2,15
240-360 °C	0,83	0,834	0,000725	279,6	553	8	545	11,9	215,25	465	738	1,7
>360 °C	0,88	0,883	0,00066	411,3	684	9	675	12,1	342,57	605	878	1,2

Определение псевдокритических параметров нефтепродуктов в реакторе 1

Таблица П5.2

Определение энтальпии СВСГ при 15 МПа

			Температура, °С											
Компоне	\bar{V}	3	00	350		3	395		405		420		435	
нты	1	H_i ,	$H_i \cdot \bar{Y},$											
		кДж/кг	кДж/кг											
Водород	0,9289	8404,1	7806,4	9146,1	8495,6	9815,0	9116,9	9963,7	9255,1	10187,0	9462,5	10410,4	9670,0	
Метан	0,0157	1175,0	18,4	1350,0	21,2	1507,0	23,6	1549,0	24,3	1600,0	25,1	1654,0	25,9	
Этан	0,0140	984,3	13,8	1151,5	16,1	1360,0	19,0	1382,0	19,3	1437,0	20,1	1485,0	20,8	
Пропан	0,0144	932,0	13,4	1109,7	16,0	1266,0	18,2	1298,0	18,7	1340,0	19,3	1394,0	20,0	
Изобутан	0,0135	882,0	11,9	1078,5	14,6	1005,0	13,6	1030,0	13,9	1087,0	14,7	1140,0	15,4	
Н-бутан	0,0135	878,8	11,9	1047,0	14,2	1226,0	16,6	1256,0	17,0	1302,0	17,6	1360,0	18,4	
Итого	1,0000		7875,8		8577,6		9208,0		9348,3		9559,3		9770,6	

Определение энтальпии ЦВСГ реакции при 15 МПа

							Темпера	тура, °C							
Komponentri	$ar{V}$	300		3	350		395		405		420		435		
Компоненты	1	H_i ,	$H_i \cdot \bar{Y},$	H_i ,	$H_i \cdot \bar{Y},$	H_i ,	$H_i \cdot \bar{Y},$	H_i ,	$H_i \cdot \bar{Y},$	H_i ,	$H_i \cdot \bar{Y},$	H_i ,	$H_i \cdot \bar{Y},$		
		кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг	кДж/кг		
Водород	0,4283	8404,1	3599,5	9146,1	3917,3	9815,0	4203,8	9963,7	4267,5	10187,0	4363,2	10410,4	4458,8		
Метан	0,1341	1175,0	157,5	1350,0	181,0	1507,0	202,1	1549,0	207,7	1600,0	214,5	1654,0	221,8		
Этан	0,1047	984,3	103,1	1151,5	120,6	1360,0	142,5	1382,0	144,8	1437,0	150,5	1485,0	155,6		
Пропан	0,1844	932,0	171,8	1109,7	204,6	1266,0	233,4	1298,0	239,3	1340,0	247,0	1394,0	257,0		
Изобутан	0,0810	882,0	71,4	1078,5	87,4	1005,0	81,4	1030,0	83,4	1087,0	88,1	1140,0	92,3		
Н-бутан	0,0675	878,8	59,3	1047,0	70,7	1226,0	82,8	1256,0	84,8	1302,0	87,9	1360,0	91,8		
Итого	1,0000		4162,8		4581,6		4945,9		5027,5		5151,2		5277,3		

Таблица П5.4

Определение энтальпии УВГ реакции при 15 МПа

							Темпера	атура, °С					
	_	300		350		395		405		420		435	
Компоненты	Ŷ	<i>Н</i> _i , кДж/к г	<i>Н_і:Ӯ,</i> кДж/кг	<i>Н</i> _i , кДж/к г	<i>Н_і·Ӯ,</i> кДж/кг	<i>Н</i> _i , кДж/к г	<i>Н_і•Ӯ,</i> кДж/кг	<i>H_i</i> , кДж/к г	<i>Н_і•Ӯ,</i> кДж/кг	<i>Н</i> _i , кДж/кг	<i>Н_і·Ӯ,</i> кДж/кг	<i>Н</i> _i , кДж/кг	<i>Н_і·Ӯ,</i> кДж/кг
Водород	0,0008	8404,1	6,4	9146,1	7,0	9815,0	7,5	9963,7	7,6	10187, 0	7,8	10410, 4	7,9
Метан	0,0800	1175,0	94,0	1350,0	108,0	1507,0	120,5	1549,0	123,9	1600,0	128,0	1654,0	132,3
Этан	0,0793	984,3	78,0	1151,5	91,3	1360,0	107,8	1382,0	109,5	1437,0	113,9	1485,0	117,7
Пропан	0,2367	932,0	220,6	1109,7	262,7	1266,0	299,7	1298,0	307,2	1340,0	317,2	1394,0	330,0
Изобутан	0,3893	882,0	343,4	1078,5	419,9	1005,0	391,3	1030,0	401,0	1087,0	423,2	1140,0	443,8
Н-бутан	0,2140	878,8	188,1	1047,0	224,0	1226,0	262,3	1256,0	268,8	1302,0	278,6	1360,0	291,0
Итого	1,0000		930,4		1112,8		1189,1		1218,0		1268,6		1322,7

Показатели			Значения	и показателе	й	
t, °C	300	350	395	405	420	435
<i>Т</i> , К	573	623	668	678	693	708
$T_{\rm np}$	0,65	0,70	0,75	0,77	0,78	0,80
P _{np}	0,676	0,676	0,676	0,676	0,676	0,676
$\Delta H \cdot M / T_{\rm kp}$	-7,11	-6,02	-5,23	-5,08	-4,86	-4,66
ΔH , кДж/кг	-16,59	-14,03	-12,20	-11,85	-11,34	-10,86
<i>H</i> ₀ , кДж/кг	929,5	1059,2	1183,7	1212,4	1256,0	1300,5
<i>H</i> _p , кДж/кг	912,9	1045,2	1171,5	1200,5	1244,7	1289,7
<i>h</i> _p , кДж/кг	693,47	840,28	980,05	1012,09	1060,82	1110,35

Определение энтальпии сырья при давлении 0,74 МПа

Таблица П5.6

Определение энтальпии ЛБ при давлении 0,06 МПа

Показатели			Значения	показателей	Í	
t, °C	300	350	395	405	420	435
<i>Т</i> , К	573	623	668	678	693	708
$T_{\rm np}$	1,17	1,28	1,37	1,39	1,42	1,45
P _{np}	0,018	0,018	0,018	0,018	0,018	0,018
$\Delta H \cdot M / T_{\rm kp}$	-0,06	-0,05	-0,04	-0,04	-0,04	-0,04
ΔH , кДж/кг	-0,36	-0,30	-0,26	-0,26	-0,25	-0,23
<i>H</i> ₀ , кДж/кг	1021,5	1160,9	1294,6	1325,4	1372,3	1420,1
<i>Н</i> _р , кДж/кг	1021,2	1160,5	1294,3	1325,1	1372,0	1419,8
$h_{ m p}$, кДж/кг	803,38	973,47	1135,38	1172,50	1228,96	1286,34

Таблица П5.7

Определение энтальпии ТБ при давлении 0,05 МПа

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435,0		
Т, К	573	623	668	678	693	708,0		
$T_{\rm np}$	0,98	1,06	1,14	1,16	1,18	1,21		
P _{np}	0,019	0,019	0,019	0,019	0,019	0,019		
$\Delta H \cdot M / T_{ m kp}$	-0,09	-0,08	-0,07	-0,06	-0,06	-0,06		
ΔH , кДж/кг	-0,46	-0,39	-0,34	-0,33	-0,31	-0,3		
<i>H</i> ₀ , кДж/кг	992,9	1129,2	1260,0	1290,1	1336,0	1382,8		
<i>Н</i> _р , кДж/кг	992,4	1128,8	1259,7	1289,8	1335,7	1382,5		
<i>h</i> _p , кДж/кг	763,69	925,37	1079,29	1114,58	1168,24	1222,79		

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435		
Т, К	573	623	668	678	693	708		
$T_{\rm np}$	0,87	0,94	1,01	1,03	1,05	1,07		
Рпр	0,046	0,046	0,046	0,046	0,046	0,046		
$\Delta H \cdot M / T_{\rm kp}$	-0,27	-0,23	-0,20	-0,19	-0,18	-0,18		
ΔH , кДж/кг	-1,14	-0,97	-0,84	-0,82	-0,78	-0,75		
H_0 , кДж/кг	973,0	1107,2	1236,1	1265,7	1311,0	1357,0		
<i>Н</i> _р , кДж/кг	971,8	1106,3	1235,2	1264,9	1310,2	1356,3		
<i>h</i> _p , кДж/кг	739,42	895,96	1044,98	1079,15	1131,10	1183,92		

