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Introduction 

Timeliness of the topic. The fuel and energy complex is an important element of the Russian and 

world economy. One of the main trends of its development at present is the development of hydrocarbon 

deposits on the continental shelf. Based on various data, we can say that in the world today, up to 35% 

of oil and gas is produced on the shelf and coastal waters. 

The main hydrocarbon reserves of the Russian Federation are concentrated in the regions of the 

Far North, which are characterized by difficult climatic conditions. At the same time, most of these 

reserves belong to deposits located on the shelf of the Arctic Ocean. The development of these fields 

requires the creation of special technical means, due to the difficult ice regime, which is common for the 

northern seas. 

Hydrocarbon production on the Arctic shelf currently involves the construction of unique marine 

structures – offshore ice-resistant platforms, which are characterized by increased responsibility. These 

platforms are exposed to various environmental factors. An important role in the complex of external 

forces acting on the structure is played by loads from drifting ice fields. This requires a detailed 

evaluation of the ice load in the design of such unique structures as offshore platforms. Currently, models 

of projected platforms on a smaller scale, as well as special experimental devices are being created to 

analyze the impact of ice formations, which affects the timing and cost of construction. 

At the moment, the use of digital technologies is widespread in the world, including in the field of 

construction. With the help of mathematical and computer modeling many problems are being solved, 

such as creating of numerical models of structures, modeling of physical processes (heat transfer, 

deformation, corrosion, cracking, crushing), describing of various material properties (plasticity, 

viscoelasticity, fatigue, creep) and many others. One of the important questions is the modeling of loads 

and impacts on buildings and structures.  

Methods for evaluation of ice loads acting on hydraulic structures are described in modern 

domestic and foreign standards. However, these methods have a several disadvantages, such as the lack 

of a qualitative description of the anisotropic properties of ice, nature of the ice destruction in the contact 

zone, influence of cracking in ice formation and so on. The influence of the geometric dimensions of the 

structure on the process of its interaction with the ice cover is also little studied. 

In this study will be considered the numerical simulation of the ice formations destruction process 

during the impact on the vertical offshore structures. The use of modern methods of numerical modeling 

can contribute to a more accurate evaluation of the impact of ice on offshore structures, which will 

positively affect the analysis of the stress-strain state of structures and their design. 

Nowadays state of problem. The question of the influence of the ice regime of freezing water 

areas on structures has been actively discussed and considered since the second half of the 20th century. 
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Various conferences are regularly held and many articles on ice issues are being published. Increased 

attention to this topic is largely associated with the development of fuel and energy complex in the world 

and with the increasing rate of industrial development of oil and gas deposits on the Arctic shelf. 

However, the question of exactly numerical simulation of processes of ice interaction and 

structures on the shelf is appeared relatively recently, due to the development of digital technologies in 

the world. Nowadays there are a number of studies on the impacts of ice formations on structures using 

numerical simulation. But these studies do not sufficiently describe the properties of ice and ice 

formations, the processes occurring at the contact of interaction, the influence of the geometric 

dimensions of structures on the nature of the destruction of the ice and other important aspects that 

should be considered in the simulation. 

Goals and objectives of the study. The main goal of research – to develop a methodology for 

numerical modeling of ice load formation processes on the vertical supports of offshore structures and 

to evaluate its applicability to solving real engineering tasks. 

In this paper, the objectives are as follows: 

- to study the properties of ice as a material, to determine the degree of knowledge of the issue of 

ice-structure interaction modeling; 

- to study the mechanism of interaction between ice and offshore structures; 

- select and apply constitutive material models, taking into account the various physical properties 

of ice and fracture mechanism; 

- to develop an algorithm for modeling the interaction of ice formation and vertical structures; 

- to conduct numerical experiments using developed model in order to study and improve it; 

- to verify the developed model, compare the results of numerical simulation with experimental 

data. 

The object of the research is the process of interaction process between ice formations and offshore 

structures. The subject of research is numerical modeling of ice load formation processes. 

Academic novelty. The academic novelty of the study is provided by the new formulation of the 

problem of numerical simulation of the ice loads formation processes. Methodology of modeling of ice 

impacts is developed in detail in order to take into account the many factors and features of ice-structure 

interaction process that were not previously considered. The modeling of fracture of ice formations is 

conducted considering various physical and mechanical properties of ice. 

Theoretic and practical relevance. Theoretical significance is to consider the features of 

numerical modeling of ice impacts, describing the approaches, advantages and disadvantages of the 

methods used. 

The practical significance is that numerical model being developed here as well as methods for the 

numerical simulation of ice-structure interaction can contribute to an accurate assessment of the 
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influence of the ice regime in the analysis of the stress-strain state and the design of offshore ice-resistant 

platforms and other structures, that will positively affect the cost and speed of design. The methods 

presented in this thesis, will contribute to improvement of methods for calculating ice loads given in 

modern codes.  

Global problem of this study is the production of hydrocarbons in the Arctic region and its 

development. The local problem of the research is the assessment of the impact of ice formations on the 

shelf structures.  

Methodology and research methods. In this study, numerical experiments are performed in the 

SIMULIA Abaqus finite element software package. Final methodology and numerical model are verified 

using by comparing the results with experimental data. 

The following research methods were used in this work: review and analysis of existing researches 

on the topic, deductive decomposition of the problem of numerical simulation of interaction, synthesis 

of the general methodology for performing numerical experiments. axiomatic method for creating initial 

numerical models, qualitative and mathematical comparison of the results. 

The main states for defense: 

- statistical relation of ice properties; 

- constitutive models used for modeling of ice material; 

- methodology for creating of numerical model; 

- numerical model parameters and features. 

Approbation. The main results of the master thesis were published in two papers in School of 

Engineering Bulletin of Far Eastern Federal University and presented at the seminars and meetings of 

the Offshore and Coastal Engineering department. 

Also, the thesis was presented at seminars and scientific meeting at Kindai University and Toyo 

Construction Company (Osaka, Japan). 

The thesis structure is 109 pages, 4 chapters, 92 pictures and 20 tables. 
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1 Ice mechanics research review 

1.1 Molecular structure 

There are several ice types with different microstructures. But almost all of ice in the world is 

ice Ih. Ice Ih has a hexagonal structure. When water freezes hydrogen bonds are formed between its 

oxygen atoms. In solid Ih ice crystal the oxygen atoms of the nearest molecules line up in a repeating 

unit cell of a tetrahedral shape – four nearby molecules are located at the vertices of a three-sided 

pyramid, in the center of which is the fifth water molecule, as shown in the Figure 1.1 

 

Figure 1.1 – Ice lattice structure 

Another feature of the molecular structure of ice is the fact that the molecules are arranged in the 

order of hexagonal symmetry, in consequence of which the structure of ice is called hexagonal. At the 

same time, the hexagonal structure of ice consists of layers parallel to each other, called basal planes. 

All basal planes are oriented perpendicular to the main crystallographic axis, called the c-axis [77]. 

Figure 1.2 shows the projections of the three-dimensional crystal lattice of ice along two main directions. 

 

Figure 1.2 – Idealized arrangement of atoms in ice, where oxygen atoms are shown black, and 

hydrogen atoms white: a) view of the crystal lattice along the C-axis; b) view of the crystal lattice 

along the basal plane [64] 
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To analyze the effects of ice formations on structures, it is important to take into account the 

microstructure of ice formations. The formation of natural ice features is closely related to the physical 

processes occurring during freezing. During ice solidification in nature, various natural factors influence 

it, such as snow, wind, currents, temperature changes, etc. In addition, air bubbles, salts in sea water, 

alternate freezing and melting affect the microstructure of ice formations. As a result, the ice body has a 

non-uniform microstructure. 

The process of solidification of floating ice sheets initiates on or near the surface, and then 

continues unidirectionally through the downward movement of the ice–water interface as heat is 

transferred from the relatively warm water below to the colder atmosphere above [66]. The thicker the 

ice, the slower it grows, since ice prevents the penetration of cold temperatures from the air. The top 

layer of ice usually consists of crystals of a variety of shapes. The most common are needle-shaped 

crystals with c-axes inclined in many directions, but granular ice can be observed. This layer is a small 

part of the total thickness of thick ice sheets. As the ice–water interface advances, favorably oriented 

crystals expand at the expense of less favorably oriented ones which are wedged out as presented in 

Figure 1.3. The plate-like structure of the crystals denotes the orientation of the basal planes. This 

process is termed geometric selection and accounts for the development of growth texture. 

 

Figure 1.3 – A schematic sketch showing the process of geometrical selection during the unidirectional 

solidification of water [66] 

Thus, when sheets grow from thin layers in which crystals of all orientations are present, they are 

expected to possess predominantly the c-axis horizontal texture. Sheets of first-year sea ice, for instance, 

are generally composed of columnar-shaped grains, elongated in the growth direction [66] as presented 

in Figure 1.4 and Figure 1.5. In all sea ice formed by unidirectional freezing, c-axis-horizontal 

orientations develop rapidly after an initial ice skim forms, and they dominate the rest of the ice growth 

[80]. Thus, the c-axes of crystals that make up sea ice, for instance, are more or less horizontally oriented 

(i.e., perpendicular to the growth direction), and are occasionally aligned within this plane [66]. 

Also, during freezing process, the brine movement can be observed. As ice grows and the ice–

water interface advances downwards into the melt, salt ions are rejected from the ice. The salt builds up 

ahead of the advancing interface, increasing the salinity of a thin layer of a few millimeters to a few 
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centimeters in thickness. The resulting gradient in salt concentration leads to diffusion of salt away from 

the interface towards the less saline ocean [72]. Within sea ice, a downward flow increases the local bulk 

salinity and porosity and ultimately leads to the formation of brine channels: Locally, brine is replaced 

by more saline brine from above. Since the more saline brine is superheated (i.e. above the freezing 

point) with respect to the temperature of the surrounding ice, it will dissolve surrounding ice partially to 

attain thermodynamic equilibrium. These channels can be thought of as tubular river systems in which 

the tributaries are arranged with cylindrical symmetry around the main drainage channels [67]. 

 

Figure 1.4 – Schematic summarizing the main ice textures, growth conditions and timescales, and 

typical winter temperature and salinity profiles for first-year sea ice [72] 

 

Figure 1.5 – Schematic drawing showing the heterogeneity of the structure of FY sea ice [67] 
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1.2 Physical properties of ice 

After the appearance of the task of developing offshore oil and gas fields in the Arctic zone, where 

the ice-free period could be only a few months, active research began in the areas of offshore 

construction and ice engineering. Today, there are a lot of research on various characteristics of the ice. 

However, due to the fact that ice, especially sea ice, is a rather heterogeneous and anisotropic material, 

the research results vary widely. The anisotropy of ice is primarily due to its molecular structure. 

The determination of the characteristics of ice has been carried out by many researchers since the 

second half of the 20th century. The main characteristics of ice, which have been studied most widely, 

are the elastic modulus, Poisson's ratio, density, compressive strength, tensile strength and bending 

strength. Friction coefficients of ice on various materials, its salinity, porosity, and various dependencies 

between the listed characteristics are also studied. 

The following authors made a great contribution to the study of ice properties: Weeks W. F., 

Assur A., Frankenstein G., Garner R., Cox G. F. N., Kovacs A., Timco G. W., Frederking R. M. W., 

Sodhi D. S., Saeki H. A review of the data and many other significant studies of sea ice properties has 

been performed by Timco and Weeks (2010) [74]. 

Also, quite extensive investigations of the properties of both fresh and sea ice have been carried 

out by many Russian authors. In this thesis, will be used the studies of Ryvlin, Nazintsev Yu. L., 

Panov V. V. Dmitrash J. A., Moiseev V. I. and Doronin Yu. P. 

1.2.1 Ice thickness 

Ice thickness is one of the most important parameters of ice fields. Proper assessment of ice 

thickness directly affects the accuracy of the ice load. Often, the assessment of the maximum thickness 

of ice is made from the condition of the energy balance at the ice-water interface [74]: 

 𝜑𝑖𝑑𝑡 = 𝜌𝑖𝐿𝑑ℎ𝑖 , (1.1) 

where 𝜑𝑖 – heat flow from ice to air, W/m2; 

𝜌𝑖 – ice density, kg/m3; 

𝐿 – latent heat of fusion of ice, J/kg 

Thus, if we make the assumption that the temperature of the upper surface of the ice is equal to 

the air temperature, and the temperature gradient along the vertical is equal to the temperature difference 

between the lower and upper surfaces, the ice thickness ℎ𝑖, m, can be determined by the equation [19, 

20, 74] 

ℎ𝑖 =
𝜆𝑖(𝑇𝑏 − 𝑇𝑎)

𝜑𝑖
,                                                                   (1.2) 
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where 𝜆𝑖 – thermal conductivity of ice, W/(m∙°С) 

𝑇𝑏 and 𝑇𝑎 – temperature on the lower surface of the ice and air temperature, respectively, °С. 

Integrating equation (1.1) with expressing 𝜑𝑖 from equation (1.2), gives the following equation for 

ice thickness ℎ𝑖 [19, 20]: 

ℎ𝑖(𝑡) = ℎ0 (1 +
2

ℎ0
2∫𝜆𝑖

(𝑇𝑏 − 𝑇𝑎)

𝐿𝜌𝑖
𝑑𝑡

𝑡

0

)

1
2

,                                               (1.3) 

where ℎ0 – ice thickness at 𝑡 = 0. 

Assuming that  ℎ0 = 0 and ice properties (𝜆𝑖, 𝐿, 𝜌𝑖) are unchanged, we can get the Stefan equation 

to determine the thickness of the ice: 

ℎ𝑖 = (
2𝜆𝑖
𝐿𝜌𝑖

(𝑇𝑏 − 𝑇𝑎)𝑡)

1
2
                                                               (1.4) 

In this case, the integral of the temperature difference in the equation (1.3) is often called the sum 

of the number of freezing degree days, the approximate value of which is used in practice in 

equation (1.4) and is determined by the following expression 

∫(𝑇𝑏 − 𝑇𝑎)𝑑𝑡

𝑡

0

≈∑(𝑇𝑏 − 𝑇𝑎) 𝑡                                                        (1.5) 

The strong influence on the growth of ice thickness has snow. Assuming that the temperature of 

the upper surface of the snow cover is equal to the air temperature 𝑇𝑎, the formula (1.3), when accounting 

for snow, takes the following form [19, 20]: 

ℎ𝑖(𝑡) = ℎ0(1 +
2

ℎ0
2∫

𝜆𝑖(𝑇𝑏 − 𝑇𝑎)

𝐿𝜌𝑖 (1 +
𝜆𝑖ℎ𝑠
𝜆𝑖ℎ

)
𝑑𝑡

𝑡

0

)

1
2

,                                            (1.6) 

The above equations usually show an overestimated value of ice thickness, since they do not take 

into account the effect of wind on heat transfer between the ice surface and air, as well as the effect of 

heat flow at the ice-water interface. 

1.2.2 Phase composition 

The phase composition of sea ice has a very large impact on almost all its properties. In sea ice, in 

addition to crystals, there are a liquid phase, air and salts in a dissolved and solid state. The mass 𝑚, g, 

of a certain volume of ice is determined by the following equation [19, 20, 51] 

 𝑚 = 𝑚𝑖 +𝑚𝑤 +𝑚𝑠, (1.7) 

where 𝑚𝑖 – mass of freshwater ice, g; 
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𝑚𝑤 – the mass of water in the liquid state, g; 

𝑚𝑠 – mass of salts, g: 

 𝑚𝑠 = 𝑚𝑏𝑠 +𝑚𝑐𝑠, (1.8) 

𝑚𝑏𝑠 – the mass of salts in the dissolved state (in brine), g; 

𝑚𝑐𝑠 – mass of salts in the crystalline state, g; 

Salinity of ice is the ratio of the mass of salts to the total mass of ice. Thus, the salinity of ice 𝑠𝑖, 

fraction by weight, is determined by the equation 

𝑠𝑖 =
𝑚𝑠
𝑚
,                                                                            (1.9) 

Brine salinity 𝑠𝑏, fraction by weight, is the mass of dissolved salts per unit mass of brine 

𝑠𝑏 =
𝑚𝑏𝑠
𝑚𝑏

                                                                         (1.10) 

where 𝑚𝑏 – brine weight, g: 

 𝑚𝑏 = 𝑚𝑏𝑠 +𝑚𝑤 (1.11) 

Doronin Yu. P. on the basis of research Schwerdtfeger (1965) received the following dependence 

of brine salinity on temperature: 

𝑑𝑠𝑏
𝑑𝑇

=
𝛽

1 +
𝑚𝑏𝑠
𝑚𝑤

,                                                                   (1.12) 

where 𝛽 – empirical coefficient of proportionality between brine concentration and temperature, °C-1. 

Mass of brine 𝑚𝑏, g, Doronin Yu. P. defines by the following expression 

𝑚𝑏 = 𝑚𝑏𝑠 +𝑚𝑤 =
𝑚 ∙ 𝑠𝑖 −𝑚𝑐𝑠

𝑠𝑏
,                                                   (1.13) 

Nazintsev and Panov in their book [51] on the basis of the experiments of Nelson and Thompson 

(1954) and Gitterman (1937) determined the values of 𝛽 and 𝑚𝑏𝑠/𝑚𝑤, used in the equation (1.12): 

𝛽 = {
−1.848 ∙ 10−2,   at 0 ≥ 𝑇 ≥ −7.5 °𝐶

−1.077 ∙ 10−2,   at − 7.5 ≥ 𝑇 ≥ −22.4 °𝐶

−0.532 ∙ 10−2,   at − 22.4 ≥ 𝑇 ≥ −30.0 °𝐶

                                    (1.14) 

𝑚𝑏𝑠
𝑚𝑤

= {

𝛽𝑇 ∙ 10−2,   at 0 ≥ 𝑇 ≥ −7.5 °𝐶

(5.670 − 1.077 ∙ 𝑇) ∙ 10−2,   at − 7.5 ≥ 𝑇 ≥ −22.4 °𝐶

(16.770 − 1.532 ∙ 𝑇) ∙ 10−2,   at − 22.4 ≥ 𝑇 ≥ −30.0 °𝐶

                     (1.15) 

Thus, the dependence of the ratio of the mass of salts to the mass of water in brine is represented 

by a piecewise linear function of temperature as shown in Figure 1.6. In general, Nazintsev Yu. L. 

identified the following equations [51]: 

𝑚𝑏 = 𝑠𝑖
1 + (𝛽𝑇 + 𝑙)

𝛼𝑇 + 𝑘
,                                                             (1.16) 

𝑚𝑠𝑡 = 𝑠𝑖(1 + 𝛾) (1 −
𝛽𝑇 + 𝑙

𝛼𝑇 + 𝑘
) ,                                                     (1.17) 
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𝑠𝑏 =
𝛽𝑇 + 𝑙

1 + 𝛽𝑇 + 𝑙
,                                                                  (1.18) 

where 𝑚𝑠𝑡 – mass of salts in brine (taking into account salts, including crystallized water), g; 

𝛼, 𝛽, 𝑘 и 𝑙 – empirical coefficients presented in the Table 1.1. 

 

Figure 1.6 – Chart of equilibrium salt concentrations in sea ice [51] 

Table 1.1 – The values of empirical coefficients according to [51] 

Ice temperature 𝑇𝑖, °C 
Coefficient 

𝛼, °K-1 𝛽, °K-1 𝑘 𝑙 

0 ≥ 𝑇 ≥ −7.5 -0.01848 -0.01848 0 0 

−7.5 ≥ 𝑇 ≥ −22.4 -0.01367 -0.01077 0.0332 0.0567 

−22.4 ≥ 𝑇 ≥ −30.0 -0.10567 -0.00532 -1.9920 0.1677 

Notation: the boundaries of temperature ranges are determined by the points of deposition of salts 

Na2SO4∙10H2O (at -7,5 °С) and NaCl∙2H20 (at -22,4 °С) [51]. 

 

Brine volume 𝜈𝑏, ‰, is also used in practice. Nazintsev Yu. L. suggests the following formula for 

determining the brine volume 

𝜈𝑏 =
𝑚𝑏𝜌𝑠𝑖
𝜌𝑏

,                                                                       (1.19) 

where 𝜌𝑠𝑖 – sea ice density g/cm3; 

𝜌𝑏 – brine density g/cm3. 

USA researchers Frankenstein and Garner (1967) [21] propose to determine 𝜈𝑏 by the equation 
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𝜈𝑏 = 𝑠𝑖 (
𝑎

|𝑇𝑖|
+ 𝑏) ,                                                                 (1.20) 

where 𝑎 and 𝑏 – empirical coefficients presented in the Table 1.2. 

 

Table 1.2 – Empirical coefficients 𝑎 and 𝑏 according to Frankenstein and Garner [21] 

Ice temperature 𝑇𝑖, °C 
Coefficient 

𝑎 𝑏 

−0.5 ≥ 𝑇 ≥ −2.06 52.56 -2.28 

−2.06 > 𝑇 ≥ −8.2 45.917 0.93 

−8.2 > 𝑇 ≥ −22.9 43.795 1.189 

 

The equation (1.20) is widely used by many authors, as well as regulatory documents. For cases 

where a simple but less accurate equation is required Frankenstein and Garner determine the brine 

volume at temperatures from 0.5 to 20 °C, taking 𝑎 = 49.185 and 𝑏 = 0.532. 

Equations for determining the total phase composition of ice have been also described by Cox and 

Weeks (1983) [14]. Based on previous studies by different authors, Cox and Weeks suggested using 

some approximating functions to determine the volume fractions of brine, air, and solid salts in sea ice. 

