
Автономная некоммерческая организация высшего образования
«Университет Иннополис»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА
(БАКАЛАВРСКАЯ РАБОТА)
по направлению подготовки

09.03.01 - «Информатика и вычислительная техника»

GRADUATION THESIS
(BACHELOR’S GRADUATION THESIS)

Field of Study
09.03.01 – «Computer Science»

Направленность (профиль) образовательной программы
«Информатика и вычислительная техника»

Area of Specialization / Academic Program Title:
«Computer Science»

Тема /
Topic

Визуализация программного кода с применением технологий
дополненной реальности / Source code visualization in AR

Работу выполнил /
Thesis is executed by

Хабибуллин Аскар
Расулович / Khabibullin
Askar подпись / signature

Руководитель
выпускной
квалификационной
работы /
Supervisor of
Graduation Thesis

Силлитти Альберто / Sillitti
Alberto подпись / signature

Иннополис, Innopolis, 2021



Contents

1 Introduction 8

1.1 Basics of software inspection . . . . . . . . . . . . . . . . . . . 8

1.1.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Evolution analysis . . . . . . . . . . . . . . . . . . . . . 9

1.2 Visual representation. Human perception. . . . . . . . . . . . . 10

1.3 Augmented reality and metaphors . . . . . . . . . . . . . . . . 10

2 Literature Review 12

2.1 Human perception and AR development . . . . . . . . . . . . . 12

2.1.1 Visual perception . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Augmented reality technologies . . . . . . . . . . . . . . 14

2.2 Source Code visualization . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Evolution analysis . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Behaviour analysis . . . . . . . . . . . . . . . . . . . . . 16

2.3 Static Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



CONTENTS 3

3 Methodology 19

3.1 Software requirements . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Overall Description . . . . . . . . . . . . . . . . . . . . 20

3.1.2 System features for Web Frontend . . . . . . . . . . . . 21

3.1.3 System features for Server . . . . . . . . . . . . . . . . 25

3.1.4 System features for Application . . . . . . . . . . . . . . 27

3.1.5 Non-functional requirements for Web Frontend . . . . . 29

3.1.6 Non-functional requirements for Server . . . . . . . . . . 29

3.2 System solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 User Experience Research: Interview and Statistics . . 30

3.2.2 UX research short results and interpretation . . . . . . . 30

3.2.3 Reasons to implement the Upload Frontend . . . . . . . 31

3.2.4 Server-side solutions . . . . . . . . . . . . . . . . . . . . 32

3.2.5 Theoretical model of CodeVisualizer Server . . . . . . . 34

3.2.6 Theoretical model of Viroreact Application . . . . . . . 34

3.2.7 Set of initially implemented metrics . . . . . . . . . . 35

3.2.8 Domain Portals . . . . . . . . . . . . . . . . . . . . . 37

3.3 Conclusion of Methodology . . . . . . . . . . . . . . . . . . . . 38

4 Implementation 39

4.1 Website entry point. File upload frontend. . . . . . . . . . . . . 39

4.1.1 General Description of the implementation . . . . . . . 41

4.1.2 Technical details of implementation of Upload frontend . 47

4.2 Our approaches to metric visualization . . . . . . . . . . . . . . 49

4.2.1 Metric calculation . . . . . . . . . . . . . . . . . . . . . 49

4.3 Server application . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 General implementation details . . . . . . . . . . . . . . 50



CONTENTS 4

4.3.2 Upload endpoint . . . . . . . . . . . . . . . . . . . . . . 51

4.4 ViroReact application . . . . . . . . . . . . . . . . . . . . . . . 53

5 Evaluation and Discussion 59

5.1 Server-side evaluation . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Single-user scenario . . . . . . . . . . . . . . . . . . . . 59

5.2 Multi-user scenario . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Memory consumption in get project metrics requests . . . . . . 61

5.4 Client-side evaluation . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Web frontend . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion and Furhter Work 64

6.1 Further work on server . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Integration with other utilities . . . . . . . . . . . . . . 65

6.1.2 Low concurrent performance . . . . . . . . . . . . . . . 65

6.1.3 Real-time updates for User Projects . . . . . . . . . . . 65

6.2 Further work on Client Applications . . . . . . . . . . . . . . . 65

6.2.1 ViroReact app . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 Web application . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography cited 67



List of Figures

3.1 Web Frontend DFD diagram . . . . . . . . . . . . . . . . . . . 32

3.2 Initial solution, extracted from the Eclipse Metrics plugin . . . 33

3.3 Particular case of the PMD extracted data, that the server ex-

poses to the clients . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Website Entrypoint v0.1.0 . . . . . . . . . . . . . . . . . . . . 40

4.2 Website Entrypoint v0.3.0 . . . . . . . . . . . . . . . . . . . . 41

4.3 Website Entrypoint v0.2.1(minor bug fix, alpha version 2) . . . 42

4.4 Project Uploading procedure . . . . . . . . . . . . . . . . . . . 42

4.5 Basic visualization of the LOC metric . . . . . . . . . . . . . . 44

4.6 Advanced LOC metric with metric filter applied . . . . . . . . 46

4.7 Example of failed operation . . . . . . . . . . . . . . . . . . . . 49

4.8 Here we may observe the normalized LOC metric statistics, mul-

tiplied by the value of 5 for each class of the inspected system . 55

4.9 The following is a code for initial visualization . . . . . . . . . 56

4.10 An example of the LOC metric, rendered as a part of a Por-

talScene. In this scenario, user has entered the inspected data

domain, through our Domain Portal metaphor . . . . . . . . . 58



LIST OF FIGURES 6

5.1 Example piece of code that we used in out environment measure-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Example piece of code that we used in out environment measure-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Abstract

The interest in Augmented reality grows constantly. More and more practi-

cal applications of immersive technologies are being researched. This paper is

mainly focused on the sphere of source code visualization in Augmented reality.

It is describing a software system that the authors have developed, and provides

the reader with the detailed description of the solution.



Chapter 1

Introduction

Immersive technologies that alter our surroundings have been well-

researched over the last 50 years. Although AR and VR technologies have

not yet stepped into their "golden age", there has been a tremendous growth

of both commercial and open-source applications. Both technologies that are

already altering our perception of computer software by solving many problems

in different spheres. Main goal of this project is to study the applicability of

immersive technologies in source code visualization visualization, and source

code visual representation.

1.1 Basics of software inspection

In software engineering, there are many approaches to solve particular

problems. In order to measure how well the implemented solution fits the

requirements, the hypothesis can be tested using a set of quantitative measure-

ments. It can not only help to numerically describe the software as it is on

the current stage of development, but also estimate the future of the product

development, thus increasing the efficiency, and giving essential insights to the



1.1 Basics of software inspection 9

programmers and system designers. Software metrics have been studied (quite

a lot).

Before starting with the implementation part, we considered three different

approaches to software metrics analysis and visualization:

1.1.1 Static analysis

Structural, or static analysis is performed with the system when we want

to discover static dependencies and relation between modules of the software.

There are traditional functional decomposition and static analysis approaches,

as well as relatively new object-oriented specific metrics, that are giving insight

in a field of popular object-oriented paradigm, that has been well-adopted. For

this kind of inspection we don’t have to run the software.

1.1.2 Dynamic analysis

The behavioral approach is another approach to code studying that is

worth introducing. The structural analysis can give certain general insights

before the runtime, whereas what happens at the execution phase is out of

static analysis’ focus and is usually studied in the scope of dynamic software

analysis. Depending on the programming language, the execution can be viewed

on a higher level of abstraction as functions calling other functions, or objects

communicating with other objects.

1.1.3 Evolution analysis

Evolution refers to the development process of the software system and,

in particular, emphasizes the fact that program code is changed over time to



1.2 Visual representation. Human perception. 10

extend the functionality of the system or simply to remove bugs. The evolution

of software was out of our scope, however it is worth mentioning.