Определение энтальпии РТ при давлении 0,1 МПа

Таблица П5.9

Определение энтальпии ДТ при давлении 0,16 МПа

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435		
Т, К	573	623	668	678	693	708,0		
$T_{\rm np}$	0,78	0,84	0,91	0,92	0,94	0,96		
P _{np}	0,097	0,097	0,097	0,097	0,097	0,097		
$\Delta H \cdot M / T_{\rm kp}$	-0,71	-0,60	-0,52	-0,50	-0,48	-0,5		
ΔH , кДж/кг	-2,42	-2,05	-1,78	-1,73	-1,66	-1,6		
<i>Н</i> 0, кДж/кг	957,1	1089,7	1216,9	1246,2	1290,9	1336,4		
<i>Н</i> _р , кДж/кг	954,7	1087,6	1215,1	1244,5	1289,2	1334,8		
$h_{ m p}$, кДж/кг	721,58	874,35	1019,77	1053,11	1103,82	1155,36		

Таблица П5.10

Определение энтальпии ГО ВГ при давлении 0,79МПа

Показатели	Значения показателей						
t, °C	300	350	395	405	420	435	
<i>Т</i> , К	573	623	668	678	693	708	
$T_{\rm mp}$	0,65	0,71	0,76	0,77	0,79	0,81	
P _{np}	0,661	0,661	0,661	0,661	0,661	0,661	
$\Delta H \cdot M / T_{\rm kp}$	-6,83	-5,77	-5,02	-4,88	-4,67	-4,47	
ΔH , кДж/кг	-17,50	-14,80	-12,87	-12,50	-11,96	-11,46	
Но, кДж/кг	937,2	1067,7	1193,0	1221,8	1265,8	1310,5	
<i>Н</i> _р , кДж/кг	919,7	1052,9	1180,1	1209,3	1253,8	1299,1	
<i>h</i> _p , кДж/кг	701,00	849,40	990,68	1023,07	1072,33	1122,40	

Определение энтальпии сырья (I O BI) при	і давлении 0,5 / МПа
---	----------------------

Показатели			Значения	показателей		
t, °C	300	350	395	405	420	435
<i>Т</i> , К	573	623	668	678	693	708
$T_{\rm np}$	0,65	0,70	0,75	0,77	0,78	0,80
Рпр	0,517	0,517	0,517	0,517	0,517	0,517
$\Delta H \cdot M / T_{\rm kp}$	-5,43	-4,60	-4,00	-3,88	-3,72	-3,56
ΔH , кДж/кг	-12,67	-10,72	-9,32	-9,05	-8,66	-8,30
<i>H</i> ₀ , кДж/кг	929,5	1059,2	1183,7	1212,4	1256,0	1300,5
<i>Н</i> _р , кДж/кг	916,9	1048,5	1174,4	1203,3	1247,4	1292,2
<i>h</i> _p , кДж/кг	701,00	849,40	990,68	1023,07	1072,33	1122,40

Таблица П5.12

Определение энтальпии ЛБ при давлении 0,12 МПа

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435		
<i>Т</i> , К	573	623	668	678	693	708		
$T_{\rm mp}$	1,17	1,28	1,37	1,39	1,42	1,45		
P _{np}	0,036	0,036	0,036	0,036	0,036	0,036		
$\Delta H \cdot M / T_{\rm kp}$	-0,11	-0,10	-0,08	-0,08	-0,08	-0,07		
ΔH , кДж/кг	-0,71	-0,60	-0,52	-0,51	-0,49	-0,47		
Но, кДж/кг	1021,5	1160,9	1294,6	1325,4	1372,3	1420,1		
<i>Н</i> _р , кДж/кг	1020,8	1160,3	1294,1	1324,9	1371,8	1419,6		
<i>h</i> _p , кДж/кг	803,38	973,47	1135,38	1172,50	1228,96	1286,34		

Таблица П5.13

Определение энтальпии ТБ при давлении 0,11 МПа

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435,0		
<i>Т</i> , К	573	623	668	678	693	708,0		
$T_{\rm np}$	0,98	1,06	1,14	1,16	1,18	1,21		
Рпр	0,038	0,038	0,038	0,038	0,038	0,038		
$\Delta H \cdot M / T_{\rm kp}$	-0,18	-0,15	-0,13	-0,13	-0,12	-0,12		
ΔH , кДж/кг	-0,90	-0,76	-0,66	-0,64	-0,62	-0,6		
<i>H</i> ₀ , кДж/кг	992,9	1129,2	1260,0	1290,1	1336,0	1382,8		
<i>Н</i> _р , кДж/кг	991,9	1128,4	1259,4	1289,5	1335,4	1382,2		
$h_{ m p}$, кДж/кг	763,69	925,37	1079,29	1114,58	1168,24	1222,79		

116

Показатели	Значения показателей							
t, °C	300	350	395	405	420	435		
Т, К	573	623	668	678	693	708		
$T_{\rm np}$	0,87	0,94	1,01	1,03	1,05	1,07		
Рпр	0,091	0,091	0,091	0,091	0,091	0,091		
$\Delta H \cdot M / T_{\rm kp}$	-0,53	-0,45	-0,39	-0,38	-0,36	-0,35		
ΔH , кДж/кг	-2,26	-1,91	-1,67	-1,62	-1,55	-1,48		
<i>H</i> ₀ , кДж/кг	973,0	1107,2	1236,1	1265,7	1311,0	1357,0		
<i>Н</i> _р , кДж/кг	970,7	1105,3	1234,4	1264,1	1309,4	1355,5		
<i>h</i> _p , кДж/кг	739,42	895,96	1044,98	1079,15	1131,10	1183,92		

Определение энтальпии РТ при давлении 0,2 МПа

Таблица П5.15

Определение энтальпии ДТ при давлении 0,33 МПа

Показатели	Значения показателей						
t, °C	300	350	395	405	420	435	
Т, К	573	623	668	678	693	708,0	
	0,78	0,84	0,91	0,92	0,94	0,96	
Рпр	0,192	0,192	0,192	0,192	0,192	0,192	
$\Delta H \cdot M / T_{\rm kp}$	-1,40	-1,18	-1,03	-1,00	-0,96	-0,9	
ΔH , кДж/кг	-4,80	-4,06	-3,53	-3,43	-3,28	-3,1	
<i>H</i> ₀ , кДж/кг	957,1	1089,7	1216,9	1246,2	1290,9	1336,4	
<i>Н</i> _р , кДж/кг	952,3	1085,6	1213,4	1242,8	1287,6	1333,2	
<i>h</i> _p , кДж/кг	721,58	874,35	1019,77	1053,11	1103,82	1155,36	

Приложение 6 Таблица Пб.1

Расчет псевдокритических	параметров	газопаровой	фазы ГСС в	в реактор	e 1
--------------------------	------------	-------------	------------	-----------	-----

Компоненти	<i>Y</i> _i	Критич	$T \rightarrow 1$	P	
Компоненты		Температура, К	Давление, МПа	г _{кр} і Уі	Гкрі Уі
Сырьё	0,0496	613	1,10	43,94	0,05
ЦВСГ	0,7805	-219,79	2,03	41,53	1,59
СВСГ	0,1699	-238,58	1,83	5,85	0,31
Итого	1,0000	-	-	91,31	1,95

Таблица П6.2

Расчет псевдокритических параметров газопаровой фазы ГПС на выходе из

реактора 1										
Vontonent		Критич	еские параметры	T . 1	D . v					
компоненты	y_i	Температура, К	Давление, МПа	1 _{кр і} Уі	икрі <i>Уі</i>					
Газ	0,0048	68,23	4,15	1,63	0,02					
Сероводород	0,0026	100,40	8,89	0,96	0,02					
28-70 °С	0,0040	215,00	3,37	1,97	0,01					
70-180 °C	0,0036	313,00	2,75	2,09	0,01					
180-240 °C	0,0066	387,00	2,15	4,36	0,01					
240-360 °C	0,0110	465,00	1,70	8,09	0,02					
>360 °C	0,0529	605,00	1,20	46,41	0,06					
ЦВСГ	0,9146	-219,79	2,03	48,67	1,86					
Итого	1,0000	-	-	114,18	2,02					