The volume fractions of brine 𝜈𝑏, air 𝜈𝑎 and solid salts 𝜈𝑠𝑠 according to Cox and Weeks (1983) are 

respectively defined as follows: 

𝜈𝑏 =
𝜌𝑠𝑖𝑠𝑖
𝐹1(𝑇)

,                                                                       (1.21) 

𝜈𝑎 = 1 −
𝜌𝑠𝑖
𝜌𝑖
+ 𝜌𝑠𝑖𝑠𝑖

𝐹2(𝑇)

𝐹1(𝑇)
,                                                         (1.22) 

𝜈𝑠𝑠 = 𝐶
𝜌𝑏
𝜌𝑠𝑠
+ 𝜈𝑏,                                                                   (1.23) 

where 𝐹1(𝑇), 𝐹2(𝑇), 𝐶 – empirical functions of temperature: 

 𝐹1,2(𝑇) = 𝛼0 + 𝛼1𝑇 + 𝛼2𝑇
2 + 𝛼3𝑇

3, (1.24) 

𝐶 =
𝐹2(𝑇) −

𝜌𝑏
𝜌𝑖
+ 1

𝜌𝑏
𝜌𝑖
−
𝜌𝑏
𝜌𝑠𝑠

,                                                               (1.25) 

where 𝛼0, 𝛼1, 𝛼2, 𝛼3 – empirical coefficients presented in Table 1.3; 

𝜌𝑖 – density of pure freshwater ice, t/m3; 

𝜌𝑠𝑠 – the average solid salt density assumed to be constant at 1.5 t/m3 [14]. 

Nazintsev Yu. L and Panov V. V determine the density of brine 𝜌𝑏, t/m3, using the expression 

obtained by Cox and Weeks (1975) [51]: 

 𝜌𝑏 = 1 + 0.0008𝑠𝑏 (1.26) 
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In equation (1.26) the brine salinity 𝑠𝑏 is taken in ‰. 

 

Table 1.3 – Empirical coefficients 𝛼𝑖 

Ice temperature 𝑇𝑖, °C 
Coefficient 

𝛼0 𝛼1 𝛼2 𝛼3 

−2 ≥ 𝑇 ≥ −22.9 

𝐹1 -4.732 -22.45 -0.6397 -0.01074 

𝐹2 8.903 10-2 -1.763 10-2 -5.33 10-4 -8.801 10-6 

−22.9 > 𝑇 ≥ −30 

𝐹1 9899 1309 55.27 0.716 

𝐹2 8.547 1.089 4.518 10-2 5.819 10-4 

 

Kovacs (1997) [39] derived following equation based on ice core measurements made at 10- cm 

increments through 44 Beaufort Sea winter ice floes shown in the Figure 1.7: 

 𝜈𝑏 = 41,64𝑠𝑖
0,88|𝑇|−0,67, (1.27) 

 

Figure 1.7 – Sea ice bulk brine volume versus average ice floe temperature and bulk salinity according 

to Kovacs (1997) [39] 

Since in the sea ice there are not only inclusions of brine but also air inclusions, the total porosity 

of sea ice 𝜈𝑏, volume fraction, is determined by the equation [74] 

 𝜈𝑡 = 𝜈𝑏 + 𝜈𝑎, (1.28) 

where 𝜈𝑏 – relative brine volume; 

𝜈𝑎 – the relative air volume; 

The volume of air in sea ice as well as the methods for determining it are less studied than the 

volume of brine. In practice, usually the volume fractions of air and solid salts are neglected due to their 

small value. The equation for determining the total porosity of sea ice 𝜈𝑡, ‰, was obtained by 

Kovacs (1997) [39]: 

 𝜈𝑡 = 19.37 + 36.18𝑠𝑖
0.91|𝑇|−0.69, (1.29) 
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1.2.3 Salinity 

Sea ice salinity has also been studied for quite a long time. Typically for measuring salinity of sea 

ice cores are taken. Then the cores are cut into separate plates, placed in separate sealed containers and 

left until complete melting. After special device (salimeter) is used to measure the electrical conductivity 

of melt water. On the basis of electrical conductivity and temperature values the salinity is determined 

[74]. 

Ryvlin (1974) [61] was one of the first who empirically expressed the salinity of ice 𝑠𝑖, ‰, vs. ice 

floe thickness. His equation takes into account the seawater salinity and the ice growth rate: 

 𝑠𝑖 = 𝑠𝑤(1 − 𝑠𝑟)𝑒
−𝑎∙ℎ𝑖

0.5
+ 𝑠𝑤𝑠𝑟 , (1.30) 

where 𝑠𝑤 – salinity of water, ‰; 

ℎ𝑖 – ice thickness, m; 

𝑎 – growth rate coefficient; 

𝑠𝑟 – salinity ratio: 

𝑠𝑟 =
𝑠𝑖𝑓
𝑠𝑤
,                                                                          (1.31) 

here 𝑠𝑖𝑓 – final bulk salinity at end of growth season, ‰. 

Ryvlin A. Ya proposed to use the following values of the parameter 𝑎: 

𝑎 = {
0.35   at 𝐺𝑅 ≥ 4 cm/day
0.5   at 𝐺𝑅 ≤ 0.5 cm/day

                                                    (1.32) 

where 𝐺𝑅 – ice sheet growth rate, cm/day. 

Ryvlin also suggests that where 𝐺𝑅 is not known, one may assume the value of 0.5 and 𝑎 ≈ 0.13. 

At the same time, the salinity of the ice was investigated by American researchers Cox and Weeks 

(1974) [15]. The authors analyzed the results of measuring the salinity of ice accumulated over several 

years by many authors as it shown at Figure 1.8 and obtained the following dependences of the salinity 

𝑠𝑖, ‰, of ice on its thickness: 

𝑠𝑖 = {
14.237 − 19.39ℎ𝑖   at ℎ𝑖 < 0.4 m

7.88 − 1.59ℎ𝑖   at ℎ𝑖 ≥ 0.4 m
                                              (1.33) 

Large and significant ice studies were performed by Timco and Frederking (1990) [75]. In this 

paper, the authors analyzed more than 400 tests of small samples and obtained empirical equations for 

some physical and mechanical properties of ice. As for the salinity of the ice, they used additional data 

together with the data shown in Figure 1.8 and obtained modified equations: 

𝑠𝑖 = {
13.4 − 17.4ℎ𝑖   at ℎ𝑖 ≤ 0.34 m
8 − 1.62ℎ𝑖   at ℎ𝑖 > 0.34 m

                                                (1.34) 



17 

 

Figure 1.8 – Sea-ice bulk salinity vs. floe thickness according to Cox and Weeks (1974) [15] 

Some empirical dependences of ice salinity were obtained by Kovacs (1996) [40] based on the 

experiments of Fedotov (1973), Cox and Weeks (1974), Ryvlin (1974) and others. He combined all 

Arctic and Antarctic first-year sea-ice bulk salinity vs. floe thickness data compiled from numerous 

sources as it shown on Figure 1.9. 

 

Figure 1.9 – All Arctic and Antarctic sea-ice bulk salinity vs. floe thickness data compiled from 

numerous sources according to Kovacs (1996) [40]: a) for first-year ice; b) for multi-year ice 

For one-year ice, when ice thickness is less than 2 m, the salinity 𝑠𝑖, ‰, according to 

Kovacs (1996) [40] is determined by equation 

𝑠𝑖 = 4.606 + (
91.603

ℎ𝑖
) ,                                                      (1.35) 

where ℎ𝑖 – ice thickness, sm.  

For multi-year ice the salinity 𝑠𝑖, ‰, when ice thickness is from 2 to 9 m, is determined by equation 

𝑠𝑖 = 1.85 + (
80217.9

ℎ𝑖
2 )                                                        (1.36) 
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It should be noted that the square value of the correlation coefficient 𝑟2 obtained by Kovacs for 

the regression equation (1.35) is 0.730, and for regression equation (1.36) it is equal to 0.222. 

1.2.4 Ice density 

Ice density is an important property of ice. The density of ice directly affects the buoyancy of ice 

formations, as well as the load from its own ice weight. The density of ice was studied widely by many 

authors. Reported values vary over a wide range from 0.72 t/m3 to 0,94 t/m3 [74]. 

Nazintsev Yu. L and Panov V. V [51] determine the density of pure freshwater ice 𝜌𝑖(𝑇), t/m
3, by 

the equation  

𝜌𝑖 =
𝜌0

1 + 𝛾𝑇
,                                                                      (1.37) 

where 𝜌0 – pure freshwater ice density at 0 °C equal to 916.8 kg/m3; 

𝛾 – bulk ice thermal expansion coefficient equal to 1.58∙10-4 K-1. 

Nazintsev Yu. L [51] also performed calculations of the phase composition of sea ice using 

equations (1.16)-(1.19). The density of sea ice 𝜌𝑠𝑖, t/m
3, he determined by the equation 

𝜌𝑠𝑖 =
𝜌0

1 + 1.65 ∙ 10−4 ∙ 𝑇
                                                           (1.38) 

Cox and Weeks (1983) [14] used the following equation, that was calculated by Pounder (1965), 

to determine the density of pure freshwater ice 𝜌𝑖, t/m
3, which is directly or indirectly used in equations 

(1.21)-(1.25): 

 𝜌𝑖 = 0.917 − 1.403 ∙ 10
−4𝑇 (1.39) 

Authors also suggests the expression for determining the density of sea ice 𝜌𝑠𝑖, t/m
3, taking into 

account its gas and brine volumes [14]: 

𝜌𝑠𝑖 = (1 − 𝜈𝑎)
𝜌𝑖 ∙ 𝐹1(𝑇)

𝐹1(𝑇) − 𝜌𝑖 ∙ 𝑠𝑖 ∙ 𝐹2(𝑇)
,                                               (1.40) 

where 𝜈𝑎 – relative air volume, volume fraction; 

𝐹1(𝑇), 𝐹2(𝑇) – empirical functions of temperature determined by equation (1.24). 

If we accept that there are no air inclusions in the ice, i.e. 𝜈𝑎 = 0, the density of sea ice can be 

easily determined. 

Some empirical equation for determining the density of ice monocrystals was used by Gammon et 

al. (1983) [25] in series of experiments for obtaining elastic properties of ice: 

𝜌𝑖 =
𝜌0

1 + 1.576 ∙ 10−4𝑇 − 2.778 ∙ 10−7𝑇2 + 8.850 ∙ 10−9𝑇3 − 1.778 ∙ 10−10𝑇4
         (1.41) 

According to authors the equation (1.41) gives the maximum standard deviation ±1.5%. 
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1.3 Mechanical properties of ice 

1.3.1 Elastic properties 

As in the case of most materials, under small loads, deformations are recoverable and proportional 

to stresses according to Hooke's law [66]: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙 , (1.42) 

𝐶𝑖𝑗𝑘𝑙 – elastic stiffness constants, Pa; 

𝜎𝑖𝑗 and 휀𝑘𝑙 – the components of stress and strain tensors 𝑇𝜎 and 𝑇𝜀 respectively: 

𝑇𝜎 = [

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

] = [

𝜎1 𝜎6 𝜎5
𝜎6 𝜎2 𝜎4
𝜎5 𝜎4 𝜎3

], 

𝑇𝜀 = [

휀11 휀12 휀13
휀12 휀22 휀23
휀13 휀23 휀33

] = [

휀1 휀6 휀5
휀6 휀2 휀4
휀5 휀4 휀3

] 

Ih ice possesses only five independent stiffness constants: 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44 which are 

parameters of the material that characterize the ability of a material to deform elastically. The stiffness 

matrix for monocrystals of ice Ih become [66]: 

𝐶𝑖𝑗 =

(

 
 
 

𝐶11
𝐶12
𝐶13
0
0
0

𝐶12
𝐶11
𝐶13
0
0
0

𝐶13
𝐶13
𝐶33
0
0
0

0
0
0
𝐶44
0
0

0
0
0
0
𝐶44
0

0
0
0
0
0

1/2(𝐶11 − 𝐶12))

 
 
 

 

These constants are expressed with respect to a rectangular coordinate system whose axes are 

specified in terms of the unit cell of the monocrystal. For ice Ih, axis 𝑋3 is parallel to the c-axis and 𝑋1 

and 𝑋2 may be taken as any pair of axes within the basal plane. 

The values have been obtained by Gammon et al. (1983) [25]. They applied the method of 

Brillouin spectroscopy in which incident laser light was scattered from thermally induced acoustic waves 

and Doppler shifted. Table1.4 lists the weighted mean elastic constants calculated from the four sets of 

Brillouin measurements, along with several quantities derived from these elastic constants. 

The values in Table 1.4 were established using the value of the ice density calculated by the 

equation (1.41). The authors also derived an equation for determining the values of stiffness coefficients 

at other temperatures. According to value Gammon et al. (1983) the value 𝐶(𝑇) of any of the 

fundamental stuffiness constants at temperature 𝑇 may be given by the relationship: 

 𝐶(𝑇) = 𝐶(𝑇𝑟) ∙ (1 − 𝑎(𝑇 − 𝑇𝑟)), (1.43) 

where 𝑇𝑟 – reference temperature at which the constant was measured; 

𝑎 – empirical factor equal to 1.42 ∙ 10−3 K−1. 
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Table 1.4 – Elastic parameters for ice monocrystals at -16 °C [25, 66] 

Property Units Symbol Value 

Dynamic elastic moduli GPa 

𝐶11 13.929 ± 0.041 

𝐶12 7.082 ± 0.039 

𝐶13 5.765 ± 0.023 

𝐶33 15.010 ± 0.046 

𝐶44 3.014 ± 0.011 

Bulk modulus GPa 𝐾 8.899 ± 0.017 

Poisson’s ratio - 

𝜇12 0.415 

𝜇13 0.224 

𝜇31 0.274 

 

Thus, the authors determined the elastic properties of the ice monocrystals. In addition, the desired 

values are the so-called "true" values. Since the elastic modulus has a strong dependence on the strain 

rate and the time of their action, there is a true elastic modulus and effective elastic modulus. 

The true elastic modulus of ice characterizes the deformation of a purely elastic, time-independent 

character [33]. Its value is determined using dynamic measurements and therefore it is often called the 

dynamic modulus of elasticity. An effective modulus characterizes time-dependent recoverable and 

inelastic non-recoverable deformations. The effective modulus is determined by static methods, and 

therefore it is sometimes called the static modulus of elasticity. The effective modulus is lower than the 

true modulus of elasticity. 

Since the problems solved in this work have a scale much larger than the scale of the microstructure 

of one ice crystal, the best solution would be to consider the properties of polycrystals of ice Ih. In 

principle the elastic properties of polycrystals free from porosity, inclusions and other defects can be 

calculated from the fundamental elastic constants and from the orientations, sizes and shapes of the 

grains [66]. In this case, two approaches can be considered to determining the elastic characteristics of 

ice formation:  

- consider that the ice feature has isotropic properties if we accept the fact that ice crystals or grains 

are randomly oriented in space throughout the ice body; 

- consider the ice growth process described earlier. Since the ice texture develops during growth 

and in most cases has more or less established orientation of crystals and c-axes, in this case we can say 

that ice formations will have orthotropic properties. 

Isotropic elasticity. First, let’s consider the elastic properties of ice features, in the case of isotropy. 

Elastic properties in that case are completely described by only two independent constants, chosen from 
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Young’s modulus 𝐸, the shear modulus 𝐺, Poisson’s ratio 𝜈 and the bulk modulus 𝐾 [66]. Any 

combination of the two parameters described above can be represented, since they are interdependent 

and the equations for their determination are well known from the strength of materials, for example: 

𝐺 =
𝐸

2(1 + 𝜇)
,                                                                     (1.44) 

𝐾 =
𝐸

3(1 − 2𝜇)
,                                                                    (1.45) 

It is more common to talk about the most widely used elastic parameters: Poisson's ratio and 

Young's modulus. The modulus of ice is a strong function of the loading rate, temperature, grain size, 

and ice type. A large number of studies have been performed to determine the modulus of elasticity of 

ice.  

The true values of the parameters of ice elasticity were also calculated by Gammon et al. 

(1983) [25] based on acoustic measurements. These values are presented In Table 1.5. 

 

Table 1.5 – Polycrystalline (isotropic) averaged elastic parameters at temperature -16 °C [25] 

Property Units Symbol Value 

Bulk modulus 

GPa 

𝐾 8.899 

Young's modulus 𝐸 9.332 

Shear modulus 𝐺 3.521 

Poisson's ratio - 𝜇 0.325 

Lame constants GPa 
𝜆 6.551 

𝜇 3.521 

 

The dynamic modulus of elasticity 𝐸𝑖,𝑑 and static modulus of elasticity 𝐸𝑖,𝑠, GPa, of freshwater ice 

can be determined by the following equations [41]: 

 𝐸𝑖,𝑑 = 9.21(1 − 0.00146𝑇), (1.46) 

 𝐸𝑖,𝑠 = 5.69 − 0.0648𝑇, (1.47) 

where 𝑇 – ice temperature, °C. 

For sea ice, the elastic modulus also depends on the brine volume. The dependence of the modulus 

of elasticity of sea ice 𝐸𝑠𝑖, GPa, on the volume of brine was proposed by Weeks and Assur (1967) [81]: 

 𝐸𝑠𝑖 = 𝐸𝑖(1 − 𝜈𝑏)
4, (1.48) 

where 𝐸𝑖 – modulus of elasticity of freshwater ice, MPa; 

𝜈𝑏 – brine volume fraction. 

An equation that directly defines the effective modulus of elasticity of sea ice proposed by 
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Vaundrey (1997) [78]. This equation is used in international ISO/FDIS 19906:2019(E) standard: 

 𝐸𝑠𝑖,𝑠 = 5.316 − 0.436𝜈𝑏
0.5, (1.49) 

Langleben and Pounder (1963) [42] processed the results of over 300 measurements of elastic 

modulus of sea ice from several locations in the Canadian Arctic and Greenland. They obtained a linear 

relation between elastic modulus and brine volume with a small scatter of data as presented in Figure 

1.10. True elastic modulus of sea ice 𝐸𝑠𝑖,𝑑, GPa, as function of brine volume according to Langleben and 

Pounder (1963) [42] is defined as follows 

 𝐸𝑠𝑖,𝑑 = 10 − 35.1𝜈𝑏, (1.50) 

 

Figure 1.10 – Elastic modulus as a function of brine volume for first-year sea ice according to [42] 

The equations for determining the dynamic elastic modulus according to the Abele and 

Frankenstein (1966) and Tabata (1958), respectively, are presented in [8] as follows 

 𝐸𝑠𝑖,𝑑 = 9.01 − 46.4𝜈𝑏, (1.51) 

 𝐸𝑠𝑖,𝑑 = 9.27 − 28.2𝜈, (1.52) 

In equations (1.46)-(1.52) 𝜈𝑏 is the brine volume fraction and 𝜈 is total porosity. 

Poisson's ratio is one of the main mechanical properties that characterize the behavior of a material 

under load. Poisson's ratio 𝜇 is defined as the ratio of the lateral strain to the longitudinal strain in a 

homogeneous material for a uniaxial loading condition. The Poisson’s ratio, just like the elastic modulus, 

can be dynamic and static (true and effective). 

One of the earliest proceedings in which an equation was proposed for determining the Poisson's 

ratio is a monograph by Weeks and Assur (1967) [81]. Authors obtained the following formula of 

dynamic Poisson's ratio 𝜇𝑖,𝑑 based on in-situ seismic observations of Lin’kov (1958) at Kap Shmit, 

Siberia: 

𝜇𝑖,𝑑 = 0.333 + 0.06105 exp (
𝑇

5.48
)                                                  (1.53) 
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Figure 1.11 – (𝜇 − 1/3) vs ice temperature, based on in-situ seismic determinations [81] 

Murat and Lainey (1982) [49] measured the longitudinal and transverse strains on simply 

supported beams loaded in flexure. The tests were performed at different temperatures and loading rates 

on columnar ice. As a result, authors proposed the following equations for the effective (static) Poisson's 

ratio 𝜇𝑖,𝑠: 

𝜇𝑖,𝑠 = 0.24 (
�̇�

�̇�1
)
−0.29

+ 𝜇𝑖,𝑑 ,                                                         (1.54) 

𝜇𝑖,𝑠 = 0.0024 (
휀̇

휀1̇
)
−0.29

+ 𝜇𝑖,𝑑 ,                                                      (1.55) 

where �̇� and �̇�1 – stress rate and unit stress rate respectively, kPa∙s-1; �̇�1 = 1 kPa ∙ s
−1; 

휀̇ and 휀1̇ – strain rate and unit strain rate respectively, s-1; 휀1̇ = 1 s
−1. 

Orthotropic elasticity. If to take into account the ice growth process of ice feature, it can be said 

that the structure of the sheet has three mutually perpendicular mirror planes (two in the vertical plane) 

and so possesses orthotropic symmetry [66]. In this case elastic properties of ice formations can be 

described by three Young’s moduli 𝐸1, 𝐸2, 𝐸3, by the three shear moduli 𝐺12, 𝐺13, 𝐺23, and to six 

Poisson’s ratios 𝜇12, 𝜇21, 𝜇13, 𝜇31, 𝜇23, 𝜇32 (where 𝜇𝑖𝑗 = −휀𝑗/휀𝑖 and 𝑖 – direction of uniaxial loading). 

Schulson E. M., Duval P. (2009) calculated the values of these parameters for 3 texture types of 

ice sheets, denoted S1, S2 and S3 ice. These values are presented in Table1.6 and related with rectangular 

coordinate system where 𝑋1 and 𝑋2 lie within the horizontal plane of the sheet and 𝑋3 is parallel to the 

vertical direction. In ice S1 c-axes are parallel to 𝑋3, in ice S2 c-axes are randomly oriented in 𝑋1–𝑋2 

plane and in ice S3 c-axes are parallel to 𝑋1. 