1.2 Visual representation. Human perception.

Human brain is far more accustomed to perceiving graphical information

if compared to textual. There has been much of research in the sphere and the

results speak to themselves - the way we perceive the information is different

for textual and visual representation is not quite the same, and the latter can

be used in order to effectively increase human studying capabilities. In Chapter

2 we list some recent research in the sphere of Human Cognition and Human

Visual Perception, for the reader to get acquainted with a sphere of studies,

that Visual Data representation is solely based on.

1.3 Augmented reality and metaphors

Although Augmented reality was first mentioned in late 70s, it’s real ap-

plication has not been clear until the beginning of the decade. Since then,

AR and VR field has changed a lot, moving from a few prototypes in research

labs to become available to mass market with such companies as Google, Ap-

ple including adjacent technologies into their platforms. One of the interesting

applications of immersive technologies is data visualization. Even though the

source code visualization using the City Metaphor has been studied for a while,

there are quite a few solutions that would involve such technologies as Virtual

Reality [1] and Augmented Reality [2]. So far the amount of studies in sphere

of code visualization with immersive technologies remains fairly limited. This



1.3 Augmented reality and metaphors 11

research has been conducted in order to increase the number of visualized char-

acteristics, and extend the existing code analysis tools that by introducing more

industrially meaningful metrics, at the same time, decreasing the user-flow com-

plexity and production setup costs. In our research we also try to increasing

the number of metaphors to the research, that utilize the Augmented Real-

ity features. We also propose as our goal a general system implementation in

JavaScript language.



Chapter 2

Literature Review

2.1 Human perception and AR development

2.1.1 Visual perception

This part of the review is a brief introduction to the large and growing

sphere of studies focused on how our brain perceives and processes sensory infor-

mation. It also will provide the reader with information related to the concepts

of textual information encoding, using basic primitives, such as points, lines,

areas and volumes, and their properties, which are colors, shapes, positions

etc., as well as, more complex presentational approaches, greatly described in

an article [3]

There is a large volume of published studies describing the fundamental

difference between how our brain perceives, processes, and retrieves visual and

textual information. Sperry et. al have suggested that each of the human brain’s

hemispheres contains a detached processing unit. The fact that each part of

the brain responsible for different subtasks, when observing the environment

was further studied in [4]. The researchers have conducted a number of exper-



2.1 Human perception and AR development 13

iments demonstrating the peculiarities of the verbal and visual memory. The

“dual-coding” theory, proposed by the authors, was verified by PET(positron

emission tomography) and fMRI(functional MRI) that compared the results of

memory experiments between verbal and visual studying approaches. It was

found that learning the textual information along with their images has im-

proved participants’ memorizing performances.

There are quite a few visual properties that affect cognitive and perception

abilities. Some of them, such as Colors, Shapes are presented to the reader in

this part of the Chapter.

Colors

Our eyes see the world in colors, this is the human representation of

lightwaves of different lengths. There are some colors that draw our attention

more than the others, according to Meier, who have proposed a metaphor color

theory in 2005. In a recent research Fatma Cubuk et al. conducted a number

of Visual-Spatial Aptitude tests, which have proven that cognitive tests were

solved generally better when suggested on white background, and have proven

quite the opposite with a grey background, by measuring the brain activity

zones during the process. The results have also shown that some of the colors

produce the brainwaves that are more likely to be found when the brain is more

active. A great research that studies the emotional effect of red color, based on

the EEG has been conducted [5] by Kuniecki et. al.

Forms and shapes

Forms and shapes are also properties that can affect the effectiveness

of studying the information. In [6], the author suggests that the features of



2.1 Human perception and AR development 14

visual objects are preattentive if they are perceived within 200 ms, i.e. the

time interval it takes before the eye reacts and moves. Among the properties

that are analyzed preattentively, the author mentions shapes, orientation, sizes,

numbers of objects etc.

Metaphors

All the above mentioned properties do not guarantee the proper percep-

tion, due to the chance of information overload, and structural complexities

of data. According to S.Risch “Image schemas are thus theorized to form a

crucial link between perception and cognition, with obvious implications for

information visualization.” Metaphor usage is an approach to address such is-

sues. Stephan Dhiel defines a visual metaphor as ”analogy which underlies a

graphical representation of an abstract entity or concept with the goal of trans-

ferring properties from the domain of the graphical representation to that of the

abstract entity or concept”. There are many software visualization metaphors,

that exist today. The metaphor that we use in this research is City Metaphor.

First mention of City Metaphor can be found in Knight and Munro’s work,

where the authors exploited Maverik VR toolkit to develop a tool called Soft-

ware World. After that there were a lot of applications that visualized software

characteristics, a complete study of such metaphors was studied by the au-

thors. One of the most interesting studies, that aggregates many solutions in

the sphere is [7]

2.1.2 Augmented reality technologies

New technologies often drive the development of the software products.

Research into the sphere of Augmented and Virtual realities has a long history.



2.2 Source Code visualization 15

The first recorded AR or VR reference can be found in L.Frank Baums “The

Master Key” book, published in 1901. The author mentions a device that

is “spectacles” with which “while you wear them every one you meet will be

marked upon the forehead with a letter indicating his or her character”. More

than than six decades later, the first prototype of the VR device has been built.

The original device was extremely heavy, due to such property was given a

name “Sword of Damocles”. In [8], Sutherland and colleagues have developed

a first HMD(Head Mounted Display) that started to keep track of the user’s

head movement. In late 90’s as AR became a standalone research field, several

conferences on AR began. Since then, many technological inventions have been

produced and introduced to the wide audience, inducing the developers and

researchers to come up with more elegant solutions. For the first time the term

AR was used in 1992 by Caudell and Mizell. In these three decades the sensors

have become smaller and more affordable, handheld devices productions have

started to include AR capabilities in their smartphones. Such libraries as Google

AR Core and Apple ARKit have become available for a common audience on

the compatible devices.

2.2 Source Code visualization

With much research done in the area, the division of the software visual-

ization into three main directions seems to prevail. According to the Stephan

Dhiel, the visualization can be done using three main approaches.



2.2 Source Code visualization 16

2.2.1 Static analysis

The first approach is to look at the static parts of code, the relations

between the components. Such analysis can be done without running the pro-

gram and requires a set of metrics to be defined. Software metrics have been

researched for decades, some of them have been proven to be effective for par-

ticular purposes. Static code metrics have traditionally been used to inspect

the dependency structure, to achieve code optimization, and consistency in the

project implementation.

2.2.2 Evolution analysis

The second approach that has recently become more and more popular

to look at is to measure and visualize the evolution of the software. After two

decades of continuous growth, many researchers provide a great body of knowl-

edge in this particular area. Most of the implementations of the 3-dimensional

City metaphor does not handle Evolution of Software. It is a research gap that

this work is not aimed at filling, however, interested reader may find a great

article on the topic in [9]

2.2.3 Behaviour analysis

Last, but not the least is the Behaviour visualization, or else called Run-

time visualization. The execution can be seen as a sequence of program states,

where a program state contains both the current code and the data of the

program. This work is mostly focused on building a system for static metric

visualization, that would enable one or more languages with multiple metrics.



2.3 Static Metrics 17

2.3 Static Metrics

A series of two articles [10] and [11], from Chidamber and Kemerer, au-

thors propose a set of metrics and analyze their applications to evaluating the

Object-Oriented languages has seen a great response from colleagues, and re-

ceived both criticizing opposition and further development. We have started

our research and implementation using the Depth of Inheritance Tree (DIT),

Coupling between Object Classes(CBO), and Lack of Cohesion in Methods

(LCOM), however in the final version of the product we propose a different set

of metrics that may be represented easier in the context of Augmented Reality.

Coupling Between Object Classes (CBO): In [11] CBO is described

as “a count of the number of other classes to which it is coupled”. From the

definition in [11] “two classes are coupled when methods declared in one class

use methods or instance variables of the other class”) are considered equal.