Таблица П6.3

Расчет псевдокритических параметров газопаровой фазы ГСС в реакторе 2

		Критические	е параметры		
Компоненты	y _i	Температура, К	Давление,	$T_{\kappa p i} \cdot y_i$	$P_{\kappa p i} \cdot y_i$
			МПа	*	
Сырьё	0,0379	613	1,1	33,57	0,04
ЦВСГ	0,7731	-219,8	2,0	41,13	1,57
СВСГ	0,1891	-238,6	1,8	6,51	0,35
Итого	1,0000	-	-	81,21	1,96

Таблица П6.4

Расчет псевдокритических параметров газопаровой фазы ГПС на выходе из

реактора 2

Vorteration	V.	Критически	е параметры	Тли	D.v						
компоненты	y _i	Температура, К	Давление, МПа	\mathbf{I}_{kpi} \mathbf{y}_i	¹ крі Уі						
Газ	0,0131	68,23	4,15	4,48	0,05						
Сероводород	0,0006	100,40	8,89	0,21	0,00						
28-70 °С	0,0080	215,00	3,37	3,90	0,03						
70-180 ℃	0,0071	313,00	2,75	4,13	0,02						
180-240 °C	0,0131	387,00	2,15	8,63	0,03						
240-360 °C	0,0217	465,00	1,70	16,03	0,04						
>360 °C	0,0208	605,00	1,20	18,30	0,03						
ЦВСГ	0,9156	-219,79	2,03	48,72	1,86						
Итого	1,0000	-	-	104,40	2,06						

117

118 Приложение 7 Таблица П7.1

Компонент	Молярная масса, кг/кмоль	Расход, кг/ч	Массовая доля	Количество, кмоль/ч	Мольная доля
Водород	2	58556	0,0737	29278	0,8418
Метан	16	19269	0,0243	1204	0,0346
Этан	30	15252	0,0192	508	0,0146
Пропан	44	27987	0,0352	636	0,0183
Изобутан	58	15655	0,0197	270	0,0078
Н-бутан	58	11746	0,0148	203	0,0058
Сероводород	34	3553	0,0045	105	0,0030
28-70 °С	78,0	16745	0,0211	215	0,0062
70-180 °C	114,9	21766	0,0274	189	0,0054
180-240 °C	155,4	54587	0,0687	351	0,0101
240-360 °C	215,2	125583	0,1582	583	0,0168
>360 °C	342,6	423373	0,5332	1236	0,0355
Итого		794072	1,0000	34779	1,0000

Состав и расход ГПС на входе в ГСВД

Таблица П7.2

Состав газовой и жидкой фаз на выходе из С-1 при температуре 280 °С и давлении 10 МПа

	Мольная доля	Константа	Мольная доля	Мольная доля
Компонент	компонента	фазового	газопаровой	компонента
	сырья	равновесия	фазы	жидкой фазы
Водород	0,8418	15	0,0605	0,9077
Метан	0,0346	1,95	0,0185	0,0360
Этан	0,0146	1,5	0,0100	0,0150
Пропан	0,0183	1,2	0,0154	0,0185
Изобутан	0,0078	1,1	0,0071	0,0078
Н-бутан	0,0058	1,05	0,0056	0,0058
Сероводород	0,0030	1,4	0,0022	0,0031
28-70 °С	0,0062	0,015	0,0674	0,0010
70-180 °C	0,0054	0,01	0,0626	0,0006
180-240 °C	0,0101	0,009	0,1174	0,0011
240-360 °C	0,0168	0,008	0,1970	0,0016
>360 °C	0,0355	0,004	0,4363	0,0017
Итого	1,0000	-	1,0000	1,0000

Материальный баланс однократного испарения ГПС в сепараторе C-1 при 280 °C и 10 МПа

		Приход				Расход						
Компонент	Газопарож	идкостная	и смесь		Газопарон	Газопаровая фаза				Жидкая фаза		
	кг/ч	ā	кмоль/ч	a_{i}	кг/ч	\bar{Y}	кмоль/ч	Y_i	кг/ч	Ä	кмоль/ч	X_i
Водород	58556	0,0737	29278	0,8418	58229	0,3127	29115	0,9077	327	0,0005	164	0,0605
Метан	19269	0,0243	1204	0,0346	18471	0,0992	1154	0,0360	799	0,0013	50	0,0185
Этан	15252	0,0192	508	0,0146	14440	0,0775	481	0,0150	812	0,0013	27	0,0100
Пропан	27987	0,0352	636	0,0183	26149	0,1404	594	0,0185	1837	0,0030	42	0,0154
Изобутан	15655	0,0197	270	0,0078	14541	0,0781	251	0,0078	1115	0,0018	19	0,0071
Н-бутан	11746	0,0148	203	0,0058	10873	0,0584	187	0,0058	873	0,0014	15	0,0056
Сероводород	3553	0,0045	105	0,0030	3351	0,0180	99	0,0031	202	0,0003	6	0,0022
28-70 °С	16745	0,0211	215	0,0062	2529	0,0136	32	0,0010	14216	0,0234	182	0,0674
70-180 °C	21766	0,0274	189	0,0054	2308	0,0124	20	0,0006	19458	0,0320	169	0,0626
180-240 °C	54587	0,0687	351	0,0101	5264	0,0283	34	0,0011	49322	0,0811	317	0,1174
240-360 °С	125583	0,1582	583	0,0168	10882	0,0584	51	0,0016	114701	0,1887	533	0,1970
>360 °C	423373	0,5332	1236	0,0355	19174	0,1030	56	0,0017	404199	0,6650	1180	0,4363
Итого	794072	1,0000	34779	1,0000	186211	1,0000	32074	1,0000	607861	1,0000	2705	1,0000

		1 1	1 1			
Komponenti	N/	Критические пара	метры	т.,	x 7.	D
Компоненты	Уi	Температура, К	Давление, МПа	1 кр 1	y 1	Г кр 1 У1
водород	0,9077	-239,8	1,82		30,1	1,652
метан	0,0360	-82,5	4,68		6,9	0,168
этан	0,0150	32,2	4,92		4,6	0,074
пропан	0,0185	96,8	4,28		6,9	0,079
изобутан	0,0078	134	3,76		3,2	0,029
бутан	0,0058	153,1	3,67		2,5	0,021
Сероводород	0,0031	100,4	8,9		1,1	0,027
28-70 °С	0,0010	215,0	3,4		0,5	0,003
70-180 °С	0,0006	313,0	2,8		0,4	0,002
180-240 °C	0,0011	387,0	2,2		0,7	0,002
240-360 °С	0,0016	465,0	1,7		1,2	0,003
>360 °C	0,0017	605,0	1,2		1,5	0,002
Итого	1,0000	-	-		59,5	2,064

Расчет критических параметров газопаровой фазы

Таблица П7.5

Состав и расход ГПС на входе в ХСВД

Компонент	М, кг/кмоль	<i>G</i> , кг/ч	Массовая доля	<i>N</i> , кмоль/ч	Мольная доля
Водород	2	58229	0,3127	29115	0,9077
Метан	16	18471	0,0992	1154	0,0360
Этан	30	14440	0,0775	481	0,0150
Пропан	44	26149	0,1404	594	0,0185
Изобутан	58	14541	0,0781	251	0,0078
Н-бутан	58	10873	0,0584	187	0,0058
Сероводород	34	3351	0,0180	99	0,0031
28-70 °C	78	2529	0,0136	32	0,0010
70-180 °С	115	2308	0,0124	20	0,0006
180-240 °C	155	5264	0,0283	34	0,0011
240-360 °С	215	10882	0,0584	51	0,0016
>360 °C	343	19174	0,1030	56	0,0017
Итого		186211	1,0000	32074	1,0000

Таблица П7.6

Состав фаз на выходе из С-2 при температуре 50 °С и давлении 10 МПа

Компонент	Ni	Ki	Yi	Xi
Водород	0,9077	28	0,0326	0,9131
Метан	0,0360	1,6	0,0225	0,0361
Этан	0,0150	0,75	0,0200	0,0150
Пропан	0,0185	0,42	0,0437	0,0184
Изобутан	0,0078	0,225	0,0340	0,0077
Н-бутан	0,0058	0,19	0,0300	0,0057
Сероводород	0,0031	1,1	0,0028	0,0031
28-70 °С	0,0010	0,003	0,1113	0,0003
70-180 °С	0,0006	0,002	0,0774	0,0002
180-240 °C	0,0011	0,0015	0,1391	0,0002
240-360 °C	0,0016	0,001	0,2221	0,0002
>360 °C	0,0017	0,0005	0,2644	0,0001
Итого	1,0000	-	1,0000	1,0000