The most convenient approach for modeling ice properties is to consider both isotropic and 

orthotropic elasticity regarding to ice structure. As it was mentioned in subsection 1.2 ice in general 

there are two different types of ice structure in ice floe. Top part of ice field is granular ice with more or 

less randomly oriented c-axes. For this type of ice isotropic elastic properties can be considered. On the 
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other hand, bottom layers of ice floe are composed of columnar ice. This type of ice has different 

parameters of elasticity and strength in vertical and horizontal directions, so it should be considered as 

orthotropic ice. 

 

Table 1.6 – Elastic properties of homogeneous orthotropic sheets of ice Ih at -16 °C [66] 

Texture 

Young’s modulus 𝐸, 

GPa 

Shear modulus 𝐺, 

GPa 
Poisson’s ratio 

𝐸1 𝐸2 𝐸3 𝐺12 𝐺13 𝐺23 𝜇12 𝜇21 𝜇13 𝜇31 𝜇23 𝜇32 

S1 9.71 9.71 11.8 3.42 3.01 3.01 0.415 0.415 0.224 0.274 0.224 0.274 

S2 9.58 9.58 9.71 3.61 3.21 3.21 0.327 0.327 0.344 0.320 0.344 0.320 

S3 11.8 9.71 9.71 3.01 3.01 3.42 0.274 0.224 0.274 0.224 0.415 0.415 

1.3.2 Compressive strength 

The compressive strength is another fundamental property of sea ice. The destruction of ice during 

its impact on vertical structures occurs mainly due to the stresses reaching the compressive strength. 

Thus, the compressive strength of ice plays the largest role in the magnitude of the load on the vertical 

offshore structures. 

Uniaxial compressive strength. The typical apparatus of compressive strength measurements is 

shown in Figure 1.12 [74]. To conduct the compressive strength test, cores of sea ice usually are cut into 

cylinders. The samples are placed in a test apparatus that can generate high loads. A load cell is included 

in-line to measure the applied load. Among the important factors affecting the results of the experiment 

are the stiffness of the testing machine, the parallelism of the faces of the samples, as well as the aspect 

ratio and shape of the samples [66]. 

 

Figure 1.12 – Typical apparatus for a uniaxial compression test on ice [74] 
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Many investigators measured the compressive strength of sea ice. Based on their research, it can 

be said that the compressive strength of sea ice depends on many factors. Among such factors, one can 

especially distinguish the strain rate, the texture of ice, temperature and porosity. 

If we talk about the strain rate, then it plays a very large role in the behavior of ice during 

compression. It is well known that ice in compression can exhibit both plastic and brittle behavior 

depending on the strain rate as presented in Figure 1.13. This property of ice has been observed and 

confirmed by many authors. 

 

Figure 1.13 – Schematic compressive stress–strain curves [66] 

At low strain rates, usually less than 10-4 s-1, the ice exhibits plastic behavior, which is 

characterized by a smooth stress-strain curve and hardening. Also, at these speeds, the compressive 

strength of ice is little dependent on grain size, but slowly increases with decreasing grain size [13] as 

presented in Figure 1.14 (a). 

 

Figure 1.14 – Peak stress vs grain-size: a) strain-rates between 10-7 and 10-3 s-l; b) strain-rates between 

3 ∙ 10-3 and 10-1 s-l 
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The brittle behavior of ice can be observed at strain rates of 10-3 and higher. Stress-strain curves 

in this case are close to linear in shape as shown in the Figure 1.13. Also, these curves are characterized 

by small "drops" associated with the appearance and development of microcracks. The effect of grain 

size in this case is stronger than with plastic behavior as presented in the Figure 1.14 (b). 

A consequence of both strain-rate hardening (ductile regime) and strain-rate softening (brittle 

regime) is that the compressive strength reaches a maximum at the ductile-to-brittle transition and at 

strain rate from 10-4 to 10-3 s-1 [13, 28, 65, 66, 67]. Thus, the transition from plastic to brittle behavior 

does not occur instantly. The reason is that the overall inelastic deformation comprises a mixture of 

creep via dislocation slip and cracking, the proportion of which varies in the vicinity of the transition 

[66]. In Figure 1.13, the transition point is characterized by a strain rate equal to 휀�̇�𝑐. The magnitude of 

these strain rates, i.e., the rates of ductile-brittle transition, has been studied many times and ranges from 

about 10-4 to 10-3 s-1. Since the ice strength is maximum at these rates, today the ice load acting on the 

structures is calculated precisely at the strength corresponding to this transition zone. This behavior is 

exhibited by both single crystals and polycrystals. Typical results of ice compression experiments 

showing the dependence of strength on the strain rate are shown in Figure 1.15, Figure 1.16 and Figure 

1.17. 

 

Figure 1.15 – Peak stress vs strain-rate in experiments of Cole D. M. [13] 

 

Figure 1.16 – Strain rate dependence of compressive strength of ice according to Gold L. W. [28] 
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Figure 1.17 – Unconfined compressive strength of single crystals of ice vs. strain rate [66] 

It is also worth considering the effect of load direction on ice strength. The direction of the load 

on the strength was investigated to a much lesser extent. Nevertheless, today the fact is known that the 

compressive strength of ice reaches its minimum when the load direction is oriented at an angle of 45 

degrees to the c-axes [66]. This feature is confirmed by the studies of Payton (1966) [67] and 

Carter (1971) [66] as shown in figures below. In Figure 1.18 the loading-angle notation is as follows: 

the first number gives the angle between the axis of the test cylinder and the vertical, while the second 

number gives the angle between the sample and the c-axis of the single ice crystal being tested. 

 

Figure 1.18 – Average failure strength in compression (solid circles) and in direct tension (open 

circles) versus sample orientation [67] 

 

Figure 1.19 – Unconfined brittle compressive strength (and tensile strength) of single crystals of ice at 

−10 °C vs. orientation of the basal plane [66] 
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Schulson E. M. and Duval P (2009) collected a data from uniaxial compression experiments 

performed by many authors such as: Jones (1997), Schulson et al. (2005) and Shazly et al. (2006) as 

presented in the Figure 1.20. Taken collectively, the measurements indicate that dynamic strength 𝜎𝑐, 

MPa, at -10 °C may be described by the following relationship with variance r2 equal to 0.71 [66]: 

 𝜎𝑐 = 9.8(휀̇)
0.14, (1.56) 

 

Figure 1.20 – The compressive strength of ice at -10 °C according to Schulson and Duval (2009) 

Timco and Frederking (1990) [75] developed some equations for calculating the compressive 

strength of sea ice sheets. They compiled 283 compressive strength test results on first-year sea ice. They 

derived the equations for the uniaxial compressive strength of first-year sea ice for several different grain 

structures. For horizontally loaded columnar ice, the uniaxial compressive strength 𝜎𝑐, MPa, is defined 

as follows 

𝜎𝑐 = 37(휀̇)
0,22 (1 − √

𝜈𝑡
270

) ,                                                       (1.57) 

where 휀̇ – strain rate, s-1; 

𝜈𝑡 – total porosity, ‰. 

For vertically loaded columnar ice, the uniaxial compressive strength 𝜎𝑐, MPa is defined as follows 

𝜎𝑐 = 160(휀̇)
0.22 (1 − √

𝜈𝑡
200

)                                                        (1.58) 

For granular ice, the uniaxial compressive strength 𝜎𝑐, MPa is defined as follows 

𝜎𝑐 = 49(휀̇)
0.22 (1 − √

𝜈𝑡
280

)                                                         (1.59) 

The applicable range of strain rates for these equations is from 10−7 s −1 to about 2 ∙ 10−4 s −1. 

Kovacs (1997) [39] obtained the following equation for the unconfined compressive strength of 

first-year sea ice floes 

 𝜎𝑐 = 𝐵2(휀̇)
1/𝑛𝜈𝑡

𝑚, (1.60) 
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where 𝐵2, 𝑛 and 𝑚 – empirical parameters, values of which can be taken equal 𝐵2 = 2700, 𝑛 =

3, 𝑚 = −1. 

Compressive strength of confined ice. The above features and the presented equations are obtained 

on the basis of uniaxial compression strength tests of ice. However, when ice fields interact with 

structures, a complex stress-strain state arises in them. In this case, it would be incorrect to characterize 

this state by the ice strength characteristics obtained from uniaxial tests. Therefore, in recent years, 

studies on the strength of ice under “confined” conditions corresponding to biaxial and triaxial stress 

states of the ice sheet have begun to appear more often. The confinement induces biaxial and triaxial 

stress states, which have a large effect on the strength of the ice and on its mode of failure [66]. 

There are several ways to perform biaxial and triaxial compression experiments on ice samples, 

such as: triaxial loading using pressurized fluid, passive proportional loading, true triaxial loading and 

indentation. The most convenient is the true triaxial loading method, because the three principal stresses 

𝜎1, 𝜎2 and 𝜎3 (𝜎1 is taken as the most compressive stress) can be varied independently and all loading 

paths in principal stress space can be explored, including biaxial ones. The loading paths in this method 

of testing are defined by the ratio (𝜎1: 𝜎2: 𝜎3) = (1: 𝑅21: 𝑅31), where 𝑅21 = 𝜎2/𝜎1 ≤ 1 and 

𝑅31 = 𝜎3/𝜎1 ≤ 1. 

To consider the behavior of confined ice during compression, it is better to consider granular and 

columnar ice separately. As mentioned earlier, polycrystalline granular ice has a random orientation of 

single crystals and therefore can be considered as isotropic. 

Some features of the behavior of granular ice during compression can be made based on the results 

of experiments performed by Weiss and Schulson (1994) [82]. Authors used cubes (l55 mm on edges) 

of fresh-water ice to investigate the failure of granular ice under multiaxial compressive loading using 

solids platens at temperatures -10 °C, -20°C and -40 °C at a strain-rate of 10-3 s-l. Some particular triaxial 

tests with 𝜎2 = 𝜎1 (and 𝜎3 = 𝑅𝜎1), as well as biaxial tests (𝜎3 = 0, 𝜎2 = 𝑅𝜎1) showed that the 

intermediate principal stress 𝜎2 bas no significant effect on the compressive strength in either the low-

confinement or the high-confinement regime. Indeed within the scatter of the data, failure stress 𝜎1𝑓 

biaxial tests is roughly equal to the uniaxial failure stress [82]. 

With triaxial compression of granular ice, an increase in compressive strength is observed. Under 

triaxial loading the confining stress acts upon all inclined primary cracks, regardless of orientation. 

Consequently, it raises the maximum principal stress to effect sliding and crack growth, thereby 

increasing strength [66]. As in case of biaxial tests the triaxial strength appears to be independent of the 

intermediate principal stress. In this regard, many authors determine the strength of ice by the stress 

difference (𝜎1 − 𝜎3) known as the differential stress at failure. Generally speaking, under lower 

confinement, the stress difference increases with increasing pressure and under higher confinement, the 

stress difference is independent of pressure as presented in Figure 1.21 and Figure 1.22. This feature was 
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investigated by many authors [34, 59, 66, 82]. In the case of columnar ice, a different picture is observed 

due to anisotropic properties. 

 

 

Figure 1.21 – Maximum differential stress vs. confining pressure for fresh-water granular ice of 1 mm 

grain size [66] 

 

Figure 1.22 – Failure stress of ice vs. confining ratio according to Weiss and Schulson (1994) [82] 

1.3.3 Tensile and shear strengths 

The tensile and shear strengths of ice are less studied than compressive one, because of difficulties 

of conducting experiments. However, some authors presented results of their investigations described 

below. 

The tensile strength of ice increases with decreasing temperature, but the values of ice tensile 

strength can be several times less than the compressive strength. There are several methods to investigate 
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the tensile strength of ice, but the most usable is direct tensile test. If talk about single crystals of ice, 

sufficient study of tensile behavior was performed by Carter (1971). His study was described by 

Schulson and Duval (2009) [66]. Carter performed over 600 tests on cylindrical-shaped Ø50x150 mm 

crystals of fresh-water ice loaded under either tension or compression at strain rates from 4 ∙ 10-7 s-1 to 

2.5 ∙ 10-1 s-1 at temperatures from -30 °C to 0 °C. He also varied the orientation of the crystallographic 

c-axis, from angle equal from 0° to 90° with respect to the tensile axis. He examined the following facts 

which was described earlier: 

- when deformed at strain rates below about 10-4 s-1 ice single crystals showed ductile behavior 

and while at rates above about 10-3 s-1 they showed brittle behavior. Between these limits they exhibit 

transitional behavior. 

- the brittle tensile strength is essentially independent of strain rate and temperature but depends 

strongly upon the orientation of the c-axis as presented in Figure 1.23. 

In the case of ice polycrystals, the situation is more complicated due to the influence of the 

structure and relative position of the crystals in the ice texture. Many factors influence tensile strength 

such as: temperature, grain size, growth texture and others. It should be mentioned that under 

“quasistatic” loading polycrystals fail under a tensile stress that is essentially independent of strain rate. 

 

Figure 1.23 – Tensile strength of single crystals of ice at -10 °C vs. orientation 𝛼 of the basal plane, 

where 𝛼 denotes the angle between the c-axis and the tensile load [66] 

The most famous equations for determining the tensile strength of ice were obtained by Dykins 

(1967) [21] and Weiss and Meyssonnier (2001) [83]. These equations are used in international standards 

such as ISO/FDIS 19906:2019(E) [33]. 

For the vertical direction of columnar ice tensile strength 𝜎𝑡, MPa is defined as follows 

𝜎𝑡 = 2.2 (1 − √
𝜈𝑏
310

)                                                               (1.61) 



32 

For the horizontal direction of columnar ice tensile strength 𝜎𝑡, MPa is defined as follows 

𝜎𝑡 = 1 ∙ (1 − √
𝜈𝑏
140

)                                                               (1.62) 

Significant measurements of tensile strength of columnar ice were performed by Richter-Menge 

and Jones (1993) [58]. Tensile load was applied along the c-axes of the test specimens, which were 

perpendicular to the growth direction of the ice. The data presented in this paper provide information on 

the tensile behavior of columnar, first-year sea ice at four different temperatures (-20°, -10°, -5° and 

-3°C) and two strain rates. 

Shear strength of ice was measured by Timco and Frederking (1986) [76]:  

𝜎𝜏 = 1.5 (1 − √
𝜈𝑏
390

)                                                               (1.63) 

1.4 Ice-structure interaction mechanism in case of vertical structures 

The interaction of ice with vertical structures can occur under different scenarios and limiting 

processes. There are 3 limiting processes that are associated with factors limiting the ice load on 

structures [33, 54]: limit stress process, limit energy (or momentum) process, limit force process  

which are presented in Figure 1.24. 

In the case of limit stress process, the ice formation has enough driving force to begin its 

destruction during the interaction and its cutting through the support to its full width. 

In the case of limit energy (or momentum) process, the ice load is limited by the kinetic energy of 

the ice formation, depending on its speed and mass. When an ice field collides with a structure, it stops 

with partial cutting and dissipation of energy. 

In the case of limit force process, the load is limited by natural forces acting on the ice formation. 

After the ice formation stops, it can continue to act on the structure, transferring the load to it under the 

action of external forces (wind, current, wave or other ice formations). 

When assessing the impact of ice on the designed structure, several of the above scenarios are 

considered, as well as their combinations. Moreover, as a rule, the smallest of the values obtained is 

taken as the resulting load. However, due to the fact that the choice of ice regime parameter values to 

the present is a difficult task, the calculated load values should be carefully justified. 

Ice load during ice failure has the most important role in assessing the critical condition of a 

structure. The mode of ice failure against the structure has a significant effect on the magnitude of the 

ice action. The failure mode for sea ice (e.g. crushing, shear, flexure, creep) depends on parameters such 

as ice thickness, presence of ridges, ice velocity, ice temperature, structure profile and plan shape, etc. 

Also, different modes can occur on the same structure type depending on ice conditions and 
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interaction velocity, even during the same event as presented in Figure 1.25. 

 

Figure 1.24 – Limit factors of ice loads [54] 

 

Figure 1.25 – Failure modes of ice during interaction: a) crushing failure; b) bending failure; 

c) splitting failure; d) buckling failure; e) pushing floes [42] 

The process of ice impact in case of crushing failure mode is shown schematically in the Figure 

1.26. One of the main features of this type of interaction is presence of “high pressure zones”. These are 

small areas that quickly appear and disappear randomly at the ice-to-structure contact, on which the main 

interaction force is concentrated as presented in Figure 1.26. At any one time, there are several HPZs, 

and they occupy only a small fraction of the nominal contact area, generally but not always towards the 

middle and away from the edges [54]. The presence of high-pressure zones is justified by the 

heterogeneous structure and properties of ice and is confirmed by many authors. As a rule, currently 

used ice load calculation methods, including in normative documents, do not take into account the 

presence of HPZs. Instead, the so-called nominal contact area is use, which is the projection of the 

structure onto the ice formation. 

 

Figure 1.26 – Schematic picture of ice action during ice-structure interaction in case of ice sheet 

compression (1 – ice sheet; 2 – structure; 3 – spalls and extrusion; 4 – high pressure zones; 5 – 

pressure distribution over the contact surface) [35] 
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If circumferential crack is observed the bending type of flexural failure is occurred. Also, many 

radial cracks can be observed behind this crack. Splitting failures are usually observed when the 

interacting ice sheet has low lateral confinement or small size. The buckling type of flexural failure is 

governed by a buildup of curvature in the ice sheet or occurs under special wave conditions. In this 

regard, this process can be observed very rarely. The last type of interaction corresponds to the limit 

force process explained before. The floes split and pass around the structure, while wind and wave 

actions contribute significantly to the total force [53]. Conditions that induce ice failure by flexure 

generally result in smaller ice actions than for crushing [33]. In addition, the interaction of ice with the 

structure can cause dynamic loads, which is associated with the periodic destruction of ice during 

compression. 

1.5 Researches in the field of numerical modeling of ice problems 

The problem of assessing the impacts of ice fields regarding the destruction of ice is a highly 

specialized task. The issue of numerical modeling of the destruction of ice is little studied. Some studies 

with different objectives in the field of numerical modeling of ice have been performed by several 

researchers: Derradji-Aouat (2005) [18], Bjørnar Sand (2008) [63], J. Pernas-Sánchez et al (2012) [55], 

Rüdiger von Bock und Polach and Sören Ehlers (2013) [60], Aleksandrov A.A. et al (2014, 2017) [2, 3], 

Li Liang (2014) [44], Politko V.A. (2018) [56] and others. 

J. Pernas-Sánchez et al (2012) performed numerical simulations of experiments conducted by 

Pereira et al. (2006) and described by Carney et al. (2006) [12]. In these experiments, cylindrical ice 

projectiles were launched onto a steel plate bounded to a strain gauge using a helium gas gun. The 

experiment equipment is presented in Figure 1.27. The size of the ice cylinders was 17.5 mm in diameter 

and 42.2 mm in length. The tests were carried out at different impact speeds. 

 

Figure 1.27 – Equipment in the experiments described by Carney et al. (2006) 

To perform the numerical simulation, three different numerical methods were used: the finite 

element method in the Lagrange formulation (Lagrange), the arbitrary Lagrange-Eulerian method (ALE) 
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and smoothed particle hydrodynamics (SPH) method. Figure 1.28 shows three models of an ice cylinder 

made by J. Pernas-Sánchez et al. 

 

Figure 1.28 – Numerical models of the ice cylinder in the study of J. Pernas-Sánchez [55] (left – 

Lagrange, in the center – ALE, right – SPH) 

To model the ice material at high strain rates, the Drucker-Prager model was chosen. The process 

of destruction of the ice cylinder when striking a steel plate at a speed of 152 m/s, as well as the 

dependence of the impact force on the time of the experiment are shown in Figure 1.29. 

The Lagrangian finite element solver showed the greatest convergence with experimental data, 

despite the strong distortion of elements. Based on the results of this study, it can conclude that the 

Drucker-Prager model shows high convergence with experimental data at high strain rates. However, 

the real drift velocities of ice fields have values ten times less than in this experiment. In this connection, 

additional computational studies of the applicability of the Drucker-Prager model are required for 

modeling the impact of the ice formations on the offshore facilities. 

 

Figure 1.29 – The process of destruction of the ice cylinder on impact (left) and the dependence of the 

impact force on time (right) for the three numerical methods (from left to right: Lagrange, ALE, SPH) 
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Aleksandrov A.A. et al (2014, 2017) in their investigations used various approaches to modeling 

the ice material. 

In [2], the authors carried out a computational study in which ice parameters were determined 

using the ANSYS software (the inverse problem was solved). Prior to the beginning of numerical 

simulation, the authors conducted experiments on three-point bending of ice beams (700x100x100 mm) 

and uniaxial compression of ice cubes (100x100x100 mm). Samples were obtained from the bottom 

layer of ice, which formed naturally on the surface of the freshwater pond. Loading was carried out using 

a hydraulic cylinder. The indenter had a cylindrical shape when testing beams and a plate shape when 

testing cubes. A grid of dots, shown in Figure 1.30, was applied to the central part of the samples before 

each test using a water-based paint. The load force, the geometric dimensions of the sample, and the 

deformations at the grid nodes on the ice surface were measured. 

 

Figure 1.30 – Grid of dots in the center of the ice sample [2] 

The mesh motion during the tests was recorded using a three-dimensional computer vision system 

and digital image correlation for contactless measurements of shape and deformation. The calculation 

of the elastic modulus of ice was made using the formulas of the standard beam theory. An example of 

the dependence of the strain values of the samples on the load is shown in Figure 1.31. 