Earlier in 70s McCabe in his one of his well-recognized papers “A Com-

plexity Measure,” had proposed a Cyclomatic Complexity metric that for

long time has been a de-facto standard approach to measuring the contorl-flow

complexity of a method. In a recent work of G. Ann Campbell, conducted

at SonarSource, author, however claims that original intention of McCabe’s

paper “to identify software modules that will be difficult to test or maintain”,

did not address the issue of remaining unmaintainability and unsatisfactory

intelligibility of methods. With that, the latter author proposes a new mea-

surement of code complexity, that addresses this issue, based on the work of

[13] first considering the term of ’Cognitive complexity’, reffering the qualities

of maintainability and readability of the software from the perspective of other

programmers.

LoC(Lines of Code) is another popular metric has been used in the



2.4 Conclusion 18

3 dimensional source code visualization, as an important visualization charac-

teristic for one of the City Metaphors in one of the first City Metaphor imple-

mentations in late 80’s in the works of Knight and Munro, who proposed the

’Component City’ and ’Software World’ metaphors. The latter incremented the

stories of Components-buildings by one every 10 Lines of Code. However, our

work proposes another metric, which is LoCoM (Lines of codes of Methods),

that may be helpful in visualization, thus extending the standard set of utilities.

2.4 Conclusion

Due to increasing affordability of such technology as Augmented Reality

for common audience, and lack of cheap and efficient visualization platforms,

authors of this paper see a great potential in this field of research.



Chapter 3

Methodology

Technical details

This section describes in detail approaches and solutions that we have

found and tries to justify those solutions given the system requirements that

our team had. As you will find from the next two chapters, the developed

system is quite complicated and consists of many modules that are written in

Javascript ecosystem. As the main methodology for this system implementa-

tion and design, we have chosen to use the Gane & Sarson method. Which

essentially can be used to formally describe the logical model, and involves

graphical techniques, that allow every member of the team, get the grasp of

how the system works without having any special knowledge. This practise is

achieved by top-down implementation, starting from the agents and modules of

the system, and going down into the smallest details of the system. The reader



3.1 Software requirements 20

may find a great methodology review in an article [14]

3.1 Software requirements

3.1.1 Overall Description

Introduction and conventions

This section presents system constraints and requirements for the Code

Visualizer project. It will establish the purpose and features of the system, as

well as interfaces of the system and it’s modules, defined on the early stages

of development process. From now on we will refer to any actor as User, the

target system in general as System, Web Frontend - the web application in

the System, and as for the Android/IOS application as Application. We will

divide the description into three different sections describing the aforementioned

components individually that would simplify our product domain for each of

the subsystems.

Project’s scope and purpose

This system is designed for programmers and researchers to help them

visualize software characteristics of a project. In some cases, software metrics

are helpful to detect and prevent architectural mistakes from spreading in the

system. For some languages such as Java, it is possible to retrieve the sim-

ilar source code from the archive. For such languages there are also utilities

with rich functionality that help user to inspect metrics in a textual format

from the command line( CLI). Based on the questionnaire, more than 80% of

the respondents are not using static software metrics and find them more in-

timidating than useful. The proposed software system allow users to upload



3.1 Software requirements 21

and further inspect software metrics for the decompiled project in a visually

enriched environment of Augmented Reality. This application will provide a

pipeline project-to-stand which will provide everyone with capabilities to learn

their code in a more efficient way than just by looking at a plain text. In the

next subsection, called System Environment accustoms the reader with three

main parts of the software system.

System Environment

There is the only main actor of the system, that we will develop, that is

the reason we are going to present the reader with different User Stories( User

Scenarios) that our actor should be able to fulfil their needs in. This project

should not be restricted to any platform and should be cross-platform consis-

tent. The source code should be well-documented and should contain short user

guides for a user of Windows/Linux(Ubuntu 16.04 and newer)/Android/iOS.

User should be able to run the server both locally, or in a remote server envi-

ronment.

User Documentation

Short documentation should be provided for all of the system parts.

3.1.2 System features for Web Frontend

Upload Project User Scenario

Each user should be able to upload their project into the system from the

Web Frontend. For this scenario the target system should contain an upload

feature. This is a feature of critical priority and should work in any runtime.



3.1 Software requirements 22

Stimulus and Response Sequences: User interacts with the User

Interface via Choose Project button, which then sends the data to the server

counterpart. Such loaded projects should later on be observable from any

client, having their unique identifier.

Functional requirements:

1. User can click Choose project button which interacts with the browser

File API

2. After the product has been chosen, User should be able to upload the

project, by interacting the Upload button. Web Frontend should display

the name of the project chosen by User.

3. When the files have been uploaded, Web Frontend should reflect the status

that has been received from the server to provide the User with only

actual information on the upload action. Application should store the

last operation status and close it when the user interacts with the status

terminal on Web Frontend.

Inspect Projects User Scenario

Whether the user has uploaded her files in the current section or not, she

should be able to inspect all the projects that are now on the server-side and

choose one of them. This is a feature of critical priority and should work in any

runtime.

Stimulus and Response Sequences: User interacts with a UI element

that is designed as a dropdown list. When clicked, the dropdown list should

send a GET request to the server counterpart and retrieve the data that server



3.1 Software requirements 23

has stored for that User.

Functional requirements:

1. User can click on "Choose project" button, which triggers server data

fetch call on Web Frontend.

2. User can inspect every project she had uploaded since the account creation

and up to the point the button has been clicked.

3. User may choose the project and retrieve only that projects data.

Choose Metric User Scenario

When the system initializes, it should be provided with a list of possible

metrics. User can choose to visualize only one metric at a time and in this

scenario description we specify what should be achieved here. This scenario is

of standard priority.

Stimulus and Response Sequences: User may observe the UI

component that allows to see current metric and switch between metrics in

runtime. Application has the current metric chosen saved in it’s state.

Functional requirements:

1. User can see the chosen metric on the Web Frontend

2. User can move further in the list of metrics and choose the metric they

want.

3. Only the chosen metric should be saved and accessed( visualized) at a

time.



3.1 Software requirements 24

Fetch Project Metrics Scenario

User can download the chosen project from the server, after they have

gone through Inspect Projects Scenario. This downloaded data is stored on the

client.

Stimulus and Response sequences:

When a user clicks on any of Project components that have been shown as

a result of inspection function, such project is being requested from the server

and stored in the State of the appication.

Functional requirements:

1) User click on the project should trigger fetch of actual data in a Vi-

sualizer Module. After user clicks on any other project, the new relevant data

on a specific metric, chosen in Choose Metric Scenario form a project that has

been saved on the server and parsed to it’s own directory. No projects should

have identical names, and each project should be parsed individually.

Visualize Project Metrics Scenario

User can see the visual representation of a particular metric as a 3D

scene, containing individual measurements and Java class names on the Web

Frontend. This feature is essential, because we want to target all the systems,

including those, that have limited AR capabilities. In this scenario, we describe

the system usability for such users.

Stimulus and Response sequences:

When the user has fetched the project, after fulfilling Fetch Project

Metric Scenario, a simple visual representation is given on a canvas component.

Functional requirements:



3.1 Software requirements 25

1. User should see a representation of a class system that had been parsed

on the server on an HTML canvas element in Web Frontend.

2. User should be able to interact with this canvas using Mouse Wheel and

right mouse button click.

3. User should see actual information near the 3D objects on the screen.

Taking the target systems into consideration, we had to come up with

a solution that would have been well-tested on many platforms and would

generalize the user-flow for users on different platforms.

One of essential requirements was to find the tools that would be open-

source and free for non-commercial usage.

3.1.3 System features for Server

Server should have an internal pipeline for the data parsing. All the

Scenarios in this subsection are going to describe the general data pipeline for

the server every time user uploads their project. Server should be modular and

the parsing modules should be interchangeable with little effort. User should

be able to create their own mechanisms of metric generation for the server.

Upload Project User Scenario

User should be able to upload the project, which then gets parsed and

stored on the server. This is the first segment of the data pipeline.

Stimulus and Response Sequences: User interacts with the User

Interface and accesses the upload endpoint of the server.

Functional requirements:



3.1 Software requirements 26

1. After user has triggered the upload point. User must transfer the data

over HTTP protocol and server should store it locally.