		Приход						Pa	сход			
Компонент	Газ	опарожид	костная сме	есь		Газопаровая фаза			Жидкая фаза			
	кг/ч	ā	кмоль/ч	ai	кг/ч	$ar{Y}$	кмоль/ч	Y_i	кг/ч	Ä	кмоль/ч	X_i
Водород	58229	0,3127	29115	0,9077	58216	0,3878	29108	0,9131	13	0,0004	6	0,0326
Метан	18471	0,0992	1154	0,0360	18400	0,1226	1150	0,0361	71	0,0020	4	0,0225
Этан	14440	0,0775	481	0,0150	14323	0,0954	477	0,0150	117	0,0032	4	0,0200
Пропан	26149	0,1404	594	0,0185	25772	0,1717	586	0,0184	377	0,0104	9	0,0437
Изобутан	14541	0,0781	251	0,0078	14154	0,0943	244	0,0077	386	0,0107	7	0,0340
Н-бутан	10873	0,0584	187	0,0058	10533	0,0702	182	0,0057	340	0,0094	6	0,0300
Сероводород	3351	0,0180	99	0,0031	3333	0,0222	98	0,0031	19	0,0005	1	0,0028
28-70 °С	2529	0,0136	32	0,0010	830	0,0055	11	0,0003	1699	0,0471	22	0,1113
70-180 °С	2308	0,0124	20	0,0006	567	0,0038	5	0,0002	1741	0,0482	15	0,0774
180-240 °С	5264	0,0283	34	0,0011	1034	0,0069	7	0,0002	4231	0,1173	27	0,1391
240-360 °C	10882	0,0584	51	0,0016	1524	0,0102	7	0,0002	9358	0,2594	43	0,2221
>360 °C	19174	0,1030	56	0,0017	1444	0,0096	4	0,0001	17730	0,4914	52	0,2644
Итого	186211	1,0000	32074	1,0000	150129	1,0000	31878	1,0000	36082	1,0000	196	1,0000

Материальный баланс однократного испарения ГПС в сепараторе C-2 при 50 °C и 10 МПа

Komononitra	. .	Критические пара	метры	T V	
Компоненты	y _i	Температура, К	Давление, МПа	1 кр 1 Уі	Гкр і Уі
водород	0,9131	-239,8	1,82	30,3	1,662
метан	0,0361	-82,5	4,68	6,9	0,169
этан	0,0150	32,2	4,92	4,6	0,074
пропан	0,0184	96,8	4,28	6,8	0,079
изобутан	0,0077	134	3,76	3,1	0,029
бутан	0,0057	153,1	3,67	2,4	0,021
Сероводород	0,0031	100,4	8,9	1,1	0,027
28-70 °С	0,0003	215,0	3,4	0,2	0,001
70-180 °С	0,0002	313,0	2,8	0,1	0,000
180-240 °С	0,0002	387,0	2,2	0,1	0,000
240-360 °С	0,0002	465,0	1,7	0,2	0,000
>360 °C	0,0001	605,0	1,2	0,1	0,000
Итого	1,0000	_	-	55,9	2,063

Расчет критических параметров газопаровой фазы

Таблица П7.9

	Состав и рас	ход ГПС на	входе в ГС	СНД	·
Компонент	Молярная масса	Расход, кг/ч	масс. доля	Ni, кмоль/ч	Мольная доля
Водород	2	327	0,0005	164	0,0605
Метан	16	799	0,0013	50	0,0185
Этан	30	812	0,0013	27	0,0100
Пропан	44	1837	0,0030	42	0,0154
Изобутан	58	1115	0,0018	19	0,0071
Н-бутан	58	873	0,0014	15	0,0056
Сероводород	34	202	0,0003	6	0,0022
28-70 °C	78	14216	0,0234	182	0,0674
70-180 °С	115	19458	0,0320	169	0,0626
180-240 °C	155	49322	0,0811	317	0,1174
240-360 °C	215	114701	0,1887	533	0,1970
>360 °C	343	404199	0,6650	1180	0,4363
Итого		607861	1,0000	2704	1,0000

123

Таблица П7.10 Состав газовой и жидкой фаз на выходе из С-3 при температуре 280 °С и

	-	давлении 0,5 MI	Ta	
	Мольная доля	Константа	Мольная доля	Мольная доля
Компонент	компонента	фазового	газопаровой	компонента
	сырья	равновесия	фазы	жидкой фазы
Водород	0,0605	60	0,0093	0,5594
Метан	0,0185	32	0,0048	0,1520
Этан	0,0100	20	0,0036	0,0723
Пропан	0,0154	15	0,0067	0,1006
Изобутан	0,0071	13	0,0034	0,0436
Н-бутан	0,0056	11	0,0029	0,0317
Сероводород	0,0022	14	0,0010	0,0139
28-70 °С	0,0674	0,07	0,0738	0,0052
70-180 °C	0,0626	0,06	0,0686	0,0041
180-240 °C	0,1174	0,05	0,1288	0,0064
240-360 °C	0,1970	0,045	0,2163	0,0097
>360 °C	0,4363	0,002	0,4809	0,0010
Итого	1,0000	-	1,0000	1,0000

	П	эиход					Расход					
Компонент	Газопарож	идкостная	и смесь		Газопаро	вая фаза			Жи	ідкая фаза		
	кг/ч	ā	кмоль/ч	a _i	кг/ч	\bar{Y}	кмоль/ч	Y_i	кг/ч	Ż	кмоль/ч	X_i
Водород	327	0,0005	164	0,0605	282	0,0580	141	0,5594	46	0,0001	23	0,0093
Метан	799	0,0013	50	0,0185	612	0,1261	38	0,1520	186	0,0003	12	0,0048
Этан	812	0,0013	27	0,0100	546	0,1124	18	0,0723	266	0,0004	9	0,0036
Пропан	1837	0,0030	42	0,0154	1114	0,2294	25	0,1006	724	0,0012	16	0,0067
Изобутан	1115	0,0018	19	0,0071	637	0,1312	11	0,0436	478	0,0008	8	0,0034
Н-бутан	873	0,0014	15	0,0056	463	0,0954	8	0,0317	410	0,0007	7	0,0029
Сероводород	202	0,0003	6	0,0022	119	0,0245	4	0,0139	83	0,0001	2	0,0010
28-70 °С	14216	0,0234	182	0,0674	101	0,0209	1	0,0052	14115	0,0234	181	0,0738
70-180 °С	19458	0,0320	169	0,0626	119	0,0245	1	0,0041	19339	0,0321	168	0,0686
180-240 °C	49322	0,0811	317	0,1174	252	0,0519	2	0,0064	49071	0,0814	316	0,1288
240-360 °C	114701	0,1887	533	0,1970	527	0,1086	2	0,0097	114173	0,1893	530	0,2163
>360 °C	404199	0,6650	1180	0,4363	83	0,0171	0	0,0010	404116	0,6702	1180	0,4809
Итого	607861	1,0000	2704	1,0000	4855	1,0000	252	1,0000	603007	1,0000	2453	1,0000

Материальный баланс однократного испарения ГПС в сепараторе C-3 при 270 °C и 0,5 МПа

Komoueutu	X 7.	Критические пара	метры	T · · v	
КОМПОНСНТЫ	\mathbf{y}_1	Температура, К	Давление, МПа	1 кр 1 У1	Г кр 1 У 1
водород	0,5594	-239,8	1,82	18,6	1,018
метан	0,1520	-82,5	4,68	29,0	0,712
этан	0,0723	32,2	4,92	22,1	0,356
пропан	0,1006	96,8	4,28	37,2	0,430
изобутан	0,0436	134	3,76	17,8	0,164
бутан	0,0317	153,1	3,67	13,5	0,116
Сероводород	0,0139	100,4	8,9	5,2	0,124
28-70 °С	0,0052	215,0	3,4	2,5	0,017
70-180 °С	0,0041	313,0	2,8	2,4	0,011
180-240 °C	0,0064	387,0	2,2	4,2	0,014
240-360 °С	0,0097	465,0	1,7	7,2	0,017
>360 °C	0,0010	605,0	1,2	0,8	0,001
Итого	1,0000	-	-	160,5	2,980