To determine the mechanical properties of ice, the authors used an optimization method using the 

strain values obtained from the experiment. Two models of the material were used to model the ice: the 

model of an ideally elastic body, which is deformed according to Hooke's law, and the viscoelastic 

Maxwell model. Shear modulus 𝐺, MPa, in these material models was in the following dependence on 

the modulus of elasticity 𝐸, MPa: 

𝐺 =
𝐸

2(1 + 3𝜈)
,                                                                 (1.64) 

where 𝜈 – Poisson's ratio, which was taken equal to 0.33. 
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Figure 1.31 – Dependence of strain on the load at the center of the samples [2] 

When determining the parameters of ice by the optimization method for the case of the Maxwell 

model, the viscosity coefficient 𝜂 was also determined. The results of optimization are presented in 

Tables 1.7-1.8. 

 

Table 1.7 – Values of the properties of ice obtained using the standard beam theory and optimization by 

the finite element method [2] 

Sample Standard beam theory 

Numerical simulation 

(elastic material 

model) 

Numerical simulation 

(viscoelastic material model) 

№ 1  𝐸 = 390 MPa  𝐸 = 490 MPa 𝐸 = 500 MPa; 𝜂 = 250 GPa ∙ s 

№ 2  𝐸 = 200 MPa 𝐸 = 220 MPa 𝐸 = 230 MPa; 𝜂 = 100 GPa ∙ s 

№ 3  𝐸 = 310 MPa 𝐸 = 390 MPa 𝐸 = 400 MPa; 𝜂 = 420 GPa ∙ s 

 

Table 1.8 – Differences in displacements calculated by various methods relative to the experiments, mm 

Sample  
The number of 

compared points 

Standard 

beam theory 

Numerical simulation 

(elastic material 

model) 

Numerical simulation 

(viscoelastic material 

model) 

№ 1 
1 0.031 0.023  0.021  

25 - 0.029  0.026  

№ 2 
1 0.091 0.119  0.088  

25 - 0.121  0.107  

№ 3 
1 0.029 0.022  0.018  

25 - 0.029  0.025  
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Thus, there is little difference between the results of numerical modeling using elastic and 

viscoelastic material models, but these results are quite different from the results of the calculating the 

parameters according to the standard beam theory. According to the authors, the Maxwell viscoelastic 

model shows the greatest convergence with experimental data. In this regard, adding the additional 

parameters into the material model (in this case, the viscosity coefficient) allows to describe the behavior 

of ice during deformation more accurately and to obtain more acceptable values of its characteristics. 

Also, during bending tests at three points, various types of specimen failure were recorded. The 

authors identified three main types of damage: fracture due to the formation of a straight crack, fracture 

in the form of a zigzag crack, and fracture in the form of a curve crack, presented in Figure 1.32. 

When searching for the relationship between the type of crack and the parameters of the external 

load (loading rate, limit values of the load) or the physical and mechanical properties of ice, the authors 

did not find a correlation. 

 

Figure 1.32 – Typical types of cracks: a) straight, b) zigzag, c) curve [2] 

In [3] Aleksandrov et al. considered the applicability of numerical modeling for solving the 

problem of scaling ice loads in the study of ice impacts on vertical structures in the ice pool. According 

to the authors, numerical modeling can help solve the problem of determining the physical and 

mechanical properties of ice formations. 

First, the authors conducted a series of tests in the ice pool. The block-conductor model was towed 

in an ice field with low speeds of 0.04÷0.15 m/s, the thickness of the ice field was 20 and 30 mm. During 

the tests, components of the ice load were recorded. 

At the next research step, the authors performed a numerical simulation of the experiments. They 

proposed the use of the isomorphism principle of the limiting surface to obtain the necessary 

combination of material parameters. The principle of isomorphism of the limiting surface states that the 

characteristic form of the limiting surface of the material is preserved. In this case, the limit surface 

should be understood as the surface in the axes of the main stresses, upon reaching which the material 

stops to obey the Hook’s law of elastic deformation (yield surface). The achievement of yield surface 

by stresses means the beginning of plastic flow or -is a criterion of brittle fracture. 

Based on the proposed principle, the authors solved the numerical problem of introducing a block-

conductor model into an ice field in an ice pool. For a finite element modeling, the ANSYS software 
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was chosen. The block conductor used in the experiments, as well as the finite element model are 

presented in Figure 1.33. 

 

Figure 1.33 – Block-conductor during tests in the ice pool and FE model [3] 

The surface of the block-conductor was modeled by membrane non-deformable finite elements. 

The ice field was modeled using 4-node finite elements and fixed at the boundaries in all degrees of 

freedom. The movement of the indenter is set using the pilot point and does not exceed 0.1 m. 

The authors chose the Drucker-Prager Cap model as a model for the ice material. The shape of the 

yield surface is approximated according to the data obtained as a result of tests for biaxial compression 

of cubic samples of natural ice [65]. The data are presented in Figure 1.34. The approximation is 

performed by solving an optimization problem for the control parameters of the model. 

To restore the yield surface in the field of tensile stresses, the authors accepted the fact that the 

compressive strength exceeds the tensile strength 5 times. When modeling the modulus of elasticity is 

taken from the tests performed on the bending of cantilever beams 𝐸 = 23.5 𝑀𝑃𝑎, Poisson's ratio 𝜈 =

0.33. 

 

Figure 1.34 – Chart of destruction of ice cubic samples under biaxial compression in the axes of main 

stresses [65] 

The results of the numerical simulation of experiments were compared with experimental data. 

Comparison of data is presented in Table 1.9. The difference between the results of numerical simulation 

and experimental research does not exceed 10%, which may indicate a close correspondence of the 

Drucker-Prager Cap model to the actual behavior of ice under loads. The authors argue that the 
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coordination of the results of numerical modeling perfectly illustrates the application of the isomorphism 

principle of the limiting surface to the solution of the problem of introducing a body into an ice field. 

But looking at Figure 1.33, I can conclude. that the authors did not complete the qualitative creation 

of the mesh. The ice field in thickness has only 2 finite elements and thus cannot adequately describe 

the process of interaction with the block conductor. 

 

Table 1.9 – Comparison of the results of experiments and numerical simulation [3] 

Ice thickness, mm 
Force of drag, N 

Experiment Numerical model 

20 36 39 

30 64 59 

 

Politko (2018) analyzed the applicability of the Mohr-Coulomb model for modeling the impact of 

an ice field on vertical structures. He used the element erosion technique to model the ice fracture. Two 

experiments were considered to verify the applicability of material model: interaction of a rectangular 

horizontal stamp with the ice field [70] and laboratory model testing of the interaction of ice field with 

a four-support structure in the basin of the Krylov Research Center [36]. 

When modeling the experiments [70], the physical and mechanical properties of ice presented in 

Table 1.10 were determined. A numerical model of stamp-ice interaction process and boundary 

conditions are shown in Figure 1.35. A graph comparing the ice load between an experiment and 

numerical simulation is presented in Figure 1.36. Analyzing Figure 1.36, it can be said that the numerical 

model showed similar results regarding the nature of the ice load in the contact zone of ice and a 

rectangular stamp. 

 

Table 1.10 – Physical and mechanical properties of ice in the numerical model created by Politko (2018) 

Property Units Value 

Elastic modulus 𝐸 MPa 1000 

Poisson's ratio 𝜈 - 0.3 

Angle of internal friction (to assign parameters of the Mohr-Coulomb 

model) 
degrees 35 

Cohesion (to assign parameters of the Mohr-Coulomb model) MPa 0.6 

Ice salinity ‰ 6.2 

Ice temperature °С -2.7 
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Figure 1.35 – Numerical model for introducing a rectangular stamp into an ice field [56] 

 

Figure 1.36 – Graph of ice load acting on stamp: 1 – field tests; 2 – numerical simulation [56] 

When simulating laboratory tests of the interaction of an ice field with a four-support structure in 

the ice pool of the Krylov Research Center, the same characteristics of ice are used, presented in 

Table 1.10. The model that was used in the laboratory tests is shown in Figure 1.37. The numerical 

model presented by the author is shown in Figure 1.38. 

 

Figure 1.37 – Model of a four-support hydraulic structure used in field tests [36] 

 

Figure 1.38 – Numerical model of the impact of the ice field on a four-support structure according to [56] 
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Numerical experiments, as well as laboratory experiments, were carried out at three different 

angles of ice effect on the model: 𝛼 = 0°, 𝛼 = 30°, 𝛼 = 45°. The main purpose of the model tests in the 

Krylov Research Center basin was to study the mutual influence of the supports at various angles of 

action of the ice field. As a result of the studies, the influence coefficient of the supports was determined, 

which shows how many times the load on the four-support structure is more than on one-support. The 

picture of the destruction of ice during interaction in numerical simulation and during model tests, in 

general, coincides and is presented in Figure 1.39. The results of the experiment and numerical 

simulation are given in the Table 1.11. 

 

Figure 1.39 – The destruction of ice in the interaction with the four-support structure at angle 𝛼 = 30°: 

a) in numerical simulation; b) during the model tests [56] 

Table 1.11 – The coefficient of influence of the supports of the four-support structures [56] 

The angle of impact of 

the ice field 𝛼 

The results of the experiment, at a speed 𝑉, m/s Numerical simulation 

results 0.01 0.05 

0° 1.73 2.34 2.1 

30° 2.9 3.62 3.4 

45° 2.53 2.51 2.5 

 

Although the results of numerical simulation of both experiments show a good correlation with 

field tests, the use of the Mohr-Coulomb model may be a wrong decision in case of assessing non-brittle 

behavior, since this model does not take into account the average principle stress 𝜎2 when estimating the 

complex stress-strain state of the ice field. Additional studies are needed to confirm the possibility of 

application of the Mohr-Coulomb model for determination of the onset of plastic behavior. There is also 

no discussion about the values of accepted parameters of the Mohr-Coulomb model. 

As can be seen in Figure 1.35, the finite element mesh is incompatible in the region of transition 

to larger finite elements, which indicates the use of contact pairs for modeling the interaction of these 

two parts of the ice field. In my opinion, this approach is incorrect due to the relatively large errors that 

occur during the deformation process. For adequate transmission of stresses throughout the body of the 

simulated field, it is necessary to create a mesh with compatible nodes. 



43 

In addition, one of the main assumptions in these calculations is the fact that only brittle fracture 

of ice without any hardening is considered at relatively fast strain rates. In this case, it is assumed that 

for ice before fracture, only elastic deformations appear. Plastic properties of ice and strain-rate 

dependence are not taken into account. 

Further, in his work, the author investigated the influence of the shape of the structure and the 

presence of zones of frozen ice on the ice load. Table 1.12 presents the results of numerical simulation, 

which shows the values of the maximum ice load on the supports of various shapes in the plan and the 

corresponding shape factors 𝑚. 

 

Table 1.12 – The results of the study of the influence of the structure shape and the presence of frozen 

ice on the ice load 

Ice impact case 

Ice load, MN (support shape factor 𝑚) 

Front edge in the form of 

rectangle semi-circular polyhedron 

Lack of ice freezing with 

support 
5.2 (1) 4.7 (0.9) 4.8 (0.92) 

The presence of ice freezing 

with support 
6.4 (1.23) 6.7 (1.29) 6.6 (1.27) 

 

The author compared these results with the support form factor specified in Russian code 

SP 38.13330.2018 [68] and got two main conclusions: 

- in the case of the absence of freezing of ice for the front face of a semicircular outline and in the 

form of a polygon, the simulation results show the support shape factors higher than in [68], namely 

0.90 and 0.92, instead of 0.83; 

- in case of freezing of ice with a rectangular support, the support shape factor becomes equal to 

1.23 instead of 1. 

Thus, the values of support shape factors obtained by the author are consistent with 

SP 38.13330.2018 only for the case of a rectangular support in the absence of ice freezing and a semi-

circular outline (polyhedron) in the presence of freezing. The value 0.9 of shape factor for the case of 

semicircular outline form in the absence of a freezing effect, obtained by the author, is consistent with 

another code – ND 2-020201-015 [52]. 

When analyzing studies in the field of numerical modeling of ice impacts on vertical structures, it 

is worth highlighting the following numerical experiments: Gürtner et al. (2009) [30], Gürtner et al. 

(2010) [29], Hilding et al. (2011) [31], Hilding et al. (2012) [32]. These papers are united by the fact 

that the authors performed a numerical simulation of the actions of level ice fields on the Norströmsgrund 
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lighthouse. This lighthouse was chosen by the authors, because it was involved in the Low Level Ice 

Forces (LOLEIF) and Measurements on Structures in Ice (STRICE) projects in 1999-2003 years. In the 

LOLEIF project, this lighthouse located in the subarctic Gulf of Bothnia was equipped with load panels 

covered 162º of the lighthouse perimeter and special devices that monitor environmental conditions. 

Thus, comprehensive measurements of ice loads were conducted, and full-scale ice load data was 

obtained. The investigated interaction velocity in these papers is 0.15 m/s, which represents the relatively 

low interaction velocities for real ice-structure interaction situations. 

In these works, the authors used the principles of cohesive zone model (CZM) to simulate the 

destruction of ice during interaction with the structure. Finite element models are presented in Figure 

1.40, Figure 1.41 and Figure 1.42. The interpretation of this method in a finite element analysis is called 

the cohesive element model (CEM) and will be described later in this thesis. The main idea of the method 

is to model an ice body in the form of a set of volumetric finite elements having ice properties and 

connected with cohesive elements of zero thickness, which are possible crack paths. 

 

Figure 1.40 – Finite element model of ice interaction with Norströmsgrund lighthouse [30] 

 

Figure 1.41 – Finite element analysis of ice interaction with Norströmsgrund lighthouse: a) Gürtner et 

al. (2010) [29]; b) Hilding et al. (2011) [31] 



45 

 

Figure 1.42 – Simulation of ice-structure interaction process using CEM [32] 

In these researches authors defined cohesive element traction-separation law also called 

Tvergaard-Hutchinson law (Figure 1.43) for cohesive elements and elastic-plastic material with 

softening for ice bulk elements to achieve the macroscopic ice crushing behavior. The Mises material 

model was used for bulk elements. Cohesive element law is characterized through its piecewise 

continuous curve with softening. Cohesive properties are different in vertical and horizontal direction to 

accommodate anisotropy of fracture of sea ice. In all these studies, the von Mises yield criterion was 

used to describe the plasticity of the ice material in bulk elements. 

 

Figure 1.43 – Cohesive element traction-separation law defined in [29, 30, 31, 32] 

For monotonic loading in fracture mode-I, the fracture energy, i.e. the area under the cohesion law 

curve can be written as [30]: 

 𝐺𝐼
𝐶 = 0,5𝑇1

𝑚𝑎𝑥𝑢1
𝑐(1 − 𝜆1 + 𝜆2), (1.65) 

where 𝑇1
𝑚𝑎𝑥 – peak traction accommodated by the material in the fracture process zone; 

𝜆1, 𝜆2 – separation values on cohesive traction-separation curve (Figure 1.43); 

𝑢1
𝑐 – maximum allowable separation. 

The issue of choosing values for the parameters of the materials used has been discussed many 

times. Difficulties arise because today there are no qualitative test data that determine the values of 

fracture parameters. The situation is complicated by the fact that the energy fracture parameters are 

highly dependent on the mesh size, so in some cases they had to be scaled tens of times [29, 31]. The 

values of material properties used in these papers are shown in Table 1.13. 
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Table 1.13 – Values of material properties used in [29, 30, 31, 32] 

Paper title Bulk element properties Cohesive element properties 

Numerical simulation of ice 

action to a lighthouse / Gürtner 

et al. (2009) 

von Mises yield criterion 

𝐸 = 1000 GPa; 
 = 910 kg/m3; 

𝜇 = 0.3; 

𝑦 = 0.0007 MPa; 

𝐺𝐼𝐶 = 20 J/m
2 (vert.); 

𝐺𝐼𝐼𝐶 = 28 J/m
2 (vert.); 

𝐺𝐼𝐶 = 52 J/m
2 (horiz.); 

𝐺𝐼𝐼𝐶 = 52 J/m
2 (horiz.); 

𝜆1 = 0.08 (vert.); 

𝜆2 = 0.45 (vert.); 

𝜆1 = 0.10 (horiz.); 

𝜆2 = 0.55 (horiz.) 

Numerical modelling of a full 

scale ice event / Gürtner et al. 

(2010) 

von Mises yield criterion 

𝐸 = 5 GPa; 
 = 910 kg/m3; 

𝜇 = 0.3; 

𝑦 = 1,5 MPa 

𝑇𝑚𝑎𝑥 = 1 MPa (vert.); 

𝑇𝑚𝑎𝑥 = 1.1 MPa (horiz.); 

𝐺𝐶 = 5200 J/m
2; 

𝜆1 = 0.02; 
𝜆2 = 0.55 (vert.); 

𝜆2 = 0.45 (horiz.) 

𝑢𝑐 = 6.8 mm (vert.); 

𝑢𝑐 = 7.1 mm (vert.); 

Simulation of ice action loads 

on offshore structures / Hilding 

et al. (2011) 

von Mises yield criterion 

𝐸 = 5GPa; 
 = 910 kg/m3; 

𝜇 = 0.3; 

𝑦 = 2 MPa 

𝑇𝑚𝑎𝑥 = 1 MPa (vert.); 

𝑇𝑚𝑎𝑥 = 1.1 MPa (horiz.); 

𝐺𝐶 = 5200 J/m
2 

Simulation of Loads from 

Drifting Ice Sheets on Offshore 

Structures / Hilding et al. 

(2012) 

von Mises yield criterion 

𝐸 = 5GPa; 
 = 910 kg/m3; 

𝜇 = 0.3; 

𝑦 = 2 MPa 

𝑇𝑚𝑎𝑥 = 1 MPa (vert.); 

𝑇𝑚𝑎𝑥 = 1.1 MPa (horiz.); 

𝐺𝐶 = 5200 J/m
2 

 

 

Figure 1.44 – Simulated horizontal global ice force on the lighthouse foundation and comparison to 

measured loads according to Gürtner et al. (2009) [30] 

This modeling method (CEM) shows close to real behavior and the destruction of the ice cover 

when exposed to a vertical structure. Features such as the appearance of radial cracks, cyclic loading and 

ice extrusion can be observed. However, in my opinion it is impossible to speak of a good agreement 
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between the results and field data, especially because results of modeling in these papers were often 

compared with only a few field cases (most often with one). Numerical experiments in these papers have 

several disadvantages. The authors did not perform a qualitative selection of constitutive model and 

parameters of the ice material, which led to a large difference between the model and the real picture of 

the interaction. As it usual for almost all simulations, the authors did not consider the dependence of 

strength on the strain rate, temperature, as well as the ductile behavior of ice before fracture. The big 

assumption is the use of von Mises plasticity for bulk elements. This plasticity model does not take into 

account the influence of hydrostatic (mean) stress on total ice strength. This effect was described earlier 

in subsection 1.3. So, we can say that there is no qualitative material modeling of ice in these papers.  

One of the latest investigations in the field of ice-structure interactions was made by Wang et al. 

(2019) [79]. In these paper authors also used the cohesive element method to model the ice actions on 

Norströmsgrund lighthouse with new modeling techniques. First of all, some ice bulk elements with 

random numbering are deleted to simulate natural ice sheet with initial defects. Then, the elastic modulus 

was calculated by the empirical formula and assigned to the ice elements. Thirdly, cohesive elements 

are inserted in ice sheet model which is meshed with tetrahedron elements. According to the authors the 

use of hexahedral elements will cause “zig-zag” crack paths that are not applicable for the cohesive zone 

method. A structured mesh with rectangular elements will create a 45° crack which will travel 2 times 

longer than the actual one, leading to an extra energy consumption. The numerical model used in 

calculations is presented in Figure 1.45. Ice element is assumed as elastic-perfect plastic material.  

 

Figure 1.45 – Numerical model of ice sheet and lighthouse used in [79] 

In general Wang et al. considered 3 different design cases: ice sheet without any initial defects, 

ice sheet has only initial defects and ice sheet has initial defects and changed elastic modulus. Horizontal 

force on the lighthouse and failure process of ice sheet are analyzed and compared with field data 

measured on lighthouse. All of three cases showed different failure pattern as shown in Figure 1.46. 

Values of simulated ice forces and comparison with field data is presented in Table 1.14. 
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Figure 1.46 – Ice failure patterns in three cases according to [79] 

Table 1.14 – Comparison of the simulated mean horizontal forces with the measured data [79] 

Case Mean horizontal force, MN Error 

Case 1 3.21 15.5% 

Case 2 2.59 6.8% 

Case 3 2.92 5.7% 

Measured results 2.78 - 

 

Again, as in previously reviewed articles and theses, the same assumptions and disadvantages are 

present. The Mises model was used as a model of plasticity, which in my opinion cannot be applied as 

material model for such complex material as ice. Also, the authors did not take into account the influence 

of temperature, strain-rate effects. As can be seen from Figure 1.45, a more or less good-quality ice field 

mesh was made only in a small area near the interaction region. Away from this region, there is a rapid 

enlargement of the finite element mesh up to 1 element in the ice field thickness, which in my opinion 

leads to an incorrect distribution of stresses. Given all of the above, along with the fact that the 

comparison is made only for 1 case of interaction, it cannot be said that the error values given in 

Table 1.14 correspond to reality. 

Nevertheless, the authors used some interesting methods. For example, they used a special 

subroutine to account for the buoyance and gravity forces, acting only on spalled elements. Preliminary 

removal of elements from the model to generate initial damage is also an interesting solution. 
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Good results in the field of numerical studies of the interaction of ice structures were obtained by 

Sand (2008) [63]. In modeling, the author used the finite element method in conjunction with the 

technique of removing elements and studied the effect of ice on both inclined and vertical structures. 