2. After storing the data, server should create a folder and a subfolder where

it will store the data parsed by our utilities, or open-source libraries.

Multiple users must be able to upload files, that is why this folders should

have a unique identifier.

3. From a predefined set of metrics, server parses all the data and saves this

metric parsing results into a subfolder of the project of the user folder.

Inspect Project Scenario

User should be able to individually request project statistics for each

stored project. This scenario is the second in the data pipeline.

Stimulus and Response Sequences: User interacts with the User

Interface and loads individual data for each project and each metric. This

should be done in a unified fashionm having an internal data schema for all

the metrics. In the future, is the user wants to switch parsers or languages,

they should only change parser to obtain schema-like results.

Functional requirements:

1. Each project is saved in it’s individual subfolder of the user folder on the

server.

2. Each of the predefined metrics is saved in an individual file of the project

subfolder.



3.1 Software requirements 27

3. When accessing the Server REST API user can retreive parsed data in a

unique fashion that is enough for the user to visualize data for a partic-

ular metric, without having to parse any metric on the client side. For

that purpose data interface should be designed and should have the same

schema across the platforms.

3.1.4 System features for Application

Login Scenario

Having the token that user receives on the frontend as a unique identifier,

user should be able to login to any of their project in an individual way.

Stimulus and Response Sequences: On the Application, each time

user loads the App, their token and their project token should be requested.

Having correct username and project token inserted, person can get their

project statistics.

Functional requirements:

1. There should be modal or a pop-up window implemented.

2. This popup can be triggered at any time when user wants to switch

project. This universal component should be working on any step of

the application

Choose project scenario

When user has logged in, their data is fetched. Data should contain all

the projects that user has submitted up to this point. The same way server

should respond to the client of Web Frontend.



3.1 Software requirements 28

Stimulus and Response Sequences: In the UI there should be an

option to choose from the projects that user has uploaded. When clicking on

that project, the data should be fetched in real time, and visualized.

Functional requirements:

1. Modal window should take a Project List components as an argument

and visualize it. The Project list fetches all the components for this user,

and presents them as a clickable list.

2. Every time the user clicks on the project, this project should be fetched

from the server.

Choose metric Scenario

User should be able to access project metrics in an individual way for

each metric.

Stimulus and Response Sequences: In the UI there should be an

option to choose from the metrics of each project.

Functional requirements:

1) UI should provide users with capabilities to change metrics and indi-

vidually visualize them.

Visualize metric

User should be able see a simple graphical representation of the project.

Stimulus and Response Sequences: In the UI there should be an

option to choose from the metrics of each project.



3.1 Software requirements 29

Functional requirements:

1) UI should provide users with capabilities to change metrics and indi-

vidually visualize them.

3.1.5 Non-functional requirements for Web Frontend

Software quality attributes for Web Frontend

As a modern application, Web front-end should be fully compatible with

the "major league" of screen sizes, and should be properly designed for all

the modes of operation - portrait and lanscape mode. All the texts should be

provided in their entirety, and basic usage of the system should not require any

additional experience or knowledge. Whole project should be an open-source

solution, that is well-documented and easy to start for a beginner. All the Code

should contain Javascript of ES6 standard.

3.1.6 Non-functional requirements for Server

Software quality attributes for Server

Server-side is proposed as a standalone system, that would define it’s own

framework for working with the data. Well-documented solution should be both

robust and clear for understanding of the future user.



3.2 System solutions 30

3.2 System solutions

3.2.1 User Experience Research: Interview and Statis-

tics

To implement a solution that would satisfy the need, we had to design a

questionnaire and collected user data. The set of question is shown below:

1. How necessary it is to use metrics when designing a software?

2. Which metrics do you use on a regular basis?

3. Do you or your team use software metrics when designing the software?

4. In your opinion, can a high-quality solution for analyzing and demon-

strating metrics help in training the company’s staff?

5. Are you ready to consider using metrics analysis software on your smart-

phone?

3.2.2 UX research short results and interpretation

• 85% of the respondents have found it inconvenient to install any extra

software on their devices in order to inspect their metrics.

• More than half of the people who took part in the UX research have found

it redundant to inspect static metrics to assure software quality.

• From the perspective of all software developers with 5+ years of software

experience, which is 30% of the respondents, stated that, even static

metrics could affect the software quality, and should be used in order to



3.2 System solutions 31

better understand software. 80% of such developers test their program

products every day.

• More than 50% of users are of the view that software metrics could be

used in order to increase training efficiency when teaching the staff of the

company

In order to implement a user-friendly solution, we have decided to use a

set of tools that would minimize the user interaction at the time of the code

preparation. We have also decided to set it as a requirement for the user to be

able to use cross-platform solution, that would also minimize number of utilities

to install. In order to receive the Augmented Reality experience, there has to

be interaction. In our system the user has to upload the project files. For this

purpose the React for Web ecosystem was chosen.

The original idea to use metrics extracting modules and extensions from

such popular IDE’s as Eclipse and IntelliJ IDE have not seem sufficient in

terms of pre-conditions that would require user to install not only the system,

but also find the essential module for metric extraction, then save the output

to the client application. This user-flow was reconsidered and other approaches

were used.

3.2.3 Reasons to implement the Upload Frontend

Using the traditional UX approach to gather the user data. We have

found the general properties for the target system, that are described earlier in

the chapter. On the Fig 3.1 the reader may observe the complete general DFD

Diagram that was designed for the system to be implemented.



3.2 System solutions 32

Figure 3.1: Web Frontend DFD diagram

3.2.4 Server-side solutions

Based on the literature review, and taking the summary analysis of the

[15]. We have tried different solutions when designing the system:

• Jarchitect for Java language constructions provides user with many met-

rics, but it is not open-source, which was essential for our project.

• CodeAnalyzer is one of the greatest tools, however it did not allow to

generate output report files, and didn’t include some of the essential OOP

metrics, that we wanted to include in the project.

• LocMetrics is a freeware, that can be used to parse LOC metric, but it

is limited only to that metric.



3.2 System solutions 33

Figure 3.2: Initial solution, extracted from the Eclipse Metrics plugin

• Eclipse Metrics is one of the tools, that we have initialy implemented

our parsers for. It allows .xml export, which can be found at picture

Although this solution was enough to fulfill some of the requirements,

we have decided to move further looking for ways to implement batch

processing of user projects, that would require no user interaction. In the

github repository that contains our project’s code, the reader may find

the parser for this utility.



3.2 System solutions 34

3.2.5 Theoretical model of CodeVisualizer Server

We have chosen NodeJS and ExpressJS to receive, process, and access

all the user data. The asynchronous nature of the framework is opposed to

a traditional multi-threaded approach to execute multiple concurrent opera-

tions. This two approaches are based on two opposite technological solutions

that address the issue of handling multiple incoming operations at a time.[16]

Rather than acquiring additional threads of execution for concurrent opera-

tions, NodeJS utilizes a concept of events. First problems with the traditional

multi-threaded approach start to appear with many concurrent operations ex-

ecuted. This problem is known as C10K problem, and was first proclaimed by

Kegel in 1999. You may find his works in the following source. [17]

Node is an asynchronous JavaScript runtime, that is operating based on

the events. General architecture of NodeJS consists of two essential parts in its

core. libuv library, that allows NodeJS to interact with an operating system.

The second core part of NodeJS is an open-source engine Google V8. The

server part of the project handles the incoming data, uploaded by the user,

and parses the project using any module, that allows batch execution. Due

to it’s asynchronous nature, the main thread of execution is not blocked by

batch project decompilation. This allows multiple users to upload their project

data at the same time. The detailed description of each submodule of Server

program module is described in Chapter 4. of this document.