Расчет критических параметров газопаровой фазы

Таблица П7.13

Компонент	Молярная масса, кг/кмоль	Расход, кг/ч	Массовая доля	Количество, кмоль/ч	Мольная доля
Водород	2	13	0,0004	6	0,0326
Метан	16	71	0,0020	4	0,0225
Этан	30	117	0,0032	4	0,0200
Пропан	44	377	0,0104	9	0,0437
Изобутан	58	386	0,0107	7	0,0340
Н-бутан	58	340	0,0094	6	0,0300
Сероводород	34	19	0,0005	1	0,0028
28-70 °C	78	1699	0,0471	22	0,1113
70-180 °C	115	1741	0,0482	15	0,0774
180-240 °C	155	4231	0,1173	27	0,1391
240-360 °C	215	9358	0,2594	43	0,2221
>360 °C	343	17730	0,4914	52	0,2644
Итого		36082	1,0000	196	1.0000

Состав и расход ГПС на входе в ХСНД

Состав газовой и жидкой фаз на выходе из С-4 при температуре 50 °С и давлении 0,4 МПа

	Мольная доля	Константа	Мольная доля	Мольная доля
Компонент	компонента	фазового	газопаровой	компонента
	сырья	равновесия	фазы	жидкой фазы
Водород	0,0326	200	0,0011	0,2241
Метан	0,0225	30	0,0044	0,1328
Этан	0,0200	20	0,0054	0,1084
Пропан	0,0437	15	0,0147	0,2204
Изобутан	0,0340	10	0,0150	0,1498
Н-бутан	0,0300	9	0,0141	0,1267
Сероводород	0,0028	2,5	0,0023	0,0058
28-70 °С	0,1113	0,23	0,1248	0,0287
70-180 °C	0,0774	0,025	0,0898	0,0022
180-240 °C	0,1391	0,002	0,1620	0,0003
240-360 °C	0,2221	0,0015	0,2586	0,0004
>360 °C	0,2644	0,0009	0,3078	0,0003
Итого	1,0000	-	1,0000	1,0000

	П	эиход					Расход					
Компонент	Газопарож	идкостная	и смесь		Газопаров	зая фаза			Жи	ідкая фаза		
	кг/ч	ā	кмоль/ч	a_{i}	кг/ч	$ar{Y}$	кмоль/ч	Y_i	кг/ч	Ä	кмоль/ч	X_i
Водород	13	0,0004	6	0,0326	12	0,0130	6,195	0,2241	0	0,0000	0	0,0011
Метан	71	0,0020	4	0,0225	59	0,0616	3,670	0,1328	12	0,0003	1	0,0044
Этан	117	0,0032	4	0,0200	90	0,0943	2,997	0,1084	27	0,0008	1	0,0054
Пропан	377	0,0104	9	0,0437	268	0,2812	6,093	0,2204	109	0,0031	2	0,0147
Изобутан	386	0,0107	7	0,0340	240	0,2520	4,142	0,1498	146	0,0042	3	0,0150
Н-бутан	340	0,0094	6	0,0300	203	0,2131	3,502	0,1267	137	0,0039	2	0,0141
Сероводород	19	0,0005	1	0,0028	5	0,0057	0,159	0,0058	13	0,0004	0	0,0023
28-70 °С	1699	0,0471	22	0,1113	62	0,0650	0,794	0,0287	1637	0,0466	21	0,1248
70-180 °С	1741	0,0482	15	0,0774	7	0,0075	0,062	0,0022	1734	0,0493	15	0,0898
180-240 °C	4231	0,1173	27	0,1391	1	0,0015	0,009	0,0003	4229	0,1204	27	0,1620
240-360 °C	9358	0,2594	43	0,2221	2	0,0024	0,011	0,0004	9356	0,2663	43	0,2586
>360 °C	17730	0,4914	52	0,2644	3	0,0028	0,008	0,0003	17728	0,5047	52	0,3078
Итого	36082	1,0000	196	1,0000	953	1,0000	27,642	1,0000	35128	1,0000	168	1,0000

Материальный баланс однократного испарения ГПС в сепараторе С-4 при 50 °С и 0,4 МПа

128

		in in ite in in in the present of th		ezen puezi	
Vannaumu	.	Критически	е параметры	\mathbf{T}	D
Компоненты	Yi	Температура, К	Давление, МПа	г крі•Уі	$\mathbf{P}_{\mathbf{K}\mathbf{p}\mathbf{i}}\cdot\mathbf{y}_{\mathbf{i}}$
водород	0,2241	-239,8	1,82	7,4	0,408
метан	0,1328	-82,5	4,68	25,3	0,621
этан	0,1084	32,2	4,92	33,1	0,533
пропан	0,2204	96,8	4,28	81,5	0,943
изобутан	0,1498	134	3,76	61,0	0,563
бутан	0,1267	153,1	3,67	54,0	0,465
Сероводород	0,0058	100,4	8,9	2,2	0,051
28-70 °С	0,0287	215,0	3,4	14,0	0,097
70-180 °С	0,0022	313,0	2,8	1,3	0,006
180-240 °C	0,0003	387,0	2,2	0,2	0,001
240-360 °C	0,0004	465,0	1,7	0,3	0,001
>360 °C	0,0003	605,0	1,2	0,2	0,000
Итого	1,0000	-	-	280,5	3,690

Расчет критических параметров газопаровой фазы

Приложение 8

Таблица П8.1

Материальный баланс однокра	тного испарения газопр	одуктовой смеси реакт	ора 1 при 280	°С и 14,7 МПа
-----------------------------	------------------------	-----------------------	---------------	---------------

	П	эиход					Расход					
Компонент	Газопарож	идкостная	и смесь		Газопаров	вая фаза			Жи	ідкая фаза		
	кг/ч	ā	кмоль/ч	a_{i}	кг/ч	\bar{Y}	кмоль/ч	Y_i	кг/ч	Ż	кмоль/ч	X_i
ЦВСГ	62721	0,1486	14600	0,9140	61165	0,8681	14238	0,9875	1555	0,0046	362	0,2329
H2S	3198	0,0076	94	0,0059	2969	0,0421	87	0,0061	229	0,0007	7	0,0043
УВГ	1399	0,0033	33	0,0021	1291	0,0183	31	0,0021	108	0,0003	3	0,0016
Лёгк Б	5024	0,0119	64	0,0040	613	0,0087	8	0,0005	4410	0,0129	57	0,0364
Тяж Б	6530	0,0155	57	0,0036	554	0,0079	5	0,0003	5976	0,0175	52	0,0335
Кер	16376	0,0388	105	0,0066	1262	0,0179	8	0,0006	15114	0,0443	97	0,0626
ДТ	37675	0,0893	175	0,0110	2602	0,0369	12	0,0008	35073	0,1028	163	0,1048
ΓΟ ΒΓ	289076	0,6850	844	0,0528	10340	0,1468	30	0,0021	278736	0,8169	814	0,5234
Итого	421998	1,0000	15973	1,0000	70457	1,0000	14418	1,0001	341201	1,0000	1555	0,9994

Таблица П8.2

Материальный баланс однократного испарения газопродуктовой смеси реактора 1 при 405 °С и 14,7 МПа

	П	риход					Расход						
	Газопарож	идкостная	н смесь		Газопаровая фаза				Жи	Жидкая фаза			
Компонент	кг/ч	ā	кмоль/ч	a_{i}	кг/ч	$ar{Y}$	кмоль/ч	Y_i	кг/ч	Ż	кмоль/ч	X_i	
ЦВСГ	62721	0,1486	14600	0,9140	61370	0,5208	14285	0,9791	1351	0,0044	314	0,2273	
H2S	3198	0,0076	94	0,0059	3019	0,0256	89	0,0061	179	0,0006	5	0,0038	
Лёгк Б	1399	0,0033	33	0,0021	1208	0,0102	15	0,0011	191	0,0006	18	0,0354	
УВГ	5024	0,0119	64	0,0040	1319	0,0112	31	0,0022	3705	0,0122	33	0,0014	
Тяж Б	6530	0,0155	57	0,0036	1138	0,0097	10	0,0007	5392	0,0177	47	0,0339	
Кер	16376	0,0388	105	0,0066	2237	0,0190	14	0,0010	14139	0,0465	91	0,0658	
ДТ	37675	0,0893	175	0,0110	3595	0,0305	17	0,0011	34080	0,1120	158	0,1145	
ΓΟ ΒΓ	289076	0,6850	844	0,0528	43957	0,3730	128	0,0088	245119	0,8059	716	0,5173	
Итого	421998	1,0000	15973	1,0000	117842	1,0000	14590	1,0001	304156	1,0000	1383	0,9994	