Sand in his thesis considered the applicability of some failure surfaces for ice modeling. Among the 

examined, the author identified the following: 

- Hill yield criterion; 

- Parisau parabolic criterion; 

- Reinicke and Remer’s failure criterion 

- Horrigmoe and Zeng’s failure criterion 

According to Sand, criterion Horrigmoe and Zeng’s failure criterion is most appropriate, because 

this orthotropic criterion contains not only a quadratic terms in stresses, but also linear terms in stresses 

and has the dependence of the yield strength on the mean stress. The search for the values of the 

parameters included in this criterion was performed by approximating the results of field experiments 

data from papers of Schulson. Resulting failure surface used in numerical calculations is presented in 

Figure 1.47. Moreover, the author noted that the obtained values can also be used in the Hill criterion. 

 

Figure 1.47 – Fitted three-dimensional plots of Horrigmoe and Zeng’s failure criterion [63] 

The behavior of the crushed or cracked ice was taken into account by replacing the “undamaged” 

finite elements with the “damaged” ones with changed properties. This is so-called transformation of 

state method that is shown in Figure 1.48. As in paper presented higher only elastic behavior of ice 

before crushing was considered, and author did not take into account the dependence of strength on the 

strain rate and temperature. 

In terms of modeling the ice-vertical structure interaction problem, good results were obtained. 

Author conducted several simulations of ice actions of Norströmsgrund lighthouse which was mentioned 

before. Sand compared global ice forces with measured field data and considered failure patterns. One 

can notice the occurrence of radial and longitudinal cracks during simulation as presented in Figure 1.49. 

Comparison of the ice pressure distribution obtained by finite element computations with the measured 

ice pressure distribution according to Sand showed similar trends. 
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Figure 1.48 – Transformation of state method used by Sand B. [63] 

 

Figure 1.49 – Calculated failure pattern and distribution of ice pressure obtained by Sand (2008) [63] 

Despite the widespread use of the finite element method, there is experience using other numerical 

methods. An example of numerical experiments of ice-structure interaction using the discrete element 

method is article of Liu et al. (2016) [45]. Authors presented ice load simulations for fixed and floating 

structures, i.e. jack-up legs and the Kulluk floating drilling platform. They also compared the 

computation time of a model using a computer processor Performing calculations using the GPU 

significantly reduces the calculation time (up to 36 times). 

Ice sheet in simulations was modeled using contacted spherical particles bonded together using a 
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parallel bond model, as the bonding disk (Figure 1.50). The maximum tensile and shear stresses acting 

on the bonding disk are calculated based on the beam theory. In order to calibrate the relationship 

between the bonding strength parameters assumed in the DEM model and realistic ice strength terms, 

general ice sample tests of uniaxial compression test and 3-point bending test were simulated.  

 

Figure 1.50 – Modeling the ice sheet using spherical bonded elements in Liu et al. (2016) [45] 

Regarding vertical structures in this article the authors investigated the influence of the shape of 

the structure and the mutual influence of several supports on the ice load. Example of ice-structure 

interaction modeling with circular shape in this paper is presented in Figure 1.51. Results were compared 

with calculations of the ice load using ISO 19906 recommendations.  

 

Figure 1.51 – Snapshots of DEM simulations of an ice sheet moving through circular support 

performed by Liu et al. (2016) [45] 

The simulated ice force was less than 60% of the ISO 19906 formula value for the broadside 

direction case. The average and maximum peak ice forces simulated by DEM are both larger for the 

broadside case compared with the diagonal and round geometries but ISO 19906, which is based on 

projected area, suggests otherwise. The DEM simulation results presented in this paper are promising, 

but the accuracy and reliability of the tool still requires more validation studies and developments. 

We can say that the simulation results in this paper showed poor convergence with analytical 

methods for determining ice load. Along with the lack of proper consideration for the non-uniform 

properties of ice and the high computational cost of calculations, the question of the applicability of 

using the discrete element method in modeling ice effects remains open. 
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1.6 Section conclusions 

The problem of assessing ice impacts on the offshore structures is becoming more global and 

relevant in connection with the development of the energy complex and an increase in the rate of 

hydrocarbon production in the Arctic zone. The impact of ice on structures is a multifactorial 

phenomenon. The magnitude of ice loads depends not only on the climatic conditions, but also on the 

characteristics of the ice itself, the interaction conditions at the contact and many other factors. 

Sea ice is a complex material consisting of hard ice, brine, gas, the ratio of which depends on 

temperature, texture, growth conditions, etc. Ways to describe the properties of ice have been developed 

and improved since the second half of the 20th century. Thus, the studies of Russian and foreign authors 

are based on a large number of field and laboratory experiments. Processing the results of these 

experiments allowed to obtain analytical dependencies of the components of sea ice (fresh ice, water and 

salts) on various properties. These properties vary greatly and depend on the area of research, methods 

of conducting experiments and the age of the ice. Nevertheless, as a result of their work, researchers 

managed to obtain many dependencies of ice parameters on various factors. As a rule, all parameters 

show a strong dependence on ice temperature. The salinity, porosity and texture of ice also play a 

significant role. 

Comparison of methods for calculating the salinity of ice, brine volume, elastic modulus and 

compressive strength is shown in Figure 1.52-Figure 1.55. In Figure 1.54 curve named “Gammon P. H 

et al. (1983) + Weeks and Assur (1967)” means that values of elastic modulus of pure ice were selected 

from Table 1.5, corrected using equation (1.43) and values for sea ice was calculated using equation 

(1.48). 

 

Figure 1.52 – The dependence of the salinity of ice on its thickness by various methods 
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Figure 1.53 – The dependence of the brine volume on ice temperature by various methods 

 

Figure 1.54 – The dependence of the dynamic elastic modulus on ice temperature by various methods 
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Figure 1.55 – The dependence of the compressive strength of ice on strain rate 

A significant scatter of data appears between different methods. The selection of appropriate 

method should be done considering the testing approach that was used during experiments, age of 

researches and applicability range of equations. The most important features of ice as material that must 

be considering in numerical analysis are as follows: 

- strong dependence of ice properties on temperature, salinity and its texture. Since during ice-

structure interaction process different conditions can appear at the same time, especially on contact with 

structure, applied modeling methodology should have possibility to automatic recalculation of ice 

properties based on current conditions (temperature, mean stress, strain rate, etc.); 

- growth and texture forming conditions. Anisotropy of ice polycrystals has strong dependence on 

ice texture. Thus, ice with random orientation of c-axes, for instance, granular ice, can be considered as 

isotropic material. But in case of columnar ice, which has more or less ordered directions of c-axes, 

polycrystal show clear anisotropic strength and elastic properties. So, the best way to describe this 

feature is to consider columnar type of ice as transversely isotropic or orthotropic material; 

- plastic-brittle transition of ice behavior based on interaction strain rates. Since this feature of ice 

has not yet been taken into account by the authors earlier, this is an unresolved problem in modeling of 

ice actions, which will ensure the scientific novelty of this thesis. 

In case of mechanism of ice-structure interaction it can be said that li limit stress mode of 

interaction is the most dangerous since has the highest forces. Crushing of ice is rapidly changing process 
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with occurrence of so-called high-pressure zones. To qualitatively take into account the influence of 

these zones on the total ice effect, it is necessary to study the issue of modeling of ice destruction process 

in details. 

As for the worldwide experience of numerical modeling of ice impacts, a large number of papers 

have been performed using various numerical methods and approaches. The most promising in my 

opinion is the finite element method using the cohesive element method. In most cases, the authors do 

not pay due attention to the selection of constitutive models suitable for describing the plastic behavior 

and failure of ice. The considered papers of various authors do not take into account such features of ice, 

as the dependence of its properties on temperature, strain rate, pressure-hardening (except Sand [63]) 

and texture. In this regard, it is difficult to talk about the correspondence of the results of numerical 

models to real conditions. 

Of great practical importance are the tools for optimizing the parameters of a material model for 

specific conditions (for example, for experimental data). Solving the inverse problem, pre-setting some 

restrictions, it is possible to numerically determine some empirical parameters of the material model. 

  



56 

2 Formulation of the problem and methodology of numerical modeling of ice impacts 

2.1 Formulation of the problem 

Offshore facilities on the continental shelf are unique facilities of increased responsibility, which 

requires appropriate careful assessment of the effects of external factors. Proper design of such objects 

ensures the reliability of structures and helps to prevent emergencies that may arise as a result of the 

destruction of the structure. 

Ice impacts are one of the most complex factors evaluated during design. This is directly related 

to the spatio-temporal variability of the ice cover, the great variability of the physicomechanical 

properties of ice, the influence of other environmental factors on the ice formations, such as waves, 

currents, wind, etc. Therefore, it can be said that ice loads have stochastic nature, and load estimation 

methods used today in the design of offshore structures use a number of significant assumptions that can 

distort the real picture that arises in reality. 

Numerical modeling methods can to some extent eliminate the difficulties that arise when taking 

into account the random nature of the values of ice parameters, which significantly increases the 

reliability of the magnitude of the ice load. In addition, as already mentioned, the destruction of ice 

formations during their interaction with vertical structures depends on many factors (Section 1) and has 

a strong influence on the formation of ice load. Thus, the assessment of the interaction of ice formations 

with vertical structures using numerical modeling considering the process of ice destruction will allow 

us to avoid several assumptions that affect the result. 

In view of the above, to carry out a numerical simulation of the interaction of ice formations with 

vertical structures, taking into account the destruction of ice, it is necessary to: 

- analyze the methods for calculating ice parameters and determine their dependence on 

temperature, salinity, strain rate, etc. (section 1); 

- perform analysis and selection of constitutive models of plasticity and fracture, taking into 

account their applicability for modeling ice impacts; 

- to establish a single principle for creating a numerical model, that includes certain considered 

environmental parameters, boundary conditions, geometry of ice formations, etc.; 

- to make an algorithm for creating a numerical model that takes into account the above features. 

- to establish parameters used in constitutive model to obtain the nature and picture of interaction, 

close to realistic. 

The best way to verify the model would be to reproduce (simulate) field and laboratory 

experiments on ice impacts with identical conditions, such as dimensions of ice formation, its speed, 

temperature gradient, structure width and shape etc. 

If the results of numerical simulation are consistent with the experimental results to an acceptable 
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extent, the next step will be to simulate the effects of ice with the structure under different scenarios. 

The most interesting and investigated feature of the interaction process is the effect of the complex 

stress-strain state of ice on the magnitude of the ice load, as well as the effect of ice destruction on it. 

Taking into account the destruction of ice upon contact will also allow to consider the process of 

occurrence of high-pressure zones described earlier. 

The solution of the above problems will ultimately allow to develop a methodology and describe 

an algorithm for assessing ice impacts in real engineering tasks using numerical modeling. 

2.2 Methodology of numerical simulation of ice impacts 

2.2.1 Numerical method selection 

Today, there is a wide selection of numerical simulation methods used to solve many engineering 

problems. Among the most famous, the following methods will be discussed as possible methods for 

simulation of ice-structure interaction. 

Discrete element method (DEM). This numerical method was developed by Cundall and 

Strack (1978) [16] and mainly used for modeling granular media (such as soils), consisting of a large 

number of particles. The simulated medium is represented in the form of a set of individual particles that 

have their own properties (density, elastic modulus, velocity, etc.). Particles can be presented in various 

shapes and sizes. DEM allows to simulate the interaction between all particles, but usually it has 

significant computational cost. 

In ice problems, the method was mainly used to simulate the interaction of ice formations with 

each other or with structures on a large scale as presented in Figure 2.1. In this case, ice formations 

(fields, glaciers, icebergs) are modeled as separate particles interacting with each other. Moreover, in 

most cases, it is assumed that the formations are indestructible. For example, the studies of Kim J-H. 

and Kim Y. (2019) [37] and Richard and McKenna (2013) [57] can be distinguished.  

 

Figure 2.1 – Simulation of the movement of vessel through discontinuous ice [57] 
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DEM has also been used to model the interaction of ice and structures on a more detailed scale. In 

this case, the ice field is represented as a set of particles located in several layers as presented in Figure 

1.51. The interaction between particles allows one to take into account the destruction, ridging and 

moving of ice on the structure, which is very useful in modeling the actions of ice on inclined structures. 

For example, the studies of Lu et al. (2012) [46] and Liu et al. (2016) [45] that was described earlier 

(subsection 1.5) can be distinguished. However, this method has several significant disadvantages: 

- the particles themselves are almost non-deformable and cannot be destroyed; 

- the destruction of the ice field can only occur between particles, which imposes restrictions on 

the path of conditional cracks; 

- this method requires greater computing power compared with other considered numerical 

methods; 

- DEM is not widely used among software systems if compare with FEM and is more suitable for 

modeling granular media than for solving a continuous medium problem. 

Finite element method (FEM). To model the actions of ice formations, the finite element method 

is most often used. This method has received the greatest distribution among methods of numerical 

modeling and is actively developing today, because it has a wide range of advantages. The method is 

based on the concept of partition of unity and widely used to solve problems of solid mechanics, heat 

transfer, hydrodynamics and electrodynamics. 

Using this method, all bodies are represented as they are, close to real geometry. Then the bodies 

are discretized into finite elements – a mesh of each body is created. Finding a solution at finite element 

nodes leads to solving a system of algebraic equations. The smaller the size of the finite elements (i.e., 

the more elements in the model), leads to a greater number of algebraic equations solved by the solver 

and the greater the computational cost. 

When modeling the ice-structure interaction using the finite element method, the ice formation is 

often represented as a solid body. Usually the following two methods are used to simulate the destruction 

of ice: cohesive element method and element erosion technique. 

Cohesive element method. In this method, the simulated body is discretized using conventional 

bulk elements, as well as special cohesive elements of zero thickness as presented in Figure 2.2. Bulk 

elements are used to model the process of ice deformation, and destruction occurs due to the loss of 

strength of the cohesive elements. Thus, it is assumed that the cohesive elements are possible paths for 

the formation and development of cracks. The behavior of the cohesive elements is subject to predefined 

traction-deformation rules. This method was widely used to model ice impacts on structures with taking 

into account the ice destruction process. Among the studies considered before, the following can be 

distinguished: Gürtner et al. (2010) [29], Li Liang (2014) [44], Salganik (2014) [62]. Among the 

disadvantages of this method, one can distinguish the high computational cost, as well as the difficulty 
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of using in the case of complex geometry of ice formation. 

 

Figure 2.2 – Mesh when using the cohesive element method 

Element erosion technique. This method is also widely used to model ice-structure interaction 

problems but is easier to use than the previous cohesive element method. In this case, the ice formation 

is modeled as a completely continuous body using solid elements. To describe the behavior of ice under 

loads, special material models are used, which describe: 

- the yield criteria (yield surface) and flow rule; 

- the damage initiation criteria; 

- the damage evolution law. 

The life cycle of the finite element in this method is as follows. First, the behavior of the material 

completely depends on a predetermined constitutive model, then when a certain failure criterion is 

reached, the destruction of the material begins according to the damage evolution law. When the degree 

of damage reaches 100%, the material is considered destroyed and the finite element is removed from 

the model. The following studies of several authors described earlier use this method: Sand (2008) [63], 

Politko V.A. (2018) [56]. This method has high efficiency from the point of view of computation time, 

however, a significant disadvantage is the strong dependence on the mesh size (the size of the cracks is 

essentially connected with the size of the finite elements). 

Moreover, when solving ice problems, two different formulations of finite elements can be used. 

The Lagrangian-based finite element simulations is one of the most frequently used continuum 

mechanics. This method relates the mesh and the material, which might cause excessive distortion and, 

hence, numerical instability problems in which the material is deformed greatly. The ALE method 

combines the methods of Lagrange and Euler (in the latter case, the mesh is fixed in space, and the 

material flows through it). It takes advantage of both integration methods: the computational efficiency 

of the Lagrange method and the ability to allow a significant deformation of the Euler method. 

Extended Finite Element Method (XFEM). This method is an extension of the conventional 

finite element method. It can model cracks and other discontinuities by enriching the degrees of freedom 

in the model with additional displacement functions that account for the jump in displacements across 

the discontinuity. In this way, cracks modeled by this method are independent of the mesh (mesh-free), 

so the method is widely used in the fracture analysis. Nevertheless, it is practically not used to simulate 
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the interaction of ice with vertical structures, due to the difficulties in determining the position of the 

initial crack and a small degree of integration into CAE software. 

As an example of the application of the extended finite element method to solve ice problems, the 

study of Lu et al. (2018) [47] in which authors performed the numerical modeling of ice destruction 

during interaction of ice floe with icebreaker as presented in Figure 2.3. 

 

Figure 2.3 – Crack path within the selected ice floe before and after the fracture in both the simulation 

and reality according to Lu et al. (2018) [47] 

After analyzing the considered methods of numerical modeling, it was decided to use the finite 

element method in combination with cohesion element method. This method has the following 

advantages compared to other methods: 

- wide distribution and integration into a large number of software systems; 

- relative ease of use and setting model parameters; 

- clear and understandable interpretation of calculation results; 

- good applicability for solving problems of solid mechanics; 

- good agreement of results with field data (according to several authors). 

A study of the effect of various material parameters on ice load using CEM was performed by 

Feng et al. [22]. According to this study it was found that the structural response is highly sensitive to 

the change of fracture energy rather than the cohesive strength used for defining the curve of cohesive 

elements. The change of the shape or the initial slope of the curve has little effect on results. Also, the 

stress-strain curve of the bulk elements has remarkable influence on simulations. 
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The solution comes down to solving the main equation of motion of the finite element method, 

which has the following form: 

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = {𝐹}, (2.1) 

where [𝑀], [𝐶] and [𝐾] – global mass, damping and stiffness matrixes respectively; 

{�̈�}, {�̇�} and {𝑥} – nodal acceleration, velocity and displacement vectors respectively; 

{𝐹} – applied load vector. 

To perform numerical experiments, the SIMULIA Abaqus software package for finite element 

analysis will be used. SIMULIA Abaqus – universal software system of finite element (FEM) analysis, 

existing and developing over the past 40 years, is quite popular with specialists in the field of computer-

aided engineering (CAE) and linear and non-linear, stationary and non-stationary problems of mechanics 

of a deformable solid and structural mechanics (including non-stationary geometrically and physically 

non-linear contact problems interaction of structural elements). Also, it can be used for solving the 

problems of fluid dynamics, heat transfer, electrodynamics, topology optimization and others. 

2.2.2 Integration method selection 

To simulate dynamic processes, including the impact of ice formations on a structure, two methods 

for integration of motion are used: explicit and implicit methods. 

In practice, implicit methods are usually used to simulate relatively long-running processes, 

ranging from a few tenths of a second to several years (for example, the calculation of building structures 

considering creep). Implicit methods are reduced to a series of solutions of quasistatic problems with 

time-dependent loads. The time step may not be very small, since at each step a solution of the system 

of equations is performed and balancing iterations associated with matrix operations are carried out. 

Explicit methods are methods for solving equations of motion that are not related to solving 

systems of equations, but using recurrence relations that express displacements, velocities, and 

accelerations at current step through their values in the previous steps. To obtain a stable solution, the 

time step in the calculations is very small compared to implicit methods. Such small steps allow to 

calculate taking into account all the non-linearities and to thoroughly track the behavior of structures.  

In general, the choice of integration method is based on the time duration of the simulated process, 

as shown in the Figure 2.4. 

Despite the fact that the process of ice interaction with structures is relatively lengthy, for the 

correct consideration of the nonlinear properties of ice in the process of deformation, it is necessary to 

use small time steps. In this regard, in this thesis the explicit integration method will be used for a 

more detailed and quick assessment of the behavior of the ice during deformation. 
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Figure 2.4 – The application boundaries of implicit and explicit methods [6] 

Explicit dynamics procedure solves every problem as a wave propagation problem. Out-of-balance 

forces are propagated as stress waves between neighboring elements. As mentioned earlier, the time 

increment in explicit dynamics procedure is very small to achieve system stability. A bounded solution 

is obtained only when the time increment ∆𝑡 is less than the stable time increment ∆𝑡𝑚𝑖𝑛. The stable 

time increment is the minimum time that a dilatational (i.e., pressure) wave takes to move across any 

element in the model. Its value for each element in the model can be calculated as follows: 

∆𝑡𝑚𝑖𝑛 =
𝐿𝑒
𝑐𝑑
,                                                                         (2.2) 

where 𝐿𝑒 – characteristic length of element; 

𝑐𝑑 – the dilatational wave speed: 

𝑐𝑑  = √
𝐸

𝜌
,                                                                           (2.3) 

where 𝐸 – is the Young’s modulus of material; 

𝜌 – current material density. 

Thus, decreasing element dimensions, increasing material stiffness, decreasing material 

compressibility and decreasing material density can reduce the stable time increment and increase the 

computational cost of solution. 