3.2.6 Theoretical model of Viroreact Application

When developing web applications, React 17.0.1 is mainly used in projects

with both complex and simple User interface. React is a rich library, that



3.2 System solutions 35

does not enforce any architectural patterns, so the user can choose how to

build the application in the ecosystem of the library based on what properties

they wish to achieve. It can be rendered on both client and server sides, has

many patterns that were developed by the community, that is, according to the

github repository is in top-3 in the sphere of Web development. Choosing the

framework was an essential part of this project, and we have chosen React for

the following reasons:

• React has a great community support. More libraries, tools and modules.

• Allows us to choose our own architectural patterns.

• Has a cross-platform capabilities within the ecosystem.

When designing the Application we have used the same top-down ap-

proach to define the data flow, because it best describes the internal compo-

nent hierarchy, and the process of state management and props passing. More

details on the implementation of the ViroReact application are provided in the

Implementation[4] chapter of this work.

3.2.7 Set of initially implemented metrics

The outcome utility of this research is aimed at helping developers visual-

ize their code in an AR environment as well in general 3D environment. Hence,

we decided to pick a set of metrics, that would be applicable in an everyday

development. We provide the set of basic xml metrics extraction rules for the

PMD utility. Based on the extracted metric, there might be either one or many

violations in the output JSON object, that authors provide in Fig.3.3. Both

frontend applications work with the same parsed results for the project.



3.2 System solutions 36

Figure 3.3: Particular case of the PMD extracted data, that the server exposes
to the clients

Cyclomatic complexity

When writing a piece of software it is considered a great practice to spread

the conditional logic. Concentrating such language operators as if, while, for,

and case inside of a single method creates complexities, that can decrease the

performance of the team while code reviewing. Together with the Cyclomatic

complexity we provide an automated extraction scenario for Cognitive Com-

plexity, because it is not always justify, to break the control flow by referring

to other entities.

Lines of Code in Methods

Comparing to a traditional LoC metric, that has long been considered

standard to describe code efficiency of the team, this metric is no longer con-

sidered effective. Instead of using the LoC metric, authors inspected using the

LoCoM - Lines of Code of Methods, and visualization with dynamic UI inter-



3.2 System solutions 37

action with such metric. By using the rules, created for the PMD utility, we

create a data structure, that contains all the methods of the class and their

length. We calculate length from the violation description, having the beginline

and endline. From this metric user will get the information about long methods

of the classes.

Excessive Class Length

Excessive class lengths are usually indications that the class may contain

too much logic. When reusing extra logic, and setting it apart, we could increase

readability, although this should be done, considering Cognitive complexitiy

metric too. We visualize classes of exceeding length based on the threshold

parameter, set in the UI.

Dependency extraction for Java classes

Due to the fact that we deal with user archives in JAR format, we have

opted for the standard jdeps utility, that would help us extract class level

and package level dependencies for the target project. For such output, we

also create the output DOT file parser with O(n2) complexity. Analyzing the

dependency tree helps us detect the Coupling between classes of the project.

We try to visualize the dependent classes as in the traditional City Metaphor,

by using the ’electric lines’ between ’buildings’ of the scene.

3.2.8 Domain Portals

When we consider an aggregate of data, we are used to logically char-

acterizing it’s ’data domain’ - it characterizes the set of all possible attribute



3.3 Conclusion of Methodology 38

values in that aggregate. Traditional UI interactions require an interaction,

that involve input device clicking. Alongside with the traditional metaphor,

this research proposes the Domain Portal metaphor, that may be effectively

used for data domain navigation. In our implementation, we use the technical

solutions that track user’s physical movement and visualize data, based on this

interaction.

3.3 Conclusion of Methodology

In this section authors attempted to give the most detailed explanation

for the theory, that lays under the [4] section solutions.



Chapter 4

Implementation

In this chapter, a detailed description of the process of system implemen-

tation is provided. It has been divided into sections, which aim at describing

each part of the piece of software in particular, therefore, by going through this

part of the paper, one can obtain knowledge about program product in general,

as well as the details of each particular implementation. Rather than describ-

ing the system chronologically, the authors order the products by their first

appearance in the user-flow or, rather, User Stories, which have been described

in detail in the previous section.

4.1 Website entry point. File upload frontend.

When designing the system, we wanted to achieve a better user experi-

ence. In terms of implementation-related decision making, that meant deliver-

ing the final product which would provide the user with the shortest user-flow

path possible alongside with the simplest design. In order to create a flexible

and self-sufficient design, authors have created all the layouts in Figma, a tool

that is a standard tool in sphere of product design, that describes every sys-



4.1 Website entry point. File upload frontend. 40

tem component, and provides commercial level design of each component of the

system, alongside with each screen design.

Figure 4.1: Website Entrypoint v0.1.0

TheWebsite Entry point, that you may observe in the figure 4.1 is an early

alpha version v0.1.0, which was designed in order to reduce the User Story of

"Upload user file" to two main actions, that involve user decisions. Continuous

incremental development has resulted in to more alpha versions of the product.

The latest details of the implementation can be found in the repository of this

project.

Requirements fulfillment

With version 0.3.0 we have introduced two more functional React compo-

nents to the System, which covered Upload User Project, Inspect User Project

and Choose User Metric scenarios completely.



4.1 Website entry point. File upload frontend. 41

Figure 4.2: Website Entrypoint v0.3.0

4.1.1 General Description of the implementation

Login procedure

As you will find from the section 4.2 of this chapter, each user has a

unique ID, associated with all the data stored on the server for that particular

persona. The Login Procedure that the user goes through at the beginning of

her user-flow is obtained by checking on the browser’s localStorage at the time

when the user enters the front-end. In case there is no data, the browser will

generate a new token for such user, and save it for the next login. That is

how the user does not dissapear into thin air, as long as she does not clear her

browser’s localStorage. Authorization was not so far implemented due to it’s

redundancy in local software exploration.



4.1 Website entry point. File upload frontend. 42

Figure 4.3: Website Entrypoint v0.2.1(minor bug fix, alpha version 2)

Figure 4.4: Project Uploading procedure



4.1 Website entry point. File upload frontend. 43

Project files upload

When finished the login procedure, the user is ready to submit a project

file, that must be a file with ’.jar’ extension. Since we are defining necessary

MIME-types from IANA official registry, that most of the browsers fully sup-

port, the user will only see .jar files in the opened window. Having chosen the

file, and the button ’upload’ clicked, the user will now get the status of her

operation on the screen by seeing ’File was uploaded’ text in the left top corner

as soon as the operation status is returned from the server. In case there is an

internal error while running the decompilation procedure, the server will return

error opcode to the frontend as well as full description of an error.

Projects choosing

Whether the last upload operation has succeeded or not, user can still

watch all of her successfully decompiled and parsed projects by clicking on

"Choose project" dropdown menu. In this menu, every time the user clicks,

the information is fetched over again. That is how we provide only the actiual

information. This might not be an optimal solution in terms of network en-

gagement, but was considered to be quite easy to implement and practical. In

the evaluation and further discussion section authors provide other strategies

of updating project information in real time systems, which in our stage of

development were considered redundant.

Extra features. Canvas

In order to give the best user experience we’ve come up with an idea to

use threejs library on the Website Entrypoint, that uses the same data and



4.1 Website entry point. File upload frontend. 44

Figure 4.5: Basic visualization of the LOC metric

can visualize it in a similar manner to what is shown on the ViroReact appli-

cation(section 4.3). In case target device does not have any AR capabilities,

user can still interact with parsed data in the browser, and that covers whole

target group of users of this system. The modularity of the software allows us

to use server capabilities without any frontend, for example, completely remove

this Components, still having all the UI interface capabilities. The Canvas

compoment only depends on the properties(data) passed to it from the root

component. The Canvas renders the same picture as Viroreact Application,

because they use the same helper modules that generate the scene and operate

in the same data domain.