Τ.	<i>r</i> 0	~		U		1	200 00	1 7	
- N/	Татериальныи	Danaue Onuor	татиого испареі	IND LADUCTINEEDUR	CMECH DESKTON	$na \mid \pi ni$	IX X()() (רו גו	(1 N/11)
TA.		oanane ognor	parnor o nenaper	ил газосырьсьой	cmeen peakiop	a i npi	n J 0 0 C	rii.,	0 101110

	Пр	Приход				Расход						
Компонент	Газопарожидкостная смесь			Газопаровая фаза			Жидкая фаза					
	кг/ч	-a	кмоль/ч	α_{i}	кг/ч	<i>y</i>	кмоль/ч	yi	кг/ч	X	кмоль/ч	Xi
ЦВСГ	62721	0,1486	14600	0,7805	58846	0,1486	13698	0,8151	3875	0,1486	902	0,2555
СВСГ	6808	0,0161	3177	0,1699	6388	0,0161	2981	0,1779	421	0,0161	196	0,0479
Сырьё	352469	0,8352	928	0,0496	330693	0,8352	870	0,0070	21776	0,8352	57	0,6968
Итого	421998	1,0000	18705	1,0000	395927	1,0000	17549	1,0000	26071	1,0000	1156	1,0003

Таблица П8.4

Материальный баланс однократного испарения газосырьевой смеси реактора 1 при 400 °С и 15,0 МПа

	Приход				Расход							
Компонент	Газопарожидкостная смесь			Газопаровая фаза				Жидкая фаза				
	кг/ч	-a	кмоль/ч	α_{i}	кг/ч	<i>y</i>	кмоль/ч	yi	кг/ч	x	кмоль/ч	Xi
ЦВСГ	62721	0,1486	14600	0,7805	62408	0,2323	14527	0,7975	312	0,0020	73	0,1487
СВСГ	6808	0,0161	3177	0,1699	6776	0,0252	3162	0,1736	33	0,0002	15	0,0280
Сырьё	352469	0,8352	928	0,0496	199484	0,7425	525	0,0288	152985	0,9977	403	0,8234
Итого	421998	1,0000	18705	1,0000	268668	1,0000	18216	0,9999	153330	1,0000	489	1,0001

Приложение 9

Таблица П9.1

	Π	Приход				Расход						
Компонент	Газопарожидкостная смесь			Газопаровая фаза			Жидкая фаза					
	кг/ч	-qx	кмоль/ч	α_i	кг/ч	<i>y</i>	кмоль/ч	y_i	кг/ч	x	кмоль/ч	Xi
ЦВСГ	62721	0,1486	14600	0,7805	58846	0,1486	13698	0,8083	3875	0,1486	902	0,1880
СВСГ	6808	0,0161	3177	0,1699	6388	0,0161	2981	0,1762	421	0,0161	196	0,0356
Сырьё	352469	0,8352	928	0,0496	330693	0,8352	870	0,0155	21776	0,8352	57	0,7767
Итого	421998	1,0000	18705	1,0000	395927	1,0000	17868	1,0000	26071	1,0000	837	1,0003

Материальный баланс однократного испарения газосырьевой смеси при 153,9 °C и 15,0 МПа

Таблица П9.2

Материальный баланс однократного испарения газосырьевой смеси при 405 °C и 15,0 МПа

	П	Приход				Расход						
Компонент	Газопарож	Газопарожидкостная смесь			Газопаровая фаза			Жидкая фаза				
	кг/ч	-a	кмоль/ч	α_{i}	кг/ч	-y	кмоль/ч	yi	кг/ч	x	кмоль/ч	Xi
ЦВСГ	62721	0,1486	14600	0,7805	58928	0,8623	13717	0,8198	3792	0,0107	883	0,4476
СВСГ	6808	0,0161	3177	0,1699	6443	0,0943	3007	0,1797	365	0,0010	170	0,0863
Сырьё	352469	0,8352	928	0,0496	2965	0,0434	8	0,0005	349504	0,9882	920	0,4664
Итого	421998	1,0000	18705	1,0000	68337	1,0000	16732	1,0000	353661	1,0000	1972	1,0003

132

Приложение 10

Таблица П10.1

Расчет количества теплоты парожидкостной смеси на входе в ABO-1 при 150 ⁰C и давлении 9,8 МПа

		и даблени		A		
Компонент	Энтальп	ия, кДж/кг	Расход, кі	∩∕Ч	Количести МДж/ч	во теплоты,
	пары	жидкость	пары	жидкость	пары	жидкость
1. Водород	6186,4	-	58215,2	14,1	360144,6	-
2. Метан	711,6	-	18460,9	9,6	13136,8	-
3. Этан	502,6	-	14418,7	21,2	7246,8	-
4. Пропан	419,0	-	26090,4	58,9	10931,9	-
5. Изобутан	377,2	-	14498,0	42,7	5468,7	-
6. Бутан	375,0	-	10839,6	33,4	4064,9	-
7. Сероводород	178,5	-	3346,2	5,2	597,3	-
8. Легкий бензин	661,4	355,2	2331,4	197,5	1542,0	70,2
9. Тяжелый бензин	640,3	337,6	2075,1	232,5	1328,7	78,5
10. Керосиновая фр.	624,6	326,9	4517,5	746,9	2821,4	244,1
11. Дизельная фракция	610,6	319,0	2479,3	8402,8	1513,9	2680,5
12. Вакуумный газойль	568,5	309,9	2465,1	16709,0	1401,3	5178,1
Итого			159737,5	26473,9	410198,3	8251,4

Таблица П10.2

Расчет количества теплоты парожидкостной смеси на выходе из ABO-1 при 100°С и давлении 9,8 МПа

Компонент	Энтальп	ия, кДж/кг	Расход, ки	<u>г</u> /ч	Количество теплоты, МДж/ч		
	пары	жидкость	пары	жидкость	пары	жидкость	
1. Водород	5449,9	-	58214,7	14,4	317266,8	-	
2. Метан	711,6	-	18460,4	10,1	13136,4	-	
3. Этан	502,6	-	14410,6	29,2	7242,8	-	
4. Пропан	419,0	-	26046,3	103,0	10913,4	-	
5. Изобутан	377,2	-	14464,4	76,3	5456,0	-	
6. Бутан	375,0	-	10811,9	61,1	4054,5	-	
7. Сероводород	119,0	-	3344,2	7,1	398,0	-	
8. Легкий бензин	560,9	226,4	2183,6	345,4	1224,8	78,2	
9. Тяжелый бензин	541,9	215,3	1908,1	399,5	1034,0	86,0	
10. Керосиновая фр.	527,3	208,4	4020,0	1244,4	2119,7	259,3	
11. Дизельная фракция	513,9	203,4	1328,7	9553,4	682,8	1943,0	
12. Вакуумный газойль	465,3	197,6	1246,7	17927,3	580,1	3542,1	
Итого			156439,5	29771,3	364109,2	5908,6	

133 Таблица П10.3

Расчет количества теплоты парожидкостной смеси на выходе из водяного холодильника при 50 °C и давлении 9,8 МПа

Компонент	Энталы	Энтальпия, кДж/кг		рд, кг/ч	Количество теплоты, МДж/ч		
	пары	жидкость	пары	жидкость	пары	жидкость	
1. Водород	4715	-	58216,3	-	274480,1	-	
2. Метан	399	-	18399,9	-	7341,6	-	
3. Этан	146	-	14322,6	-	2095,4	-	
4. Пропан	115	-	25772,5	-	2962,5	-	
5. И-Бутан	110	-	14154,4	_	1556,3	-	
6. Н-Бутан	108	-	10532,6	_	1137,5	-	
7. Сероводород	53	-	3332,8	_	175,0	-	
8. Легкий бензин	468,97	108,05	830,0	1698,9	389,3	183,6	
9. Тяжелый бензин	451,5	102,71	566,9	1740,7	256,0	178,8	
10. Керосиновая фр.	435,6	99,45	1033,5	4230,8	450,2	420,7	
11. Дизельная фракция	418,33	97,05	1524,0	9358,1	637,5	908,2	
12. Вакуумный газойль	400,07	94,28	1443,7	17730,3	577,6	1671,6	
Итого			150129,3	34758,8	292059,0	3362,9	