Explicit method uses a central difference rule to integrate the equations of motion explicitly 

through time, using the kinematic conditions at one increment to calculate the kinematic conditions at 

the next increment. Initially, the solution comes down to defining accelerations at the beginning of the 

current increment that can be expressed from equation (2.1) as follows 

 {�̈�} = [𝑀]−1({𝐹} − ([𝐶]{�̇�} + [𝐾]{𝑥})) (2.4) 

Thus, the acceleration of any node is determined completely by its mass and the net force acting 

on it. Then the accelerations are integrated through time using the central difference rule, which 

calculates the change in velocity assuming that the acceleration is constant. This change in velocity is 
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added to the velocity from the middle of the previous increment to determine the velocities at the middle 

of the current increment: 

�̇�
(𝑡+ 

∆𝑡
2
)
= �̇�

(𝑡− 
∆𝑡
2
)
+
(∆𝑡(𝑡+∆𝑡) + ∆𝑡(𝑡))

2
�̈�(𝑡)                                              (2.5) 

The velocities are integrated through time and added to the displacements at the beginning of the 

increment to determine the displacements at the end of the increment: 

𝑥(𝑡+∆𝑡) = 𝑥(𝑡) + ∆𝑡(𝑡+∆𝑡)�̇�(𝑡+ ∆𝑡2 )
                                                        (2.6) 

The solution process of this method of integration of the equations of dynamics is shown in Figure 

2.5 and briefly can be explained following steps: 

a) the motion of the node points produces deformation in the elements of the mesh; 

b) the deformation results in a change in volume (hence density) of the material in each element; 

c) the rate of deformation is used to derive material strain rates using various element formulations; 

d)  constitutive laws take the material strain rates and derive resultant material stresses; 

e)the material stresses are transformed back into nodal forces using various element formulations; 

f) external nodal forces are computed from boundary conditions, loads and contact (body 

interaction); 

g) the nodal forces are divided by nodal mass to produce nodal accelerations; 

h) the accelerations are integrated explicitly in time to produce new nodal velocities; 

i) the nodal velocities are integrated explicitly in time to produce new nodal positions; 

g) the solution process (cycle) is repeated until a user defined time is reached. 

 

Figure 2.5 – Solution process of explicit method [7] 



64 

2.2.3 General modeling techniques 

Geometry of ice formations and structures. Of greatest interest in terms of the shape of vertical 

structures are single-cylinder cylindrical supports, due to their wide distribution in the construction of 

offshore structures. Structures of other forms in the plan are also available, but much fewer are built. In 

this regard, in this dissertation, the impacts of ice formations on circular structures will be investigated. 

Among the various forms of ice formations, according to the methods of calculating ice load, they 

distinguish level-ice sheets, hummocks and icebergs. The most common case of impact is the impact of 

level ice. Its thickness can reach several meters and, in the case of multi-year ice, have a very 

heterogeneous structure in thickness (Figure 1.4). The dependence of the ice load on the thickness in 

real conditions is indirect, due to the variable properties through the thickness. In modern analytical 

calculation methods, today, the dependence of the load on the ratio 𝑑/ℎ is considered, where d – width 

(diameter) of the structure and ℎ is thickness of level-ice sheet. For offshore structures, this ratio usually 

has a value of more than 5. Lower ratios (with small diameters) are more likely to correspond to various 

port structures (for example, piers and berths). Thus, cases of ice-structure interactions with ratios of 

𝒅/𝒉 greater than 5 will be considered. 

As mentioned earlier, the case of interaction with limit stress mode is the most dangerous and 

therefore of great interest. Thus, the numerical modeling will be performed under the assumption of the 

infinite ice field conditions. Shape of ice sheet in plan is applied as rectangular. To reduce the influence 

of boundary conditions, the dimensions of the ice field with respect to the structure diameter 𝒅 are 

taken as follows: 

- ice field width in the direction of movement – 6𝑑; 

- width of front face – 12𝑑. 

These dimensions are assigned based on the assumption that stresses propagate over a width of 4𝑑 

(interaction zone). This fact has been investigated by researchers earlier [38] and is adopted in the current 

national codes [68].  

Applied physical and mechanical properties of ice. The importance of taking into account the 

anisotropic properties of ice over the thickness of the ice field is described in Section 1. To consider the 

heterogeneous structure of the ice field, the simulated ice body is divided into 2 connected bodies 

with a thickness ratio of 1:3 according to SP 38.13330.2018 [68]. This division of the ice field is shown 

in the Figure 2.6. 

It is assumed that the upper body is granular ice layer with random c-axes orientations and 

therefore with isotropic properties. The lower body is taken as a columnar layer with orthotropic 

properties. For this case the most convenient way to describe ice properties is to accept the fact that the 

ice field has S2 texture type (Table 1.6) at which c-axes are randomly oriented in 𝑋1–𝑋2 plane (horizontal 
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plane) and X3 is parallel to the direction of growth of the ice field. 

 

Figure 2.6 – Geometric dimensions and texture assignments of modeled ice sheet (vertical dimension 

is scaled by 5 times) 

The temperature gradient in ice is assumed linear. The initial temperatures of the ice field are 

generated by a preliminary steady-state thermal analysis. The temperature calculation results are then 

integrated into the main model. The boundary temperatures are: on the top face of the ice field – ambient 

temperature; on the bottom face of the ice field – the freezing temperature of sea water, determined 

according to SP 38.13330.2018 as follows [68]: 

 𝑡𝑏 = −0,057𝑠𝑤, (2.7) 

where 𝑠𝑤 – water salinity, ‰. 

All equations of physical and mechanical properties of ice, which will be used in this thesis, are 

presented in Table 2.1. Thus, the initial independent physical properties are temperature at the upper 

boundary of the ice field, water salinity and ice thickness. Other physical and mechanical properties 

depend on each other. 

Meshing and boundary conditions. Since the cohesive element method shows significant 

dependence on mesh size, the appropriate mesh settings must be applied. The main work in the 

interaction of ice on the structures is done by the material near the contact. This region is discretized into 

the smallest finite elements and has dimensions of about 2𝑑. Further, the finite elements of the ice field 

will gradually increase in size up to the boundaries of the simulated ice body. To optimize the time of 

the model creation process, as well as reduce the distortion of finite elements, their number in thickness 

is taken equal for the whole body.  
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Table 2.1 – Equations for determining the physical and mechanical properties of ice 

Ice properties Equation Equation number Reference Additional information 

Ice salinity 𝑠𝑖 = 4,606 + (
91,603

ℎ𝑖
) (1.35) Kovacs (1996) [40] 

Used in ISO/DIS 19906:2019 

Will be used for ice thickness up to 2 m 

Ice density 

𝜌𝑖 = 0,917 − 1,403 ∙ 10
−4𝑇 (1.39) 

Cox and Weeks 

(1983) [14] 
- 

𝜌𝑠𝑖 = (1 − 𝜈𝑎)
𝜌𝑖 ∙ 𝐹1(𝑇)

𝐹1(𝑇) − 𝜌𝑖 ∙ 𝑠𝑖 ∙ 𝐹2(𝑇)
 (1.40) 

Brine salinity, 

mass and 

volume 

𝑚𝑏 = 𝑠𝑖
1 + (𝛽𝑇 + 𝑙)

𝛼𝑇 + 𝑘
 (1.16) 

Nazintsev and Panov 

(2000) [51] 

Used in SP 38.13330.2018 

𝑠𝑏 =
𝛽𝑇 + 𝑙

1 + 𝛽𝑇 + 𝑙
 (1.18) 

- 

𝜈𝑏 =
𝜌𝑠𝑖𝑠𝑖
𝐹1(𝑇)

 (1.21) 
Cox and Weeks 

(1983) [14] 

Elastic 

properties 

𝐸𝑠𝑖 = 𝐸𝑖(1 − 𝜈𝑏)
4 (1.48) 

Weeks and Assur 

(1967) [81] 
Used in ISO/DIS 19906:2010 

𝐸(𝑇) = 𝐸(𝑇𝑟) ∙ (1 − 𝑎(𝑇 − 𝑇𝑟)) 

(1.43) 
Gammon et al. (1983) 

[25] 

Based on measurements using Brillouin 

spectroscopy 
𝐺(𝑇) = 𝐺(𝑇𝑟) ∙ (1 − 𝑎(𝑇 − 𝑇𝑟)) 

𝜇𝑖,𝑠(𝑇) = 𝜇𝑖,𝑠(𝑇𝑟) ∙ (1 − 𝑎(𝑇 − 𝑇𝑟)) 

Compressive 

strength 

𝜎𝑐 = 37(휀̇)
0,22 (1 − √

𝜈𝑡
270

) (1.57) 

Timco and Frederking 

(1990) [75] 

Used in ISO/DIS 19906, ANSI API RP 2N-

2015, CSA/S471-04 
𝜎𝑐 = 160(휀̇)

0,22 (1 − √
𝜈𝑡
200

) (1.58) 

𝜎𝑐 = 49(휀̇)
0,22 (1 − √

𝜈𝑡
280

) (1.59) 
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The effect of the mesh pattern on the result will be later explored in this thesis. To simulate the 

conditions of an infinite ice field, all the faces of the body except the frontal one are constrained from 

movements in the direction orthogonal to the direction of motion. The initial velocity is also assumed 

constant on these faces. Destroyed ice in the process of interaction continues to affect the structure. 

Crushed ice increases the contact area, and also adds some vertical component acting on the ice field. In 

this regard, the forces of gravity and buoyance cannot be neglected. Gravity is taken into account very 

simply, by adding the appropriate load object to the bulk elements through the interface of the Abaqus 

software. Buoyancy can be modeled in several ways. 

The first is a Coupled Eulerian-Lagrangian (CEL) approach. In this case the two formulations of 

finite elements (Eulerian and Lagrangian) are used simultaneously. Ice field and structure are modeled 

by finite elements in Lagrangian formulation (material and mesh are interconnected). Water medium is 

modeled by Eulerian domain in which the mesh doesn’t move during the analysis and water material 

“flow” through the mesh. For this approach water material is usually modeled using equations of state 

(EOS) that represents the hydrodynamic behaviour. Since this approach significantly increases the 

computational cost of calculations, the second method of modeling buoyancy will be used. 

The main idea of the second method is to reproduce the water pressure acting on the external faces 

of bulk elements. If we assume that the vertical z-axis in the model is directed up, then buoyancy pressure 

𝑝, Pa, in the node of submerged finite element can be calculated as follows: 

 𝑝 = 𝜌𝑤𝑔(𝑧0 − 𝑧), (2.8) 

where 𝜌𝑤 – density of sea water, kg/m3; 

𝑔 – gravitational acceleration, m/s2; 𝑔 ≈ 9,81 𝑚/𝑠2; 

𝑧0 – coordinate of water surface in vertical direction (z-axis), m; 

𝑧 – coordinate of node in vertical direction, m; 

In the toolkit of the Abaqus software package, there is no way to add a pressure depending on the 

distance, the value of which will be updated every time increment. To add such pressure load the 

following subroutine was created in the Fortran programming language, which was then initialized 

at the beginning of each calculation time increment: 

      subroutine vdload (nBlock, ndim, stepTime, totalTime, amplitude, 

     & curCoords, velocity, dirCos, jltyp, sname, value) 

! General subroutine settings 

       include 'vaba_param.inc' 

 

       dimension curCoords(nBlock,ndim), velocity(nBlock,ndim), 

     1  dirCos(nBlock,ndim,ndim), value(nBlock) 

       character*80 sname 

! User-defined parameters 

       parameter (WaterDens = 1020, Gravity = 9.81, Zmax = 0, IceH = 1, 

     *           IceDens = 930) 

! WaterDens - approximate water density 

! Gravity - gravity acceleration 

! Zmax - z-coord (in vertical direction) of ice bottom 
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! Ice dens - approximate ice density (average) 

 

       parameter (iX     = 1, 

     *            iY     = 2, 

     *            iZ     = 3) 

! Subroutine main 

! Repeat every time increment 

       do i = 1, nBlock 

 

         if(curCoords(i,iZ) .Le. Zmax) then 

           Pressure = WaterDens*Gravity*(IceH*IceDens/WaterDens+Zmax 

     *              - curCoords(i,iZ)) ! Calculated buoyancy pressure 

           value(i) = Pressure 

         else 

           value(i) = 0.d0 

         endif 

       end do 

       return 

       end 

2.2.4 Selection of constitutive models for ice material 

Sea ice, as described earlier, is an extremely complex material. It can exhibit both plastic and 

brittle properties. Moreover, depending on the structure, ice formations can be considered as isotropic 

or orthotropic bodies. In this thesis, granular ice located mainly in the upper layers are assumed to be 

isotropic, since, as mentioned above (subsection 1.3), it has a random orientation of single crystals. In 

the case of columnar ice, the principle of isotropy cannot be applied, since the properties of such ice are 

very different in different directions. A good solution would be to consider columnar ice polycrystals as 

an orthotropic material. 

To describe complex material behavior constitutive model are used. Constitutive model of material 

is a set of mathematical relationships which describes the material behavior under different loading 

conditions. Today there are a huge number of different models of materials that mathematically describe 

their various features. To model the actions of ice on vertical offshore structures, it is necessary to 

describe the behavior of the ice at all its stages up to destruction. For this, elasticity models, plasticity 

models, as well as the damage initiation (failure) criteria and damage evolution laws, will be considered. 

Elasticity model. As basic parameters for modeling, elastic properties are used. These properties 

can be defined via the corresponding elasticity models. In this thesis, isotropic and orthotropic 

elasticity is used to model ice material behavior where the stress versus strain relationship is linear and 

the loading is kept within the elastic range. The models follow Hooke's law (equation 1.42), so assumes 

that the stretch or compression remains in the elastic range of the material and the model will return to 

its original shape after unloading. The elastic properties of polycrystals of isotropic and orthotropic ice 

are presented in Table 1.5 and Table 1.6, respectively. The temperature dependence of the characteristics 

is determined by the equation (1.43). 
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In case of cohesive elements, the constitutive response is defined in terms of traction versus-

separation law. It assumes a linear elastic traction-separation law prior to damage. The elastic behavior 

is written in terms of an elastic constitutive matrix that relates the nominal stresses to the nominal strains 

across the interface. The nominal stresses are the force components divided by the original area at each 

integration point, while the nominal strains are the separations divided by the original thickness at each 

integration point. The default value of the original constitutive thickness equal to 1.0 will be used, which 

ensures that the nominal strain is equal to the separation. The elastic behavior can then be written as [71] 

𝑡 = {

𝑡𝑛
𝑡𝑠
𝑡𝑡

} = [

𝐸𝑛𝑛 𝐸𝑛𝑠 𝐸𝑛𝑡
𝐸𝑛𝑠 𝐸𝑠𝑠 𝐸𝑠𝑡
𝐸𝑛𝑡 𝐸𝑠𝑡 𝐸𝑡𝑡

] {

휀𝑛
휀𝑠
휀𝑡
} ,                                                    (2.9) 

where 𝑡𝑛 – normal component of nominal traction stress vector, Pa; 

𝑡𝑠 and 𝑡𝑡 – shear components of nominal traction stress vector, Pa; 

𝐸𝑖𝑗 – corresponding elastic (or shear) modulus, Pa; 

휀𝑛, 휀𝑠, 휀𝑡 – normal and two shear components of strain vector respectively: 

휀𝑖 =
𝛿𝑖
𝑇0
,                                                                           (2.10) 

where 𝛿𝑖 – corresponding separations, m; 

𝑇0 – original constitutive thickness of cohesive element; since 𝑇0 = 1 the strains and separations 

are equal. 

However, a simplified formulation can be used in which the behavior of the cohesive elements in 

the normal and tangent directions is uncoupled. In this case each traction component 𝑡𝑖 depends only on 

its conjugate nominal strain 휀𝑖: 

𝑡 = {

𝑡𝑛
𝑡𝑠
𝑡𝑡

} = [

𝐸𝑛𝑛 0 0
0 𝐸𝑠𝑠 0
0 0 𝐸𝑡𝑡

] {

휀𝑛
휀𝑠
휀𝑡
} ,                                                   (2.11) 

Plasticity model. To describe the plastic properties of ice, it is necessary to choose a plasticity 

model. Typically, plasticity models consist of three main components [4]: 

- the yield criterion that defines the material state at the transition from elastic to plastic behavior; 

- the flow rule that determines the increment in plastic strain from the increment in load; 

- the hardening (or softening) rule that gives the evolution in the yield criterion during plastic 

deformation. 

The following yield theories with corresponding materials models are most widely used in 

structural analysis: von Mises yield theory, Tresca theory, Mohr-Coulomb theory and Drucker-Prager 

theory. High usability of these models is associated with the ease of use – the parameters needed to 

determine the yield surface can be obtained from standard material tests (yield strength, internal friction 

angle, adhesion). 
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Von Mises yield criterion is isotropic and independent of hydrostatic pressure, which can limit its 

applicability to microstructured materials and materials that exhibit plastic dilatation such as steels. This 

material model as mentioned before was used by such researchers as Gürtner et al. (2009) [30], Gürtner 

et al. (2010) [29], Hilding et al. (2011) [31], Hilding et al. (2012) [32] and Wang et al. (2019) [79]. It 

includes an associated flow rule. Yield surface in axes of principal stresses is presented in Figure 2.7, a. 

The von Mises yield criterion is [4]: 

 𝐹 = 𝜎𝑒 − 𝜎𝑦 = 0, (2.12) 

where 𝜎𝑦 – yield strength of material; 

𝜎𝑒 is the von Mises equivalent stress, also known as the von Mises equivalent stress: 

 𝜎𝑒 = √3𝐽2, (2.13) 

𝐽2 – second deviatoric stress invariant: 

𝐽2 =
(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2

6
+ 𝜎12

2 + 𝜎23
2 + 𝜎31

2 ,                   (2.14) 

where 𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎23, 𝜎31are stress components of Cauchy stress tensor 𝝈: 

𝝈 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]. 

The Tresca theory suggests that the material goes into a plastic state when the maximum shear 

stress 𝜏𝑚𝑎𝑥 reaches the shear yield strength 𝜎𝑠ℎ𝑒𝑎𝑟. Yield surface in axes of principal stresses is presented 

in Figure 2.7, a. The Tresca yield criterion is [4]: 

 𝐹 = 𝜏𝑚𝑎𝑥 − 𝜎𝑠ℎ𝑒𝑎𝑟 = 0, (2.15) 

The above criteria do not consider the effect of hydrostatic stress on the condition of the transition 

of the material into plastic behavior. Some materials show the influence of the hydrostatic stress 

component on yielding onset: the higher the hydrostatic stress (confinement pressure) the higher the 

yield strength. The two simplest models that take this feature into account are the Mohr-Coulomb and 

the Drucker-Prager models. 

The Mohr-Coulomb material model is used to represent the behavior of aggregate materials. 

Aggregate materials such as soil, rock and concrete begin to plastically deform when the shear stress 

exceeds the internal friction resistance between the material particles. The friction resistance is a function 

of the normal force between the particles. The model defines yielding when the combination of pressure 

and shear stress reaches the cohesion of the material particles. Mohr-Coulomb yield criterion was used 

as fracture criterion by Politko (2018) [56]. Yield surface in axes of principal stresses is presented in 

Figure 2.7, b. Yielding occurs when the shear stress 𝜏 on any plane in the material reaches this criterion: 

 𝜏 = 𝑐 − 𝜎𝑚 tan𝜑, (2.16) 

where 𝑐 – material cohesion; 

𝜑 – angle of internal friction; 
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𝜎𝑚 – hydrostatic stress: 

𝜎𝑚 =
𝜎11 + 𝜎22 + 𝜎33

3
                                                              (2.17) 

The classic Drucker-Prager model is used for modeling the granular materials such as soils, rock, 

concrete and uses the outer cone approximation to the Mohr-Coulomb law. This yield surface is a 

circular cone with the material parameters chosen such that it corresponds to the outer apices of the 

hexagonal Mohr-Coulomb yield surface as presented in Figure 2.7, b. Yield criterion of classic Drucker-

Prager model is [5]: 

 𝐹 = 3𝛽𝜎𝑚 +√𝐽2 − 𝜎𝑦 = 0, (2.18) 

where 𝛽 and 𝜎𝑦 – material model parameters; 

𝐽2 – second deviatoric stress invariant expressed in equation (2.14); 

𝜎𝑚 – hydrostatic stress expressed in equation (2.17). 

 

Figure 2.7 – Yield surfaces in axes of principal stresses: a) von Mises and Tresca; b) Mohr-Coulomb 

and classic Drucker-Prager [56] 

Among the other plasticity models that were used in different papers the following can be 

distinguished: Extended Drucker-Prager models, Hill plasticity, Johnson-Cook, Orthotropic Yield 

model, Horrigmoe and Zeng’s model and others. Some description of these models and discussion about 

their applicability for modeling ice problems are described in [48]. 

For isotropic ice Linear Drucker-Prager criteria will be used for modeling the yielding of 

pressure-dependent granular ice with different values of tension and compression yield stresses. Yield 

surface shown in Figure 2.8 provides for a possibly noncircular form in the deviatoric plane (π-plane) to 

match different yield values in triaxial tension and compression, associated inelastic flow in the 

deviatoric plane, and separate dilation and friction angles. The linear Drucker-Prager criterion is written 

as 

 𝐹 = 𝑡 − 𝑝 tan𝜑 − 𝑐 = 0, (2.19) 

where 𝑝 – pressure stress: 

 𝑝 = −𝜎𝑚 (2.20) 
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𝜑 – the slope of the linear yield surface in the p–t stress plane and is commonly referred to as the 

friction angle of the material; 

𝑡 – value determined by the following equation: 

𝑡 =
1

2
𝜎𝑒 (1 +

1

𝐾
− (1 −

1

𝐾
) (
𝐽3
𝜎𝑒
)
3

) ,                                                (2.21) 

where 𝐾 – the ratio of the yield stress in triaxial tension to the yield stress in triaxial compression and, 

thus, controls the dependence of the yield surface on the value of the intermediate principal stress; 

𝐽3 – third deviatoric stress invariant: 

2

27
𝐼1
3 −

1

3
𝐼1𝐼2 + 𝐼3,                                                                 (2.22) 

where 𝐼1, 𝐼2 and 𝐼3 – first, second and third stress invariants, respectively: 

 𝐼1 = 𝜎11 + 𝜎22 + 𝜎33, (2.23) 

𝐼2 = |
𝜎22 𝜎23
𝜎32 𝜎33

| + |
𝜎11 𝜎13
𝜎31 𝜎33

| + |
𝜎11 𝜎12
𝜎21 𝜎22

| ,                                          (2.24) 

𝐼3 = |

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

|                                                               (2.25) 

 

Figure 2.8 – Yield surface of linear Drucker-Prager criterion in the meridional plane 

The input parameters when using Simulia ABAQUS software are the angle of internal friction 𝜑, 

as well as the stress �̅�0, which determine the initial shape of the yield surface (at zero values of plastic 

strains 휀̅𝑝𝑙). The yield strengths described above also depend on the strain rate and temperature. 