Canvas itself is a component, that takes all the properties of the scene,

such as data, state of the UI controls, selected project, and selected item in

the project. In the canvas, based on the data incoming, and a comparator

module, invoked in main switch method, the data is being rendered. It is

rendered in a so-called Scene if to refer to ThreeJS’ terminolody. The scene



4.1 Website entry point. File upload frontend. 45

is an object that can contains children. Children are rendered into the scene

from the data, that has been passed from the main component, and take into

an account the Metric, that comes from the App component, based on the

useState hook. With the help of ThreeJS.Raycaster, that allows us compute

intersections for the elements of the scene, taking the camera position, and

mouse coordinates, retrieved from mouseclick event, we can obtain the object

that is being right in front of the camera by checking the smallest distance. This

makes it possible to choose objects of the scene, and change state of the UI, and

the rendered picture based on the chosen object. Comparing to the Viroreact

Framework usage, which provides any element of the rendered scene, which the

user interacts with, with attributes, that can invoke callbacks onClick events,

web approach is little more complicated, since there are no DOM elements other

than canvas, and the only way to detect an object within the scene is to use

a ’laser beam’ which what raycasting essentially is. Writing a lot of logic and

being able to track the state of the component and pass it in the renderer is

a complicated task. In this case, reader might be interested in a completely

declarative way of data insertion, which is to use such library as react-fiber.

This library will help for the beginners, who have grasped the basic concepts

of threeJS library, and React.

To allow user interaction with the objects of the scene, everytime the

scene renders it registers an event, which is being triggered on ’click’, and is

self-destructing event. Based on the results of ThreeJS raycast, we detect the

closest element, and trigger setInspectedClass Hook, that tells the scene to

rerender, taking the chosen element into an account.



4.1 Website entry point. File upload frontend. 46

Figure 4.6: Advanced LOC metric with metric filter applied

Extra features. Operation status window

On the right-top corner of Fig 4.5, the reader may observe the Operation

Terminal, which was designed in order to provide user with instant feedback.

The right top corner is a good place to visualize secondary information, ac-

cording to [6]. Researchers have tracked the eye movement during website

exploration which has resulted in a statistical value of more than 22 percent

for the First Fixation in the left-top corner. Around 10 percent of the test par-

ticipants, though, have started their exploration on the top-right corner, which

makes it more than twice more popular than at any of the bottom-positions.

Based on this information, we have found it justified to place our extra statistic,

that may be used to solve some rare issues, or duplicates the main information

on the top-left position of the screen, on the top-right corner, where it still can

be easily observed.



4.1 Website entry point. File upload frontend. 47

4.1.2 Technical details of implementation of Upload fron-

tend

For the Upload frontend we have implemented all the functionality using

the React framework and it’s Functional components. Functional components

allow us to simplify the code by introducing Hooks, that provide us with data

binding abilities, and simplify project’s state management. Since we have used

React ecosystem on both of our frontends (Web frontend and ViroReact appli-

cation), some of the terms and their definitions will be described in this section

that are also present in the 4.3 section of this chapter, explaining the Appli-

cation Frontend. We have used the latest version of the React Library, but

generally, any version, that is later 16.8 will allow hooks, which are essential

part of this project.

App Component

The main component, that mounts into the web-page and provides it’s

children with both Hooks to set the state, and the state itself, is the App

component, that is rendered at the component with ’root’ id in the main page.

Then, there are two main Child components, that are rendered as children in

the DOM, which are Canvas and Controls. Canvas is the Components that

holds the image being rendered at the screen of the user. User-Controls is

a Component, that helps user interact with the software. Every time User

interacts with the system, the state, which is passed to the User Controls gets

modified by hook. Because of the way that React works with the props and

state, it is not recommended to change props in a child component directly.

That would make some of the Child nodes, having different state from the



4.1 Website entry point. File upload frontend. 48

Parent node. By passing the hook instead we have assured that the data would

change only in Parent node, which is App, and then the changes would be

propagated back to it’s children in a consistent way across all the components.

Canvas

Canvas holds all the data and utilizes useRef to the rendered <canvas>

HTML element on the frontend. The useEffect React hooks helps calling ren-

derer function on updates of some parts of the state of the component. This

Approach might not be that performant. We tried to optimize the click listen-

ers, that trigger ThreeJS raycaster, but there are still some performace issues,

which will be addressed in the Evaluation and Discussion section.

UI components

UI state terminal This UI component contains all the information

about the last operation. It has been deigned to handle tuples of data, that is

{opcode: [1/0], msg:"Example"}. The first field of this tuple is the opcode

that reflects user interaction status. In case User’s operation has Failed, the

"0" opcode would be returned. In case successful operation has been executed,

the component will receive and render "1" opcode status. In the second field

the message that goes with our operation status is saved. That way User will

also find some useful information about the action right after it’s execution.

Proposed style management

When designing a component system we have thought of making a highly

customizable system that any user could adjust for themselves. That is why we

implemented all the styles in as a SCSS project, that is transpiled into plain



4.2 Our approaches to metric visualization 49

Figure 4.7: Example of failed operation

CSS, and imported in the App component. In order to change styles, user can

change the styles folder’s contents and recompile new styles for themselves, we

have provided the style generation. Project styles for the Upload frontend are

compiled using the npm utility called node-sass, via npm scss command.

4.2 Our approaches to metric visualization

We have tried to stick to the standard City metaphor, described in the 2

Literature review chapter.

4.2.1 Metric calculation

For the LoCoM, CBO, ECL, and CYCOMP metrics, we calculate the

height of out target parallelogram (ViroBox and THREE.boxGeometry) by

taking the highest and the lowest value of the metric, compared to the classes

in the project, and multiplying the target value by a constant. We then draw

boxes of equal width and depth to fit the target space, that we initially provide

for the scene.



4.3 Server application 50

4.3 Server application

The server application is what the other parts of the system fully rely on.

This section describes in detail how this part of the system was designed and

what are the purposes of its REST endpoints:

4.3.1 General implementation details

The server part has been implemented in NodeJS using an existing frame-

work ExpressJS to implement static file serving and REST API. Server is con-

figured via config.js. In this file user can set up the local environment, using

variables:

parsedResouceHomeDirectory,

dependentModulesDirectory,

runtimeResources

In the first of the aforementioned, User can set up the directory, where

files will be saved to and served from. The default value for this variable is

/reports

In the dependentModulesDirectoy User can choose the project files

directory, where the helper utilities will be installed. The default value for this

variable is /project-files

In the runtimeResources User can choose the temporary directory,

where the projects would be compiled. The default value for this variable

is /res



4.3 Server application 51

4.3.2 Upload endpoint

If we continue on the User Story Upload Project, which we introduced

in the previous chapter, the server endpoint /upload is what allows user send

their project files, invokes the parsing logic from the parser module, creates

all the necessary files in the file structure defined in the Methodology section.

Using the Express-Fileupload module, server loads the file into it’s subfolder,

which is defined by the project-token generated using the uuidv4 utility for

each upload request, which is collision free for small number of projects, and

a retreived user-token. When the project has been saved server executes an

asynchronous callback-function, which itself invokes three different methods

from the projectUtilites module, which are

decompileUserProject,

generateMetrics,

parseDependencies.

Method projectUtilites.decompileUserProjects

This method relies on the JD-CLI library, that is a wrapper around JD-

Core, allowing us to extract dependencies from Java source code and generate

the output in a file, only interacting with the Command Line. This method is

executed in an asynchronous context with the help of await-exec library, which

is a wrapper around NodeJS child process#exec to empower the execute op-

eration with capabilities to handle promises. We have chosen the jd-cli utility,

because it allows batch decompilation, and allows background execution on the

server, without any user interaction.



4.3 Server application 52

Method projectUtilites.generateMetrics

This function allows user to generate metrics in the same asynchronous

way. We address the same batch execution problem in an asynchronous man-

ner by using await-exec library which helps us handle these operations with

JavaScript Promises API. This module was designed to execute asynchronously,

and to be replaceable with any other CLI-based dependency extractor. For Java

projects we have tried two approaches different approaches. First was to use

Intellij IDE Metrics Reloaded plugin, that allowed us to export and inspect

OOP metrics of Java projects. This tool had it’s own advantages, however we

have decided not to restrict user to the longest User Flow. In order to get

the results user had to first install the IDE itself, then install the plugin, then

export the metric, after that upload the data in an .xml format to the server.