Приложение 11 Таблица П11.1

Π -			
llabor	аторныи	і контроль	VCT2HORKU
21400	aropiton	Romposit	y o runo dian

№ п/п	Анализируемый продукт	Место отбора пробы	Контролируемые показатели	Нормативные документы на методы измерения	Частота контроля
1	Сырьё реактора 1	Перед теплообменником Т-1	Плотность	ASTM D1298-99e2, D4052	Раз в неделю
			Дистилляция	ASTM 2887-04a	Раз в неделю
			Анилиновая точка	ASTM D611-04	Раз в неделю
			Cepa	ASTM D5453, ASTM D4294-03	Раз в неделю
				ASTM D3228-03	
			Азот	ASTM D156-02	Раз в сутки
			Цвет	CTM 5-43	-
			Асфальтены	CTM 5-13	-
			Неуглеродистый остаток		-
			Металлы	ASTM D5708-02	
			Хлориды	IP 77/72, ASTM D3230-99	Раз в месяц
			PCI(показатель содержания	CTM 5-63	-
			ароматических углеводородов)		

Продолжение таблицы П11.1

№ п/п	Анализируемый продукт	Место отбора пробы	Контролируемые показатели	Нормативные документы на методы измерения	Частота контроля
			PNA(полициклические ароматические соединения)	ASTM D5186-03	-
			Вязкость	ASTM D445-04e1	-
			Коксовый остаток по Конрадсону, %масс.	ASTM D4530	-
2	Сырьё реактора 2	Перед	Плотность	ASTM D1298-99e2, D4052	Раз в неделю
		теплообменником Т-2	Дистилляция	ASTM 2887-04a	Раз в неделю
			Анилиновая точка	ASTM D611-04	Раз в неделю
			Сера	ASTM D5453, ASTM D4294-03	Раз в неделю
				ASTM D3228-03	
			Азот	ASTM D156-02	Раз в сутки
			Цвет	CTM 5-43	-
			Асфальтены	CTM 5-13	-
					-
			Неуглеродистый остаток		-
			Металлы	ASTM D5708-02	
			Хлориды	IP 77/72, ASTM D3230-99	Раз в месяц

Продолжение таблицы П11.1

№ п/п	Анализируемый продукт	Место отбора пробы	Контролируемые показатели	Нормативные документы на методы измерения	Частота контроля
			РСІ(показатель содержания ароматических углеводородов)	CTM 5-63	-
3	Подпиточный водород	Перед компрессором ЦК-1	Состав	GPA 2286, ASTM 1945-03	-
			Относительная плотность	H/I-I6	-
			CO+CO2	Gastech Tube	-
4	Подпиточный водород	Перед компрессором ЦК-2	Состав	GPA 2286, ASTM 1945-03	-
			Относительная плотность	H/I-I6	-
			CO+CO2	Gastech Tube	-
5	Жидкость ГСНД	После сепаратора С-3	Плотность	ASTM D1298-99e2	Раз в неделю
			Дистилляция	ASTM D1160-03	Раз в неделю
6	Жидкость ХСНД	После сепаратора С-4	Плотность	ASTM D1298-99e2	Раз в неделю
			Дистилляция	ASTM D1160-03	Раз в неделю
7	Кислая вода ХСВД	После сепаратора С-2	Нефтепродукты, % об.	ASTM D3921-96	-
8	Кислая вода ХСНД	После сепаратора С-4	Нефтепродукты, % об.	ASTM D3921-96	-

Продолжение таблицы П11.1

№ п/п	Анализируемый продукт	Место отбора пробы	Контролируемые показатели	Нормативные документы на методы измерения	Частота контроля
9	Лёгкий бензин	На выходе из емкости Е-3	Плотность	ASTM D1298-99e2	Раз в сутки
			Дистилляция	ASTM D2887-04a	Раз в сутки
			Меркаптаны	ASTM D3227-04a	Раз в сутки
			Сера	ASTM D5453, ASTM D4045	Раз в месяц
			Октановое число	ASTM D2700-06	Раз в месяц
			Состав	ASTM D2650	Раз в месяц
			Упругость паров по Рейду	ASTM D323-94	Раз в месяц
10	Тяжёлый бензин	На выходе из отпарной колонны К-4/1	Плотность	ASTM D1298-99e2	Раз в сутки
			Дистилляция	ASTM D2887-04a	Раз в сутки
			PNA	ASTM D5186-03	Раз в смену
			Меркаптаны	ASTM D3227-04a	-
			Cepa	ASTM D5453, ASTM D4045	Раз в смену
			Азот	ASTM D4629	-
11	Дизельное топливо	На выходе из отпарной колонны К-4/2	Плотность	ASTM D1298-99e2	Раз в сутки

Продолжение таблицы П11.1

№ п/п	Анализируемый продукт	Место отбора пробы	Контролируемые показатели	Нормативные документы на методы измерения	Частота контроля
			Дистилляция	ASTM D2887-04a	Раз в сутки
			Температура вспышки	ASTM D93-02a	Раз в смену
			PNA	ASTM D5186-03	Раз в смену
			Температура застывания	ASTM D97-04	Раз в неделю
			Цетановый индекс		Раз в неделю
			Температура помутнения	ASTM D976-04b	Раз в неделю
			Сера	ASTM D2500-02e1	Раз в неделю
			Вода		Раз в неделю
			Азот	ASTM D5453, ASTM D4045 ASTM D6304 ASTM D4629	Раз в неделю
12	Гидроочищенный	На выходе из куба	Плотность	ASTM D1298-99e2	Раз в сутки
	вакуумный газойль	колонны К-4	Дистилляция	ASTM D2887-04a	Раз в сутки
			Cepa	ASTM D2622-03	Раз в неделю
			Азот	ASTM D4629	-
			PCI	CTM 5-63	Раз в сутки

Продолжение таблицы П11.1

№ п/п	Анализируемый	Место отбора пробы	Контролируемые	Нормативные документы на	Частота контроля
	продукт		показатели	методы измерения	
			PNA	ASTM D5186-03	-
			Вязкость при 40°С	ASTM D445-04e1	-

140 Приложение 12

\square	Фармат	Зана	Паз	l	Обозна	IYEHL	IE	Наименование		Кал	Приме- чание
IEH.											
npur								Документация			
Gdal				СамГТУ2	240402	3.090	1.010.03	Технологичсекая с.	XEMA		
								<u>Сборочные едини</u> ц	<u>(Ы</u>		
				P–1, 2				Реактор		2	
Н				П-1, 2, 3	<i>,</i> 4			Печь		4	
				[-1, 2, 3	<u>,</u> 4			Сепаратор		4	
				T-1, 2, 3	<i>, 4, 5,</i>	6		Теплообменник		6	
οN	K-1, 2							Абсорберы			
.gpd				K–3				Колонна регенераци	и МЭА	1	
IJ				K–4				Колонна фракционир	ования	1	
				K-5				Колонна стабилиза	ועטט	1	
				BX-1,2,3,	4,5,6,7	7,8		Водяной холодильн	UK	8	
				ABO-1,2,	3,4,5,6,	7,8,	9, 10, 11, 12, 13	ABO		13	
				E-1, 2, 3	, 4			Емкость		4	
				H-1,2,3,4	,5,6,7,8	8, 9, 1	7, 11, 12, 13	Насос		13	
Z				ЦК–1				Компрессор		1	
dam											
ם יוב											
Ш											
U											
php or											
HB. N											
N 0											р
HB N											
UM ND											<u>2</u>
B3											<u>.</u>
DL				-							
и даг		-									
.uga		Γ		•		,	(-				
	Изм	Лис	m	№ докцм.	Подп.	Дата	LU	MI 19 10.03.01.	<i>U</i> 5 <i>Z</i> .U	ט.כי	ر
ЮС	Pas	араб. Пр	ľ	Ильменский А.С. Пимораци А.А			Техноли	огическая схема		Лист	Листав 1
Nº N	ΠµL	JU.	ť	иперзип А.А			установки гидрокрекинга				
NHB.	Н.к.	онтр в	2	Жилкина Е.О. Пимепзин A A			- вакуу	много газойля 4-Х			-1

Спецификация на технологическую схему

Рис. Пр12.1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет»

Факультет <u>химико-технологический</u> Кафедра <u>«Химическая технологии переработки нефти и газа»</u>

ЗАДАНИЕ

НА ВЫПОЛНЕНИЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

Студенту Ильменскому Алексею Сергеевичу, 4-ХТ-1

(фамилия, имя, отчество, курс. факультет, группа)

Тема: Разработка технологической схемы современного НПЗ для переработки Михайловской нефти нашийского горизонта ДП. Проект установки гидрокрекинга вакуумного газойля.