In Simulia ABAQUS, the stresses �̅�0, which determine the initial yield surface, as well as the 

equivalent stresses �̅�, with the corresponding plastic strain values 휀̅𝑝𝑙, which determine the hardening, 

can be interpreted by the user as the yield strength under uniaxial compression, tension or pure shear. It 

is obvious that the most convenient is the determination of hardening through uniaxial compression 

stresses, since in most cases the data on the nonlinear nature of ice deformation were obtained by the 

authors through uniaxial compression tests. On the other hand, for brittle materials, including ice, the 

cohesion 𝑐 can be interpreted as the yield stress on pure shear, but when determining the hardening 

through compression stresses, the cohesion value 𝑐 will be automatically calculated in the model 
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depending on the angle of internal friction 𝛽, defined by the user, according to the following 

equation [72]: 

𝑑 = (1 −
1

3
tan𝛽) �̅�                                                               (2.26) 

In addition, the angle of internal friction β for brittle materials is a conditional characteristic, and 

for a material such as ice, the selection of the optimal value is a difficult task. In this regard, the following 

algorithm for modeling ice using the linear Drucker-Prager model in the Simulia ABAQUS software 

package will be used [48]: 

1) Determination of values of the ultimate strength of ice for uniaxial compression 𝜎𝑐 and shear 

𝜎𝜏, corresponding to several values of temperature 𝑡 and strain rate 휀̅̇𝑝𝑙. 

2) Assuming that �̅� = 𝜎𝑐, and 𝑐 = 𝜎𝜏, the calculation of the angle of internal friction values 𝛽 by 

the equation 

𝛽 = tan−1 (
3 ∙ (𝜎𝑐 − 𝜎𝜏)

𝜎𝑐
)                                                           (2.27) 

Thus, the shape of the yield surface will most accurately describe the strength characteristics of 

the simulated ice. When the stress level in the volume element of the compressive strength is reached, 

its deformation will continue as perfectly plastic.  

Failure criterion and post-fracture behavior. To determine the conditions under which the 

material is destroyed, the failure criteria are used. When using the damage evolution laws fracture criteria 

are also called “damage initiation criteria”. Often, fracture criteria are represented as failure surfaces in 

the space of principal stresses. In the structural analysis of structures, the behavior of materials after 

destruction is usually not considered, since structures are designed from the condition of preventing their 

destruction. However, in this thesis, the process of ice load formation is considered taking into account 

ice destruction. In the simple case, it can be accepted that the ice is destroyed after failure. In this way, 

instantaneous failure is modeled. Bur after the appearance of cracks and partial destruction, the ice is 

still able to affect the structure up to complete destruction. The so-called damage evolution laws can be 

used to describe the behavior of ice after failure. In this way, gradual failure (damage) is modeled. 

Fracture energy-based damage models are commonly used for this purpose. 

Many criteria determine the destruction of the material when the value of plastic deformation 휀̅𝑝𝑙 

reaches a critical value 휀�̅�𝑎𝑥
𝑝𝑙

. In most cases, the fact is accepted that the destruction of the material occurs 

when it reaches a yield surface (for example, when calculating steel structures). This is especially valid 

when describing the fracture of brittle materials such as rock, concrete and ice. In this case, it can be 

accepted that the condition of fracture onset is the appearance of plastic deformations (휀𝑝𝑙 > 0). These 

criteria work well when describing the fracture of ductile materials such as metals. Estimation of optimal 

value of critical strains is a very difficult task, since in experiments even among samples with similar 
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parameters, critical strains vary greatly However, in order to maintain the stability of the system and 

prevent excessive distortion of the finite elements, the criterion of critical plastic strains will be applied 

to bulk elements. A plastic strain value of 1 will be used as a criterion for the removal of elements for 

the first modeling iterations. This value is several times higher than the possible real values for ice and, 

accordingly, will not affect the ice-structure interaction process. 

In subsequent numerical experiments, the main process of destruction of ice is modeled using 

cohesive elements. So, the traction of cohesive elements is not infinite and have limits. In Abaqus 

software there are several failure models that can be applied to cohesive elements. The initial response 

of the cohesive element is assumed to be linear as discussed above. However, once a damage initiation 

criterion is met, material damage occurs according to a damage evolution law also called traction-

separation law (Figure 2.9). The cohesive elements do not undergo damage under pure compression. 

 

Figure 2.9 –Typical traction-separation response of cohesive elements [71] 

Damage initiation refers to the beginning of degradation of the response of a material point. The 

process of degradation begins when the stresses satisfy the following damage initiation criteria: 

𝑚𝑎𝑥 {
〈𝑡𝑛〉

𝑡𝑛
0 ,
𝑡𝑠

𝑡𝑠
0 ,
𝑡𝑡

𝑡𝑡
0} = 1,                                                             (2.28) 

where 𝑡𝑛
0, 𝑡𝑠

0 and 𝑡𝑡
0 – maximum values of corresponding tractions. 

The damage evolution law describes the rate at which the material stiffness is degraded once the 

corresponding initiation criterion is reached. The stress components of the traction-separation model are 

affected by the damage according to: 

𝑡𝑛 = {
(1 − 𝐷)𝑡�̅�, 𝑡�̅� ≥ 0

𝑡�̅�, 𝑡�̅� < 0
                                                       (2.29) 

 𝑡𝑠 = (1 − 𝐷)𝑡�̅�, (2.30) 

 𝑡𝑡 = (1 − 𝐷)𝑡�̅� , (2.31) 

where 𝑡�̅�, 𝑡�̅� and 𝑡�̅� are the stress components predicted by the elastic traction-separation behavior for 

the current strains without damage; 
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𝐷 – scalar damage variable represents the overall damage in the material and captures the 

combined effects of all the active mechanisms. It initially has a value of 0. Then the value of 𝐷 

monotonically evolves from 0 to 1 upon further loading after the initiation of damage. 

In the case of an orthotropic material, individual strength limits for compression, tension and shear 

in all three directions can be considered. 

2.3 Section conclusions 

Thus, the advantages and disadvantages of numerical methods were considered. The finite element 

method with an approach to modeling ice fracture by the method of cohesive elements was chosen as a 

tool for solving the tasks described above. Numerical modeling will be performed using the Simulia 

ABAQUS software and for integration of general equation of motion (2.1) explicit method will be used. 

The basic principles of creation a numerical model were also identified, as well as constitutive 

models for modeling ice material. To use the above principles in numerical modeling, it is necessary to 

follow the certain algorithm, starting with a description of the simulated situation (the size and shape of 

the ice formation and structure, the speed of ice formation, temperature) and ending with the 

interpretation of the calculation results (history of ice load, cyclic movement of the structure). Typical 

scheme for performing numerical experiments is presented in Figure 2.10. 

 

Figure 2.10 – Typical calculation algorithm 
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In the numerical model there is a joint work of bulk elements modeling the deformability of ice, 

as well as cohesive elements modeling its destruction. The parameters of a model with such a complex 

interaction require additional justification. Thereby, to analyze the applicability of the developed model 

it is necessary to perform numerical experiments. The main goal of experiments is to study the developed 

model of the ice-structure interaction by varying its parameters and assessing the quality of the 

interaction picture. Subsequent simulations will be performed according to following plan: 

1. Studying the influence of a mesh pattern; 

2. Studying the influence of the size of bulk elements; 

3. Selection of the optimal value of critical strains at which bulk elements are removed; 

4. The study of correspondence of the plasticity response and the pattern of deformation of bulk 

elements to real conditions; 

5. Examination of the formation of a complex stress-strain state and its effect on the ice load value. 
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3 Numerical experiments on the impacts of ice formations on vertical structures and 

development of the model 

3.1 Assessment of the influence of mesh pattern 

Since the solution of the tasks is performed by the numerical finite element method, it is necessary 

to evaluate the effect of the finite element mesh on the modeling results. This assessment is especially 

important when using the cohesive element method since the faces of bulk elements are possible crack 

paths. There are several types of finite elements in the library of the Abaqus/Explicit module, with which 

the volumetric body of an ice field can be discretized. They differ in geometric order, degrees of freedom, 

the presence of hourglass control and other functions. Since connected finite elements can only be of 

low geometric order and the ice field mesh must be conformal, quadratic bulk elements are not 

considered further. Available cohesive and linear bulk finite elements with temperature degree of 

freedom in the Abaqus/Explicit module are presented in Table 3.1. 

 

Table 3.1 – Available types of finite elements for modeling of ice field 

Code name Description Picture 

Bulk elements 

C3D4T 
A 4-node thermally coupled tetrahedron, linear 

displacement and temperature 

 

C3D6T 
A 6-node thermally coupled triangular prism, linear 

displacement and temperature 

 

C3D8T 
An 8-node thermally coupled brick, trilinear 

displacement and temperature 
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Continuation of Table 3.1 

Cohesive elements 

COH3D6 A 6-node three-dimensional cohesive element 

 

COH3D8 An 8-node three-dimensional cohesive element 

 
 

Thus, four mesh patterns will be compared: unstructured tetrahedral mesh using C3D4T and 

COH3D6 elements, unstructured prism mesh using C3D6T, COH3D6 and COH3D8 elements, 

structured hex mesh using C3D8T and COH3D8 elements, unstructured hex mesh using C3D8T and 

COH3D8 elements. Finite element models for all 4 cases are presented in Figure 3.1. Minimum and 

maximum mesh sizes are the same for all cases and equal to 0.25 m and 1.5 m respectively. Only four 

“layers” of elements in thickness are created to reduce calculation time. 

 

Figure 3.1 – Finite element models with different mesh patterns: a) tetrahedral mesh; b) prism mesh; c) 

structured hex mesh; d) unstructured hex mesh 

To perform this study, a model is created with the following parameters: 

- diameter of the structure 𝑑 equal to 5 m; 
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- ice sheet dimensions 60x30x1 m; 

- drift velocity 𝑣 equal to 0.5 m/s; 

- water salinity 𝑠𝑤 equal to 20 ‰; 

- air temperature 𝑡𝑎 equal to -20 °С; 

- only isotropic ice and linear behavior will be considered. 

Other physical and mechanical properties are determined according to the accepted methodology 

(section 2). The time of simulation is assumed to be 5 seconds, so that the structure crashes into the ice 

field to full width. As an evaluation criterion, the general picture of ice destruction, as well as the history 

of ice load during the simulation, are used. 

In Table 3.2 the information is presented about the components of the computer on which all 

calculations are performed.  

Unfortunately, in the current version of the ABAQUS software package it is impossible to use a 

graphic card to perform calculations with explicit time integration. All calculations are performed on 

CPU. General modeling information is presented in Table 3.3. Ice load history in the direction parallel 

(x-axis) and orthogonal to the direction of movement (y-axis) is presented in Figure 3.2 and Figure 3.3.  

 

Table 3.2 – Computer specifications 

Component General information 

Motherboard GigabyteX570 Aorus Ultra (rev. 1.0) PCI Express 4.0 

Central processing unit 

(CPU) 
AMD Ryzen 9 3900x, 12 cores 4.1 GHz, 24 threads 

Random-access memory 

(RAM) 
DDR4 DIMM 16x4 GB (64GB total) 3200 MHz 

Storage device 

Sabrent 1TB Rocket NVMe 4.0 Gen4 PCIe M.2 Internal SSD Extreme 

Performance Solid State Drive (SSD); 

Read speed 5000 MB/s; Write speed 4400 MB/s 

 

Table 3.3 – General modeling information 

Case 

Number of finite 

elements (bulk / 

cohesive) 

Total calculation time, 

hours 

Peak total ice force 

along direction of 

motion 𝐹𝑥
𝑡𝑜𝑡, MN 

Tetrahedral mesh 124 261 / 236 075 
48.63 

(4.01 s out of 5) 
- 

Prism mesh 46 272 / 103 672 12.61 7.358 

Unstructured hex mesh 26 312 / 71 918 4.88 9.785 

Structured hex mesh 29 808 / 81 264 2.25 6.224 
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Figure 3.2 – Load history with different mesh patterns (along x-axis) 

 

Figure 3.3 – Load history with different mesh patterns (along y-axis) 

As we can see mesh patterns showed quite different results. First, let us consider the structured 

hex mesh case. In my opinion this type of mesh showed the worst result. Peak force with extremely large 

value of 16.676 MN occurs at 1.34 s of calculation time, which corresponds to a depth of penetration of 

the structure of 0.67 m, and then decreases to average values around 6.23 MN. Obviously, this does not 

correspond to the real mechanics of the ice-structure interaction. Also, these values are several times 

higher than other cases. The picture of ice destruction at the end of the calculation is presented in Figure 

3.4. 
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Figure 3.4 – Ice crushing during impact of ice field in case of structured hex mesh: a) general view; 

b) top view; c) side view 

As we can see, the vertical cohesive elements destroyed along several parallel faces of the central 

finite elements. To understand the reason, it is necessary to consider the very beginning of the 

interaction. Figure 3.5 shows that, at first, the two closest finite elements to the structure begin to interact 

with it. Then, shear stresses 𝜏𝑥𝑧 arise on the lateral faces of these elements. Since the mesh is structured, 

the propagation of stresses passes deep into the field in a straight line without any bulk elements in the 

pass. The cause of the unrealistic destruction of vertical cohesive elements is the rapid propagation of 

shear stresses 𝜏𝑥𝑧, while cohesive elements orthogonal to them are not working. This is clearly seen 

when looking at the fracture pattern presented in Figure 3.6. 

 

Figure 3.5 – Propagation of shear stress 𝜏𝑥𝑧 in structured hex mesh: a) at time 0.01 s; b) at time 0.02 s 

 

Figure 3.6 – Fracture pattern at time 5 s (structured hex mesh) 
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Some similarities can be seen with the splitting failure mode described in section 1 and presented 

in Figure 1.25, but this is not the right case, since longitudinal separating cracks form on the faces of 

each row of finite elements. Also, the horizontal load along y-axis shows very unstable behavior. Some 

rapidly changing peaks can be seen from time 1 s. Thus, for the correct description of the destruction 

process, the use of a structured hex mesh is not allowed. 

The second type of mesh to consider is unstructured hex mesh. The result of the calculation at the 

last second of the interaction is presented in Figure 3.7. As for the general picture of the interaction it is 

obvious that the asymmetric destruction occurs with the breaking away of large parts of the ice field. 

Although the presence of an unstructured mesh made it possible to avoid the propagation of shear 

stresses over the entire width of the modeled field, there are still small regions consisting of “direct” 

parallel faces of elements form weak zones (Figure 3.8) along which the field is destroyed and which 

are the cause of the asymmetric interaction picture. Reducing the mesh size in the case of a hexagonal 

mesh will only worsen the situation, since a decrease in the size of the elements leads to a straightening 

of the boundaries of elements and the mesh tends to become structured. 

 

Figure 3.7 – Ice crushing during impact of ice field in case of unstructured hex mesh: a) general view; 

b) top view; c) side view 

 

Figure 3.8 – Shear faults at time 0.58 s in case of unstructured hex mesh 



83 

The ice load in this case rapidly increases to high values (about 9.785 MN), and then gradually 

decreases to values of about 1,5 MN. The maximum value corresponds to the beginning of interaction 

(time range 0.3-0.6 s), that is obviously not correct. The effect of asymmetric fracture can also be seen 

by looking at the load history in the y direction (Figure 3.3). After splitting off a large fragment of the 

field, there was no contact with solid ice on this side. In this regard, the horizontal load from ice on the 

other side of the structure along the y-axis was significant throughout almost the entire calculation time. 

Fracture pattern is shown in Figure 3.9. Given all the above, we can conclude that despite the efficiency 

of computing, the use of a hexagonal mesh at all is unacceptable when modeling the impact of ice on 

structures. 

 

Figure 3.9 – Fracture pattern at time 5 s (unstructured hex mesh) 

Next, consider the prism mesh case. The result of the calculation at the last second of the interaction 

is presented in the Figure 3.10. This case shows more realistic picture. Spalls and slight hummocking 

are present. An interesting fact is the periodic formation of “wing” fracture surfaces in an ice field. For 

example, as can be seen in Figure 3.11 (a), at the beginning of the interaction, the mean (hydrostatic) 

stresses have increased values in the region of future cracks. With further interaction, the ice fails mainly 

on these surfaces, then the process repeats Figure 3.11 (b). For clarity, the fact of the formation of such 

cracks is shown in the Figure 3.12. 

As for the ice load, then, as in the past case, it quickly increases at the beginning of the interaction 

to the value 4.398 MN at 0.15 s, and then decreases to average values of about 0.318 MN. However, 

further behavior shows a different result then previous one. From about 1.8 s, the load begins to slowly 

increase and reaches its peak value of 7.358 kN at a time of 4.49 seconds, which corresponds to almost 

full-diameter penetration of the structure into the field. At a time of about 4.7 s, the horizontal load along 



84 

the y axis increased to 1.2 MN due to the destruction of ice on one side of the structure, but then quickly 

returned to low values. 

The presence of a peak in ice load at the beginning of the interaction is connected with a small 

contact area and in my opinion is not correct. As can be seen from Figure 3.11, a, one finite element has 

a significantly higher level of stress than the other surrounding elements. This may be due to many 

factors, such as improper contact stiffness in the model, or the incorrect principle of a mesh creation in 

the contact zone. Therefore, additional studies of the applicability of this pattern are required. 

 

Figure 3.10 – Ice crushing during impact of ice field in case of prism mesh: a) general view; b) top view; 

c) side view 

 

Figure 3.11 – Formation of “wing” failure surfaces in ice field in case of prism mesh pattern: a) at time 

0.2 s; b) at time 5 s 

The disadvantages of this type of finite elements can be seen by considering the central section of 

the model (Figure 3.13). Although the destruction pattern is acceptable in top view, in this section there 

is a complete discrepancy with real observations of ice impacts. With the current drift velocity and the 

diameter of the structure, the type of interaction should correspond to crushing failure mode of the ice 

field at the contact. Bekker's monograph [9] describes the process of field destruction in thickness for 
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this mode. In nature, in the upper and lower layers of ice spalls are formed along inclined surfaces, 

contributing to the concentration of stresses in the central part of the ice field. However, the Figure 

3.13, c, shows that after partial crushing of the ice, the horizontal connected finite elements are destroyed 

simultaneously over the entire thickness, due to which the ice field is more or less equally vertically 

stressed. With an increase in the number of finite elements in thickness, a different picture may be 

observed, however, a decrease in the size of the finite elements may not be practical in comparison with 

the use of tetrahedral finite elements. 

 

Figure 3.12 – Fracture pattern at time 5 s (prism mesh) 

 

Figure 3.13 – Central vertical section of model during interaction (prism mesh): a) at 0.01 s; b) at 0.1 s; 

c) at 0.25 s; d) at 0.55 s 
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Modeling of ice with a prismatic mesh requires significantly longer calculation time than in the 

case of a hexagonal mesh, but such a mesh allows to take into account the uneven development of cracks 

in the vertical plane to a good extent. 

The last case to consider is a tetrahedral mesh. This case is considered the most expensive in terms 

of computation cost. This is due to the much larger number of finite elements needed to discretize the 

model with the same size settings. The calculation was not completed until the end, since at a time point 

of 4.01 s in the simulation, the time increment became very small, possibly due to strongly deformed 

elements. As a result, to calculate a model with the same initial conditions using the tetra mesh, almost 

6 times more time is required than in the case of prism mesh. The simulation result for time in model 

equal to 4.01 s is shown in Figure 3.14. The deformation pattern in this case is quite different from the 

previous ones. The fracture pattern is shown in Figure 3.15. 

 

Figure 3.14 – Ice crushing during impact of ice field in case of tetrahedral mesh: a) general view; b) top 

view; c) side view 

 

Figure 3.15 – Fracture pattern at time 4.01 s (tetra mesh) 
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In this case, there are no large chipped pieces as well as cracks propagation deep into the ice field. 

Figure 3.14, c shows a hummocking process, which has a much greater degree than in previous cases. 

This picture clearly corresponds to the real case of destruction, when a gradual and uniform destruction 

of ice at the contact is realized. The reason for the strong difference between the tetrahedral mesh and 

the prismatic one can be seen if we analyze the beginning of the interaction and the central vertical 

section of ice field. 

As can be seen in Figure 3.16, a, at the very beginning (up to 0.1 s), the main destruction begins 

along the horizontal and vertical faces of the elements and the difference with the prismatic mesh is not 

noticeable. However, with further interaction Figure 3.16, c, the inclined faces of the tetrahedral 

elements are included in the work and serve as fracture surfaces.  

 

Figure 3.16 – The development of ice destruction at the contact: a) at 0.1 s; b) at 0.2 s; c) at 0.35 s; d) 

at 0.5 s 

The qualitative picture of fracture, as in the case of a prismatic mesh, can be estimated by 

considering the interaction in the central section of the model. This section is presented in Figure 3.17. 

Unlike the case of a prismatic mesh, the pattern of destruction is more consistent with the process 

described by Bekker (2004) [9]. At the beginning of interaction (Figure 3.17, b) the central part of the 

ice field has the highest stress values, since spalls have occurred in the upper and lower parts. Uneven 

destruction of the ice field in thickness is clearly visible in the Figure 3.17, d. The lower part of the ice 

field is destroyed to a greater extent due to high ice temperatures and, accordingly, low ice strength. 