Many steps have been reduced by turning to a command line utility, called

PMD. PMD analyzer helps developer analyze software quality based on static

software metrics. It also may help detect programming flaws.

Because of this instrument’s flexibility, we provide user with abilities to

write their own metric extractors. This is fully described in the github repos-

itory of the Server project. In order to add their own metrics, User will only

have to place their xml metric description in a way PMD is describing them

in the rulesets folder under project resources directrory. The detailed guide to

writing custom rules is described at [18]

This step is also asynchronous. Using the Javascript Promises, we map

every metric rule file from the pre-defined ruleset, and apply it to the data,

that we received from the user calling Promises.all(). This starts the parallel

execution and effectively increases the time for each metric extraction.



4.4 ViroReact application 53

4.4 ViroReact application

ViroReact library is a tool that helps us visualize data that takes interac-

tion with native AR SDK’s of both Andriod and iOS systems. The platrform

allows developers build React Native-based applications in a consistent way,

handling the ARCore and ARKit. Apart form the React Native, as the main

architectural concept, we have chosen ViroReact, because of the system require-

ment that the target system should consist of open-source software. There are

proprietary software examples, however. Some of the are quite effective. In

case the reader is interested, such projects as Vuforia and [19] should also be

considered.

System details

The platform supports various features of the augmented reality by im-

plementing AR-specific components. Here’s a short list of the features that we

have tried from the target library when implementing the software:

• Camera position handling and scene updates in real-time

• Concurrent background video updates

• AR-based Hit Tests that detect touchable components onclick events

• Virtual ’Portals’ between the scenes to allow deep AR experience

• Testbed application that flattens the learning curve and simplifies system

architecture

Each of this features, together with a server-side package to provide the

application to the testbed application have made the framework our main tar-



4.4 ViroReact application 54

get for the development. The main Component of the mounted application

defines the state of the application and returns the ViroARSceneNavigator

along with all the scenes that are being passed. The latter is the entry point

for the project, that gets the FirstScene component as a target, and passes

as a property the sceneNavigator object, that allows us interact with the

scene. The sceneNavigator object contains a stack and the object that is

located on top of the stack is being displayed by the Renderer. To maintain

and change the state , we pass properties to the next scene in the same object

sceneNavigator by using the dictionary object called viroAppProps. The

state management can further be improved, the reader may find the details in

the Evaluation and Discussion section of this paper. Initially the FirstScene

contained a simple visualization of the Lines Of Code metric, that could be

thought of as a simplification of the City Metaphor.

On the Fig 4.8 we may observe our simplifiaction of the city metaphor,

that is produced by the code given in Fig 4.9

We iterate over every object of the data, retrieving their value. Vi-

roBox Component contains position, scale and key attributes. It also con-

tains onClick attribute that takes a callback as an argument, which triggers the

this. displayName function that is set and binds it’s context on the parent

FirstScene component. This callback sets the current displayed name of the

inspected class, and also changes the position to the place right above the Vi-

roBox for that component. That is how the user is able to interact with the

retreived data.



4.4 ViroReact application 55

Figure 4.8: Here we may observe the normalized LOC metric statistics, mul-
tiplied by the value of 5 for each class of the inspected system



4.4 ViroReact application 56

Figure 4.9: The following is a code for initial visualization

Basic scene navigation

There are many way to graphically represent the differences of the data

domains. One approach that we have come up with to visualize our different

metrics, is no navigate through the scene, using the sceneNavigator object of

the props that are passed to any scene from the ARSceneNavigator Component,

of the ViroReact component ecosystems.

In order to implement such soluion, we have defined a set of basic scenes,

as Modules of the software and imported them in our main component, passing

them all to the ARSceneNavigator. This basic approach allows us to change

scenes based on the click in the UI components.

Advanced scene navigation

The other solution that we’ve found interesting during our reseach was

to use the Component, called Portal from the ViroReact library. The Portal

Component allows user to enter a new Protal scene by physically moving into a



4.4 ViroReact application 57

small window-like object. We’ve generalized this approach calling it the Domain

Portal in Augmented Reality. Intead of switching the domains of the data

on user’s inputs we propose track user’s movement and use it as an input

criteria for the data visualization. The ViroPortalScene object makes the scene

behind the portal only accessible for such interaction and rendering through

that Portal. Each of the Portal Components in this case renders their own part

of PortalScene, that includes only a particular metric. This solution gives user

a feeling of physically entering the inspected dimension and ’travel’ between

different dimensions of their source code. Each ’room’ that User enters can

represent either metric, or user project. The latter option is discussed in the

project navigation section in Augmented Reality.

Extra features

As an extra feature, we use the ViroText component, of the ViroReact

ecosystem. There is a special endpoint of the server-side, that helps us access

the parsed java classes in text format and visualize them as plaintext. When

clicking on each of the ViroBox classes, we can inspect the details of the code, as

it has been saved at the time of the project decompilation phase. This feature

has a great potential of becoming a detached IDE window.



4.4 ViroReact application 58

Figure 4.10: An example of the LOC metric, rendered as a part of a Por-
talScene. In this scenario, user has entered the inspected data domain, through
our Domain Portal metaphor



Chapter 5

Evaluation and Discussion

The evaluation of the project can only be considered by the general eval-

uation of all of it’s parts. Here we list the number of test approaches that we

have used to test our software during the process of implementation. For all

the server-side tests, authors used local network connection and Intel Core i7-

7447 processor with 3.1 GHz operational CPU rate(4.2 peak CPU rate). The

rendering GPU is GeeForce gtx 1050Ti in it’s mobile version.

5.1 Server-side evaluation

5.1.1 Single-user scenario

A simple test suit was developed to test out the performance of the server

side. We wanted to achieve the concurrent upload for the users. With the same

project, containing 118 classes, the project has shown the performance in aver-

age total execution time of 5.5 seconds for single upload from the current user.

With 20 tries and minimal execution time of 3.492 seconds. This results were

obtained by executing console.time() and console.endTime() operations at



5.2 Multi-user scenario 60

the first moment of file receiving and metric file parsing had finished respec-

tively, giving us the total average time, in which the internal parsing processes

can execute the commands and finish. Known issues: Due to a mistake in the

development, when testing the concurrent uploads from the user, we have found

that the removed file at the process of execution of the complexity extraction

tool can kill the process of file interaction with the same file. This is rather

unusual in production because the user had should submit the same file in the

same time, that would force these two procedures to collide. Collision between

two different users can not happen, since we generate different tokens for each

user, as described in the 4 section.

5.2 Multi-user scenario

To test the scenario with multiple system users we have used the Post-

man utility. For this scenario, both of the files register the beginning of the

operations, by setting the timestamp in the beginning of the request. And

registering the end of execution phase, reporting it to file. Average execution

time for the same project parsing for 2 users had increased and for this scenario

is 3.7 seconds. However, when the number of user increases, the server starts

to behave in a quite unexpected way, executing four concurrent operations in

a total of 20.39 seconds, as being not concurrent. We’ve managed to localize

this problem down to the module parceMetrics, and the reason might be in the

parser module’s resource demands at the execution time.



5.3 Memory consumption in get project metrics requests 61

5.3 Memory consumption in get project metrics

requests

We have also measured the Node processes memory consumption dur-

ing execution time in our server-side application, using the NodeJS pro-

cess.memoryUsage(), and interpreting results.

Figure 5.1: Example piece of code that we used in out environment measure-
ment

HeapTotal and heapUsed are the V8 engine’s memory usage. The Resi-

dent Set Size, or rss represents the main memory consumption on the device for

the target process, including all C++ and JavaScript objects and code. This

amount can grow drastically in our application, when the number of large files

grow. We should address this issue in the future, because that may indicate a

memory leak in the application, when the heap size is not growing.



5.4 Client-side evaluation 62

Figure 5.2: Example piece of code that we used in out environment measure-
ment

5.4 Client-side evaluation

5.4.1 Web frontend

For the client-side we have measured the performance of our own page

with respect to different factors.