(полное название темы квалификационной работы, в соответствии с приказом об утверждении тематики ВКР)

Исходные данные (или цель работы): разработать структуру современного нефтеперерабатывающего завода для переработки Михайловской нефти пашийского горизонта ДП, выполнить проект установки гидрокрекинга вакуумного газойля. 1. Объем переработки нефти на НПЗ принять равной 12 млн. тонн в год. 2. Для проектируемой установки производительность определять исходя из мощности и материального баланса установки ЭЛОУ-АВТ 3. Характеристику сырья, продуктов, катализаторов и др. п основного оборудования и т.д., а также параметры процесса, материальные балансы блока и установки принять по литературным и производственным данным

Перечень подлежащих исследованию, разработке, проектированию вопросов по базовой части работы:

$\mathcal{N}_{\mathbb{Q}}$	Наименование вопроса	Достигнутые результаты
ПП		освоения ОПОП*
1	Структура и характеристика НПЗ при переработке Михайловской	ОК-1, ОК-5, ОПК-4, ОПК-5,
	нефти пашийского горизонта ДИ (всего по разделу 30-40 с.)	ПК-20
1.1	Мощности современных НПЗ по объему перерабатываемой	ОК-1, ОК-2, ОК-3, ОПК-4,
	нефти, требования по глубине переработки нефти, ассортименту	ОПК-5, ПК-20
	и качеству продуктов переработки	
1.2	Характеристика (заданной) нефти, растворенных газов и	ОПК-1, ОПК-2, ОПК-4, ОПК-
13	Пибар и обесперати	5
1.0	(заланной) нефти на установке АВТ	ОПК-3, ОПК-4, ОПК-5
1.4	Выбор и обоснование состава технологических истичовок: брок	
	схема НПЗ	OR-4, 011K-4, 011K-5, 11K-4
1.5	Краткая характеристика технологических установок НПЗ	ОПК-4. ОПК-5
1.5.1	Характеристика установки ЭЛОУ-АВТ. Материальный баланс	ОПК-4. ОПК-5
	установки ЭЛОУ-АВТ производительностью 12 млн. тони в год.	orme it ormes
1.5.2	Характеристика установок вторичных процессов переработки	ОК-6, ОПК-4. ОПК-5
	нефти и процессов переработки нефтезаводских газов (перечень-	
	характеризуемых установок согласовывается с руководителем)	
2	Проект установки гидрокрекинга вакуумного газойля (всего по	ОПК-4, ОПК-5
	разделу 40-50 с.).	
2.1	Обзор научно-технической литературы на тему: Пути	ОК-7, ОПК-3, ПК-16, ПК-18.
	интенсификации процесса гидрокрекиига вакуумного газойля (не	ПК-19, ПК-20
	более 10 с.).	
2.2	Характеристика сырья, получаемых продуктов, кагализатора.	ОПК-4, ПК-1, ПК-3, ПК-10
	реагентов	
2.3	Выбор и обоснование технологического оформления процесса,	ОПК-4, ПК-1, ПК-4, ПК-9
	условий его проведения	

24

2.4	Технологическая схема установки с элементами КИП и А и се	ОПК-1, ПК-1, ПК-6, ПК-7,
	описание, краткая характеристика основного соорудствания	TIK-0. TIK-11
2.5	Техислогический расчет основного обору слании	OTIN-3, TIN-2
2.5.1	Исходные даяные для расчета	UIIK-5
2.5.2	Материальный баланс установки и реакторов	OHK-5, HK-2
2.5.3	Техиологический расчет реакторов	OTIK-5, 11K-2
2.5.4	Тепловой баланс реакторов	OHK-5, 11K-2
2.5.5	Гидравлический расчет реактора	ОПК-5, ПК-2
3.5.6	Механический расчет толщниы корпуса и липши азнарата	OffK-5, HK-2
2.5.7	Расчет узла сепарации ГПС	ОПК-5, ПК-2
2.5.8	Расчет сырьевых теплообменников «ГСС - ГПС»	ОПК-5. ПК-2
2.5.9	Расчет нечи нагрева ГСС по укрупненным показателям	ОПК+5, ПК+2
2.5.10	Расчет воздушного конденсатора-холодильника и воляного холодильника	ОПК-5, ПК-2
1.5.11	Материальный баланс колонны фразников крожиная заячли в та	ОПК-5, ПК-2
2,5.12	Набораторный контроль качества сырья, получаемой продукции, пизов	ОПК-2, ПК-3, ПК-10, ПК-16, ПК-17
	Мероприятия по безопасной эксплуагации установки (объем раздела – 6-8 с.)	ОК-8, ОК-9, ОПК-2, ОПК-4, ОПК-5, ОПК-6, ПК-5, ПК-7, ПК-11
	Мероприятия по охране окружающей среды на установке (объем раздела – 6-8 с.)	OHK-2, OHK-5, OHK-6, HK-5

Перечень графического материала в пояснительной записае:

1 Блок-схема НПЗ:

2. Технологическая схема установки с элементами КИПиА:

3. Эскизы основных аппаратов.

Перечень презентационного материала на листах формата АЛ.

1. Блок-схема НГІЗ (1лист)

2. Материальные балансы установок ЭЛОУ - АВТ и разрабатываемого процесса (Глист)

3. Технологическвя схема установки гидрокрежниги вокуумного газойля с элементами КИПиА (4-3 листа)

4. Чертеж общего вида реактора (1лист)

Консультанты по разделам ВКР:

1 Martinean	203	Inne	AT	A.			X	upe	2. 15	.cu	(pe	npo	LX.H.	 MRR ICTIM	-4
2 (0.2007)														U(C)T	3 (31)

4 passen

(наименование раздела, ученая степень, ученое знание и долженость, ф. н.о. консультания

Нормоконтролер: _

(должность, ф.и.о. пормоконтролера)

Дата выдачи задания:

« 20 » февраля

11

Задание согласовано и принято к исполнению

Руководитель

А.А. Пимерзин (И. О. фамилия.)

<u>д.х.и., профессор</u> (уч. сшепень, уч. зватие)

dournment annual

Студент

2019 1

(noomice, doma)

Тема утвержаена приказом по СамГТУ № 1/648 от « 25 »

moonuch, aana

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет»

Факультет химико-технологический

Кафедра Химическая технология переработки нефти и газа

Календарный план выполнения выпускной квалификационной работы Студента Ильменского А. С., 4-ХТ-1 (фамилия, имя, отчество, курс. факультет, группа) Вид работы: _дипломный проект бакалавра_

Тема: Разработка технологической схемы современного НПЗ для переработки Михайловской пефти нашийского горизопта ДП. Проект установки гидрокрекинга вакуумного газойля.

(полное название темы квалификационной работы, в соответствии с приказом об утверждении тематики ВКР)

Nº	Этапы выполнения ВКР	Дата (с выполн	грок) тения	Отметка научного руководителя или				
		план	факт	заведующего кафедрой о выполнении				
1	Разработка структуры и характеристики НПЗ при переработке (заданной) нефти	9.06-10.06	9.06					
2	Разработка характеристик установок первичной и вторичной переработки (заданной) нефти	9.06-10.06	9.06					
3	Составление литературного обзора по разрабатываемому технологическому процессу	9.06-10.06	9.06					
4	Расчет технологического оборудования рассматриваемого процесса	9.06-10.06	9.06					
5	Разработка мероприятий по безопасной эксплуатации установки	9.06-12.06	9.06					
6	Разработка мероприятий по охране окружающей среды на установке	9.06-12.06	10.06.					
7	Подготовка рукописи ВКР	13.06-14.06	13.06					
8	Доработка текста ВКР в соответствии с замечаниями научного руководите. в	14.06-15.06	15.06					
9	Проверка работы на антиплагнат	15.06-16.06	16.06					
10	Подготовка доклада и презентационного материала (предварительная защита)	17.06-22.06	19.06					
11	Ознакомление с отзывом научного руководителя	22.06-24.06	24.06					

Студент 💋

Руководитель

Заведующий кафедрой