Thus, the fracture process in this case is periodic in nature with the formation of inclined fracture 

surfaces. This interaction physics will be better visible if the number of finite elements in the thickness 

of the ice field is increased. 
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Figure 3.17 – Central vertical section of model during interaction: a) at 0 s; b) at 0.01 s; c) at 0.05 s; 

d) at 0.25 s 

As for the nature of the ice load, this pattern is the only one considered that has almost no peak 

load at the beginning of the interaction. The presence of this peak can also be due to the influence of 

inclined faces and spalls, that are destroyed and reduce the contact area. Also, load is increasing in slow 

manner during analysis. Unfortunately, it was impossible to estimate the load when embedding the 

structure at full width, because the calculation was interrupted. An additional study of the criterion for 

the removal of bulk and cohesive elements can solve the problem of a strong decrease in the time step. 

At the end of the study of the mesh pattern, the following conclusions can be drawn: 

- the hexagonal mesh showed the highest value from the calculated loads; 

- the presence of a structured mesh speeds up the calculation, but leads to an incorrect picture of 

the interaction and stress distribution in an ice field; 

- the presence of inclined faces of finite elements significantly changes the pattern of destruction; 

- the tetrahedral mesh has significantly higher computational cost; 

- the tetrahedral mesh shows the most realistic picture of the interaction. 

In my opinion, using a tetrahedral finite element would be the best solution, since this case has an 

acceptable picture of failure and the nature of the load. It has high computational cost, but this problem 

can be solved by using more powerful computers. As for the process of interaction with structures in the 

first seconds, a rapidly increasing load can be a problem of ensuring the correct initial contact. 
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3.2 Element size influence 

At this stage of the model study, the influence of the size of finite elements on the final simulation 

result was considered. As the first case in a series of experiments, the model from the previous subsection 

(tetrahedral mesh pattern) was adopted. When creating a new model, all sizes and boundary conditions 

were preserved, but the size of the finite elements of the ice field was changed. Moreover, to optimize 

the calculation time, the field was divided into 4 zones as presented in Figure 3.18. 

 

Figure 3.18 – Mesh zones with different element sizes 

The first zone has a radius equal to the diameter of the structure and the minimum size of the finite 

elements is approximately 0.15 m. By thickness, the ice field is discretized into 8 layers. The second 

zone – two diameters with an approximate size of the finite elements equal to 0.3 m (4 elements in 

thickness). The third and fourth zones have 2 and 1 end elements in thickness, respectively, with a 

maximum size of about 2.2 m. This decision was made based on the destruction pattern presented in the 

Figure 3.15, namely, it is clear that zone of destroyed cohesive elements does not extend much deep into 

the field, when the field interacts almost over the full diameter. Thus, a more accurate description of 

contact with the structure was provided, and the total number of finite elements was increased by only 

1.5 times. The calculation results are presented in the Table 3.4. The history of the load along and across 

the direction of movement is presented in the Figure 3.19 and Figure 3.20. 

The nature of the load in the cases considered is, as expected, very similar, but for the case of the 

fine mesh, the vibrations are smoother. Moreover, with a decrease in the size of the elements, the load 

has higher values throughout almost the entire interaction time. The picture of destruction in the plan is 

shown in the Figure 3.21 and visually not much different. The central section of the model is shown in 

Figure 3.22. 
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Table 3.4 – General modeling information 

Case 

Number of finite 

elements (bulk / 

cohesive) 

Total calculation time, 

hours 

Peak total ice force 

along direction of 

motion 𝐹𝑥
𝑡𝑜𝑡, MN 

0.30 m (4 elements in 

thickness) 
124 261 / 236 075 

48.63 

(4.01 s out of 5) 
- 

0.15 m (8 elements in 

thickness) 
195 904 / 378 476 141.68 10,096 

 

 

Figure 3.19 – Load history with different mesh sizes (along x-axis) 

 

Figure 3.20 – Load history with different mesh sizes (along y-axis) 
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Figure 3.21 – Fracture pattern at time 5 s (model with fine mesh) 

 

Figure 3.22 – Central vertical section of model with 8 elements in thickness during interaction: a) at 

0.01 s; b) at 0.10 s; c) at 0.25 s; d) at 0.55 s 

Noticeable improvements can be seen in the overall picture of the interaction. As in the case of a 

coarse mesh, at the beginning of the interaction, high compressive stresses are concentrated in the center 

of contact zone (Figure 3.22, a). A small peak of the load that occurs in the first fractions of a second is 

associated with the process of deformation and growth of stresses in bulk elements. Then the first 

spalling occurs, and the total ice force drops to low values. A further increase in the load is associated 
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with an increase in the contact area and, accordingly, the number of contacting elements. The inclined 

surfaces of destruction are now visible even more clearly (Figure 3.22, d). 

Also in the process of destruction, there were moments when the destruction of the ice field did 

not occur along two, but along one inclined surface throughout the thickness as presented in Figure 3.23. 

Such a picture can also develop and is associated with low strength of the lower layers, which are 

destroyed earlier than the rest. 

 

Figure 3.23 – Central vertical section of model with 8 elements in thickness at time 4.0 s 

3.3 Section conclusions 

The results of modeling the ice impacts on vertical structures according to the accepted method 

showed good results. As expected from the finite element method, the influence of various mesh patterns 

on the picture of ice field destruction is large. The presence of inclined cohesive elements leads to a 

more realistic picture of the interaction. Therefore, an ice field of tetrahedral bulk elements is the most 

acceptable option from the considered. The main problems when using tetrahedral elements are as 

follows: 

- assignment of ice properties to inclined cohesive elements, since there is little information on the 

deformation and strength characteristics of ice along inclined axes; 

- big time for calculating models, which can be solved by using a more powerful computer. 

The dependence of the load on the size of the finite elements was weak for the considered case. 

However, the pattern of ice destruction at the contact is much better when using a fine mesh and 

coincides with the real observations of some authors. 

The nature of the destruction of ice in general corresponds to the crushing failure mode in real 

conditions. Unequal destruction of the ice field in height during modeling is a significant factor that 
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confirms the relevance and reliability of the applied method. Also, this nature of the destruction is 

contrary to Gladkov’s assumptions [27], on which the current methodology for determining ice loads in 

the regulatory document SP 38.13330.2018 [68] is based. In determining the values of the factor 𝑘𝑏, he 

admitted that all layers of the ice field are destroyed simultaneously. 

To assess the possibility of applying the considered methodology for solving real engineering 

problems, it is necessary to verify it. 
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4 Verification of the methodology for modeling ice impacts on vertical offshore structures 

4.1 Comparison of load with analytical methods of national codes 

To confirm the efficiency of the model for solving real engineering problems, it is necessary to 

verify the used methodology of ice-structure interaction modeling. This can be done, for example, by 

methods such as analyzing the correspondence of the qualitative picture of ice destruction to recorded 

cases and comparing the magnitude of the impact with the measured in the field. 

Another way is to compare the simulation results with the analytically calculated value of the load 

according to various theories. Although the analytical methods used to date have several disadvantages, 

they are still successfully used in the design of offshore structures. The first stage of verification will be 

the comparison of magnitude of the ice load obtained as a result of modeling with the load calculated by 

the methods described in the national codes below. Most of national standards require to take into 

account several limiting factors of ice load described earlier (section 1). The methods for calculating the 

corresponding scenarios of the interaction of ice formations and structures have large differences. 

However, since the principle of infinite ice field is applied in the modeling, a comparison with the load 

only for limit stress scenario will be performed. 

SP 38.13330.2018 [68]. This regulatory document is a standard of the Russian Federation and 

contains requirements for the calculation, design, justification of the reliability and safety of hydraulic 

structures. In accordance with these standard, the ice load form drifting ice field on structures with a 

vertical front face in case of limit stress scenario 𝐹𝑏,𝑝, MN, is determined by the modified Korzhavin’s 

formula proposed by Gladkov M. G. [27]: 

 𝐹𝑏,𝑝 =  𝑚𝑘𝑏𝑘𝑉𝑅𝑏ℎ, (4.1) 

where 𝑚 – structure shape factor; 

𝑘𝑏 – indentation factor taking into account the influence of complex stress-strain state of ice field 

on the ice strength limit; 

𝑘𝑣 – factor taking into account the influence strain rate on the ice strength limit; 

𝑅 – compressive strength of ice, MPa; 

𝑏 – structure width, m; 

ℎ - ice thickness, m. 

STO Gazprom 2-3.7-29-2005 [69]. This document is a standard of the Russian company 

Gazprom and contains methods for calculating the ice load, supplementing and clarifying the design 

requirements, and the provisions of Russian national codes. The load from the impact of ice formations 

is determined with the values of 𝑑/ℎ ≥ 10 according to following equation 

 𝐹𝑏,𝑝 = 𝑚𝑘𝑏𝑅𝑏ℎ, (4.2) 
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The parameters in equation (4.2) are the same as in equation (4.1). 

ND 2-020201-015 [52]. These rules of the Russian Maritime Register of Shipping establish 

requirements that are specific to floating drilling rigs and offshore stationary platforms, take into account 

the recommendations of the IMO Code for the design and equipment of floating drilling rigs adopted by 

the IMO Assembly on December 2, 2009. In this case ice load is determined by equation 

 𝐹𝑏,𝑝 =  𝑚𝑘𝐿𝑘𝜐𝑅𝑏
0.85ℎ0.9, (4.3) 

where 𝑘𝐿 – factor that takes into account the effect of ice field area and structure diameter on the 

load. 

Other parameters in equation (4.3) are the same as in equation (4.1). 

ISO/FDIS 19906:2019(E) [33]. This document was developed by the International Organization 

for Standardization (ISO) and establishes requirements, provides recommendations for the design, 

construction, transportation, installation and decommissioning of offshore structures associated with the 

activities of the oil and gas industry in the Arctic and cold regions. Based on this document the global 

ice load is determined as follows: 

𝐹𝑏,𝑝 = 𝑏ℎ𝐶𝑅 ((
ℎ

ℎ1
)
𝑛

(
𝑏

ℎ
)
𝑚

+ 𝑓𝐴𝑅) ,                                                     (4.4) 

where 𝐶𝑅 – the ice strength coefficient, MPa; 

𝑛 and 𝑚 – empirical coefficients; 

𝑓𝐴𝑅 – empirical term given by 

𝑓𝐴𝑅 = 𝑒
−𝑏 3ℎ⁄ √1 + 5

ℎ

𝑏
,                                                              (4.5) 

CAN/CSA-S471-04 [11]. This document is Canada's national standard.  

This standard use power-law dependencies of ice pressure on nominal contact area, which were 

obtained as a result of processing a large amount of ice pressure data on the hulls of the Kigoriak, Polar 

Sea, MV Arctic, Manhattan and Oden icebreakers in Canadian waters. The code recommends two 

different formulas for calculating the ice load depending on the ratio of the width of the structure to the 

thickness of the ice field.  

If the global ice load 𝐹𝑏,𝑝 is determined as follows: 

 𝐹𝑏,𝑝 = {
𝐶𝑝𝐴𝑁

(𝐷𝑝+1), 𝑏/ℎ < 10

𝐶𝑝ℎ
(𝐷𝑝−𝐸𝑝+1) ∙ 𝑏(𝐸𝑝+1), 𝑏/ℎ ≥ 10

 (4.6) 

where 𝐴𝑁 – nominal contact area, m2; 

𝐶𝑝, 𝐷𝑝 и 𝐸𝑝 – empirical parameters. 

Elforsk rapport 09:55 [24]. This report by the Swedish energy research company contains 

recommendations, a description of the ice load mechanisms and statistics from the Baltic Sea. In 
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accordance with the recommendations of this report, the ice load from the level ice fields acting on 

structures can be evaluated by the original Korzhavin’s equation: 

 𝐹𝑏,𝑝 = 𝑚𝑘𝑐𝑘𝑏𝑅𝑏ℎ, (4.7) 

where 𝑘𝑐 – contact factor that covers the fact that ice under continuous crushing is not in contact with 

the whole nominal area. 

GL 2005. IV-Part 6 [26]. These rules are a German national standard and are designed to evaluate 

the properties of sea ice and ice loads on offshore structures. Ice load is determined using the formula 

obtained by several authors at Iowa University based on small-scale tests: 

 𝐹𝑏,𝑝 = 𝑘𝑏
0.5ℎ1.1𝑅, (4.8) 

where 𝑘 – empirical factor. 

As a simulated case of ice impact on structures, the case of a tetrahedral mesh, described in 

section 3.1 of this thesis, is accepted. The maximum load was considered in two ways: load surges were 

considered and not considered. This decision was made because the cause of these surges is unknown 

and their number is very small compared to other data points. Calculations using analytical methods 

were carried out strictly in accordance with all clauses of national standards. The strength of ice was 

calculated in accordance with the recommendations of each regulatory document. In the case when there 

is no indication in the codes on the strength of ice, then its value was taken equal to that calculated by 

the SP 38.13330.2018. A comparison of the results is presented in the Table 4.1 and in the Figure 4.1. 

 

Table 4.1 – Comparison of ice load and difference with simulation results 

Parameter 

Modeling 

(with 

surges) 

SP MRS 
ISO 

FDIS 

CAN 

CSA 
Elforsk GL 

Modeling 

(without 

surges) 

Ice load, MN 10.10 7.83 11.44 9.36 3.94 1.59 4.17 4.59 

Difference 

with modeled 

load (surges 

are 

considered), % 

0.00 28.99 13.29 7.85 156.25 534.55 142.10 119.72 

Difference 

with modeled 

load (surges 

are not 

considered), % 

119.72 70.34 148.92 103.72 16.63 188.80 10.19 0.00 

 

The magnitude of the ice load calculated by various analytical methods in some cases differs 

several times. If we compare these values with the values of the load obtained as a result of modeling 

we get a mixed result. 
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Figure 4.1 – Comparison of the ice load according to different codes with the result of numerical 

simulation 

If we take into account surges, then the load has value that is close to calculated according to more 

modern standards (SP 38.13330.2018, MRS 2018 №2-020201-015, ISO/FDIS 19906:2019(E)). In this 

case the methodology of the ISO normative document showed the greatest convergence, but when 

compared with other standards, the difference reaches 534.55% for Elforsk rapport 09:55. This fact may 

also be a coincidence, therefore, it is impossible to judge the correctness of the ice load obtained during 

modeling. Analytical methods also have their own assumptions and disadvantages, so it is necessary to 

perform several iterations of calculations with different conditions, and then perform a comparison. 

4.2 Modeling of uniaxial compression tests 

Finally, the last approach to verify the numerical model is to simulate uniaxial compression tests. 

Such laboratory data are valuable, since the parameters of ice and load can be regulated during the 

experiment, and different cases can be considered. The author took part in a series of such experiments 

conducted in Laboratory of Ice Mechanics of Far Eastern Federal University (FEFU). One of the main 

goals of tests was to determine the compressive strength of sea ice at different strain rates. 

Ice samples for testing were prepared as follows. First of all, ice cores were cut from ice in Novik 

Bay, located near the university using the core sampler (Figure 4.2, a). The ice thickness at the time of 

core sampling was approximately 25 cm. Then the cores were transported to the laboratory and placed 

in the refrigerator. Second, samples of 200 mm height were cut out from cores, their sizes and weights 

were measured. For the compression tests, 20 cylindrical samples with a diameter of 90 mm and a height 
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of 200 mm were prepared (Figure 4.2, b). The tests were performed using the Shimadzu press (Figure 

4.2, c). The maximum possible load on the press is 100 kN. Apparatus has the possibility to control 

loading speed. Test were performed on following speeds: 0.1 mm/s, 0.5 mm/s, 1 mm/s, 1.5 mm/s, 2.5 

mm/s using 5 samples in each case. After crushing the temperature of each sample was measured. 

 

Figure 4.2 – Compression tests preparation: a) core sampling; b) sample setting; c) Shimadzu press 

During the verification process, the reaction force magnitude of the upper plate, as well as the 

overall pattern of fracture of the samples will be compared with experimental data. The finite element 

model with boundary conditions is presented in Figure 4.3. 

When creating a numerical model of experiments, the following assumptions were made: 

- support and loading plates of the press are modeled using rigid shells; 

- roughnesses in the surface of the samples are not taken into account; 

- the size of the finite elements of the sample is taken equal to 12 mm; 

- the coefficient of friction is taken equal to 0 to prevent the confining of displacements in the 

vicinity of plates. 

 

Figure 4.3 – Finite element model in numerical experiments on uniaxial compression of ice samples 

A comparison of forces in modeling and laboratory experiment is presented in the Figure 4.4. The 

results were mixed. On the one hand, the nature of the load is very different. for example, during 
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modeling, there are constant power surges throughout the entire time. The output frequency was assumed 

to be 0.01 second, as in a laboratory experiment. On the other hand, the force graph obtained from the 

results of a laboratory experiment runs right through the upper points almost until the sample is 

destroyed. In my opinion, in general, the result is acceptable, because when evaluating the force along 

the upper boundary, as when comparing the ice load according to regulatory documents, there is a good 

agreement. 

 

Figure 4.4 – Comparison of forces in modeling and laboratory experiment 

4.3 Section conclusions 

In this section, verification of the developed methodology for numerical modeling of the impact 

of ice formations on the vertical supports of structures was performed.  

This modeling methodology showed a good correspondence of the load values to the load 

determined by the current documents. Even among themselves, the methods of various codes are very 

different from each other. For example, the very important fact that almost all foreign standards consider 

the regime of viscous-brittle fracture when the strain rate is within approximately 5∙10-4÷10-3 s-1. Thus, 

such regulatory documents assume the maximum strength of ice during interaction. The only exceptions 

is the code GL 2005. IV-Part 6 [26] who propose using the empirical formula obtained by Kovacs (1997) 

[39] to calculate the strength of ice based on tests of ice samples from the Beaufort Sea. The Russian 

standards have a 𝑘𝜐 factor which was first introduced in SNiP 2.06.04-82* at the proposal of M. G. 

Gladkov [27], although Korzhavin, when developing the original formula, also took into account the 

influence of the strain rate on the strength of ice. The proposed method takes into account the rate of ice 

deformation during the entire simulation time, which is an undoubted advantage over analytical methods. 
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As for verification using laboratory test data, the result is mixed. On the one hand, the general 

nature of the increase in load during modeling correlates well with the laboratory experiment. Also, the 

maximum force does not differ much from that obtained in the experiment. On the other hand, when 

modeling, there are multiple fluctuations in the force, although the frequency of the data corresponds to 

the frequency of recording the force of the press machine. This can be due to many factors and is one of 

the problems that can be solved with further research. 
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Conclusion 

Summarizing the results obtained in this dissertation, the following conclusions can be drawn: 

1. Based on the analysis of the current state of problem of assessing the impact of ice fields on 

structures, it can be concluded that this problem has been solved for a rather long time. In terms of 

determining the physicomechanical characteristics of ice, a significant amount of research has been 

performed. Numerical modeling is a promising way to solve this problem. To date, there are a number 

of works in this area. In almost all the reviewed articles and theses, the authors did not pay due attention 

to the selection and substantiation of constitutive models of ice material. Such features of ice as the 

strong dependence of the parameters on temperature, the complex stress-strain state, and also the strain 

rate were not taken into account. 

2. A comprehensive study of methods for determining the parameters of ice, depending on many 

factors was made. An algorithm has been compiled to calculate the full set of necessary characteristics 

of ice, depending on some initial conditions. 

3. As a method for solving the problem, a numerical finite element method is chosen. The solution 

tool is the SIMULIA Abaqus software package. As an integration method for the main equation of 

motion, an explicit integration method was justified and adopted. Tasks were set and a plan was drawn 

up for numerical experiments performed in the thesis. Initial numerical models of the interactions of the 

ice field with structures were created on the basis of some assumptions based on the known results of 

experimental studies of sea ice. 

4. The statement of the problem based on the developed methodology of numerical modeling 

includes the following studies and improvements: 

- the tetrahedral mesh pattern is accepted as the most optimal from the point of view of a qualitative 

picture of interaction; 

- reducing the size of the finite elements does not lead to a significant change in the magnitude of 

the ice load, but contributes to a more detailed description of the process of ice loads formation and the 

formation of a more accurate picture of ice destruction; 

- the accepted threshold in the criterion for the removal of bulk elements was found to be applicable 

5. The numerical model of interaction with the introduced improvements was verified in two ways: 

сomparison of load with analytical methods of national codes and modeling of uniaxial compression 

tests. As a result of verification calculations, numerical models showed good convergence with the 

reference data. The nature of the destruction of the ice field during modeling is in good agreement with 

field observation, for example, the formation of piles of ice fragments (hummocking) and uneven 

destruction of the ice field in thickness. 

6. The developed methodology for numerical modeling of ice formations impacts can be used to 
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solve real engineering problems and will significantly improve the reliability and reduce the risk of 

offshore structures. The method will allow to evaluate the complex stress-strain state of structure under 

action of ice loads from drifting ice fields. 

7. One of the main problems in using the developed modeling approach is the high computational 

cost. When solving real engineering problems, it is recommended to use powerful computers with a lot 

of CPU cores. 

8. The model can be more deeply researched and improved in the following terms: 

- improving methods for calculating the deformation and strength parameters of ice; 

- taking into account the influence of deformations in mutually perpendicular directions in the 

material model of cohesive elements, i.e., a coupled traction model can be used; 

- to study the influence of the general damping parameters of the model (linear and quadratic 

viscosity); 

- searching for appropriate initial contact between finite elements of structure and ice field; 

- assessment of the degree of influence of various water models on simulation result  

- application of the Coupled-Eulerian-Lagrangian method in numerical model; 

- verification of the model can be supplemented by modeling real recorded cases of ice impacts on 

structures. 
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