1. Visual performance

2. Resource demand

3. UI interaction

Visual performance and Memory management

To control the FPS on the Canvas, we have attached the simple FPS

counter to our rendering function. Every Now that the system rendered the

components with the counter, we were able to calculate the average FPS. The

results have proven that for the big project with many classes and dependencies,

the threejs canvas starts to slow down. To inspect this issue, we’ve tracked the

script’s allocated resources and found out that the reason might be in that we

don’t clear the resources for the ThreeJS scene, in our further work, we will

inspect that issue, however, it is not critical for the project, as it is an Extra



5.4 Client-side evaluation 63

Feature.

ViroMedia evaluation

When evaluating the software on the ViroMedia platform, which is a

stand for the application, we have considered the rendering performance and

re-render implications to the genreal performance. For the same project with

118 classes, and metrics, the rendering cycle took average of 160ms according

to the performance monitor statistics. Re-rendering happening in the first im-

plementation is smoothed by the blur effects of the scene changing, so should

not affect the overall visual performance. Being on the local network, average

delay for the rendering due to the data fetch is 35m.



Chapter 6

Conclusion and Furhter

Work

This paper has covered the spheres of data visualization in sphere of Aug-

mented Reality. We have proposed an inexpensive solution to interpret and rep-

resent data with the help of immersive technologies. Based on the investigated

user feedback, and in accordance with the latest research in thee sphere of hu-

man cognition the authors have proposed software requirements for the system

that visualizes a subset of metrics for Java programming language. In accor-

dance with the requirements the authors implemented a software and stated

the future work that might be conducted in the area. The software was then

evaluated against real projects, tested and documented. The designed project

is completely open-source, as any of it’s components, and extendable. Our sys-

tems targets all the ARKit- and ARCore-compatible devices, and provides an

inspection tool that is based on the web-browser to imitate the 3 dimensional

environment. Authors of the project propose a new UI metaphor for the user

interaction in the sphere of augmented reality. Although, a great amount work



6.1 Further work on server 65

had been performed, there are many directions to look at when considering the

further development. Based on the performance measurements, we propose the

following extensions that should be considered.

6.1 Further work on server

6.1.1 Integration with other utilities

In future, server could be integrated with many more utilites. Reader

should take it as a note, that different parsers producing different output have

theoretically been considered, and the last operation of the server could be

re-implemented to work with different static parsers outputs.

6.1.2 Low concurrent performance

Tests have shown, that Server solution might have problems when han-

dling concurrent operations due to costly parsing process. We have also discov-

ered a memory leak in the application, that should be inspected and fixed.

6.1.3 Real-time updates for User Projects

Realtime communications can also be considered in the future. Using the

[20] library, or simple Websockets.

6.2 Further work on Client Applications

General improvement in visualization and UI capabilities might be done.

We suggest using more metaphors in further research and improve visual char-



6.2 Further work on Client Applications 66

acteristics of the scene, that would allow encoding more than one parameter

and its value in the scene. For example, ViroBox’s and THREE.boxGeometry

width and depth could potentially used to encode more quantitative data. Color

scheme should also be considered.

There are two main directions to continue the achieved progress on the

Client applications in particular:

6.2.1 ViroReact app

It might be useful for production releases to organize the application

development, avoiding the development ViroMedia stand app. We also may

increase the number of user interactions on the Application Frontend

6.2.2 Web application

The Canvas component needs to be fixed to acquire less resources. More

metrics of software Design quality might be added. To follow the same Declar-

ative React patterns, the Canvas Component might be reworked in the future.



Bibliography cited

[1] J. Vincur and I. Navrat Pavol Polášek, “Vrcity: Software analysis in a vir-

tual reality environment, in international conference on soft-ware quality,”

International Conference on Software Quality, Reliability and Security

Companion(QRS-C), pp. 509–516, 2017.

[2] R. Souza and et al., “Skyscrapar.2222em an augmented reality. visual-

ization for software evolution,” Brasilian Computing Society, pp. 17–24,

2012.

[3] R. T. Azuma, “A survey of augmented reality. presence: Teleoperators

and virtual environments 1997,” pp. 23–32, 2018.

[4] A. Paivio, “Mental representations: A dual coding approach,” 1990.

[5] M. Kuniecki, “The color red attracts attention in an emotional context.

an erp study,” 2015.

[6] R. Grier, “Visual attention and web design,” pp. 63–64, 2004.

[7] C. Jeffery, “The city metaphor in software visualization,” Jan. 2019.

[8] I. E. Sutherland, “A head-mounted three-dimensional display,” pp. 757–

764, 1968.

[9] L. Voinea, A. Telea, and van Wijk, “Cvsscan: Visualization of code evo-

lution,” 2005.



BIBLIOGRAPHY CITED 68

[10] R. Chidamber and F. Kemerer, “Towards a metrics suite for object-

oriented design,” pp. 197–211, 1994.

[11] R. Chidamber and et al., “A metrics suite for object-oriented design,” pp.

476–493, 1994.

[12] T. J. McCabe, “A complexity measure,” December 1976.

[13] S. Cant, D. Jeffery, and B. Henderson-Sellers, “A conceptual model of cog-

nitive complexity of elements of the programming process,” Information

and Software Technology, vol. 37, no. 7, pp. 351–362, 1995.

[14] Avgerou, “A review of the methodologies movement,” pp. 277–286, 1993.

[15] L. Aversano, C. Grasso, P. Grasso, and M. Tortorella, “Investigating dif-

ferences and commonalities of software metric tools.,” 2017, pp. 249–256.

[16] M. Welsh, S. Gribble, E. Brewer, and D. Culler, “A design framework for

highly concurrent systems,” 2000.

[17] “Kegel, dan: The c10k problem,” Tech. Rep., 2021. [Online]. Available:

http://www.kegel.com/c10k.html.

[18] “Making rulesets,” Tech. Rep., 2021. [Online]. Available: https://pmd.

github.io/pmd-6.35.0/pmd_userdocs_making_rulesets.html.

[19] “Easyar commercial software.,” Tech. Rep., 2021. [Online]. Available:

https://help.easyar.com.

[20] “Socket-io utility,” Tech. Rep., 2021. [Online]. Available: https://socket.io.

http://www.kegel.com/c10k.html
https://pmd.github.io/pmd-6.35.0/pmd_userdocs_making_rulesets.html
https://pmd.github.io/pmd-6.35.0/pmd_userdocs_making_rulesets.html
https://help.easyar.com
https://socket.io

	Introduction
	Basics of software inspection
	Static analysis
	Dynamic analysis
	Evolution analysis

	Visual representation. Human perception.
	Augmented reality and metaphors

	Literature Review
	Human perception and AR development
	 Visual perception 
	Augmented reality technologies

	Source Code visualization
	Static analysis
	Evolution analysis
	Behaviour analysis

	Static Metrics
	Conclusion

	Methodology
	Software requirements
	Overall Description
	System features for Web Frontend
	System features for Server
	System features for Application
	Non-functional requirements for Web Frontend
	Non-functional requirements for Server

	System solutions
	 User Experience Research: Interview and Statistics 
	UX research short results and interpretation
	Reasons to implement the Upload Frontend
	Server-side solutions
	Theoretical model of CodeVisualizer Server
	Theoretical model of Viroreact Application
	 Set of initially implemented metrics 
	 Domain Portals 

	Conclusion of Methodology

	Implementation
	Website entry point. File upload frontend.
	General Description of the implementation
	Technical details of implementation of Upload frontend

	Our approaches to metric visualization
	Metric calculation

	Server application
	General implementation details
	Upload endpoint

	ViroReact application

	Evaluation and Discussion
	Server-side evaluation
	Single-user scenario

	Multi-user scenario
	Memory consumption in get project metrics requests
	Client-side evaluation
	Web frontend


	Conclusion and Furhter Work
	Further work on server
	Integration with other utilities
	Low concurrent performance
	Real-time updates for User Projects

	Further work on Client Applications
	ViroReact app
	Web application


	Bibliography cited

