
Автономная некоммерческая организация высшего образования

«Университет Иннополис»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(БАКАЛАВРСКАЯ РАБОТА)

по направлению подготовки

09.03.01 - «Информатика и вычислительная техника»

GRADUATION THESIS

(BACHELOR’S GRADUATION THESIS)

Field of Study

09.03.01 – «Computer Science»

Направленность (профиль) образовательной программы

«Информатика и вычислительная техника»

Area of Specialization / Academic Program Title:

«Computer Science»

Тема /

Topic

 Качество программного обеспечения: удобство

использования и оценка показателей программного

обеспечения / Software Quality: Usability and Evaluation of

Software Metrics

Работу выполнил /

Thesis is executed by

 Чавез Родригез Роберто

Энрике / Chavez Rodriguez

Roberto Enrique

подпись / signature

Руководитель

выпускной

квалификационной

работы /

Supervisor of

Graduation Thesis

 Маццара Мануэль /

Mazzara Manuel

подпись / signature

Консультанты /

Consultants

 Комолов Сирожиддин

Зайнитдин Угли /

Komolov Sirojiddin

подпись / signature

Иннополис, Innopolis, 2021

Contents

1 Introduction 7

1.1 Research Question . 8

1.2 Software Metrics in Software Engineering 8

1.2.1 Product Metrics . 9

1.2.2 Process Metrics . 10

1.2.3 People Metrics . 11

1.3 The ISO Standards for Software Quality 12

2 Literature Review 14

2.1 Works on Software Metrics . 14

2.2 Works on Product Metrics . 15

2.3 Programming Languages . 16

2.4 Code Evaluation . 17

2.4.1 Use of Metrics for code evaluation 17

3 Methodology 19

3.1 Selection of Project for the Analysis 21

3.1.1 Backend Description . 22

3.1.2 Frontend description . 25

3.2 Selection of Metrics . 27

CONTENTS 3

3.2.1 Lines of Code . 28

3.2.2 Number of attributes and methods 29

3.2.3 Cyclomatic complexity 30

3.2.4 Message passing coupling 32

4 Implementation 34

4.1 Calculation of LOC . 34

4.1.1 LOC measurement in the front-end 35

4.1.2 LOC measurement in the back-end 36

4.2 Calculation of SIZE2 . 38

4.2.1 Obtainment of SIZE2 in the front-end 38

4.2.2 Obtainment of SIZE2 in the back-end 43

4.3 Calculation of CC . 46

4.4 Calculation of MPC . 49

4.4.1 MPC measurement in the front-end 49

4.4.2 MPC measurement in the back-end 50

5 Evaluation and Discussion 53

5.1 LOC results evaluation . 53

5.2 SIZE2 results evaluation . 54

5.3 CC results evaluation . 54

5.4 MPC results evaluation . 55

6 Conclusion 56

6.1 Final thoughts and future work 57

Bibliography cited 58

List of Figures

3.1 Illustration of a general backend structure. Source: www.

upwork.com. 23

3.2 Illustration of a general frontend structure. Source: www.

upwork.com. 25

3.3 User interface. Data fields for a new user registration 26

3.4 System log for loan status . 27

3.5 Definition of the LOC metric according to the ISO 9126. 28

3.6 Definition of the SIZE2 metric according to the ISO 9126. . . . 30

3.7 Definition of the CC metric according to the ISO 9126. 31

3.8 Definition of the MPC metric according to the ISO 9126. 32

4.1 Graph of LOC for the Components Module 35

4.2 LOC measurement for the Dashboard.jsx component of the Com-

ponents module . 36

4.3 LOC for the frontend of the project. Ignored Files are the files

that have no lines of code in them - src: zero sized file, src/com-

ponents: zero sized file, src/util: zero sized file 36

4.4 LOC for the back-end of the project. 37

4.5 Output of the file file1.txt, explaining the reasons why some files

were ignored when doing the back-end LOC calculation. 37

www.upwork.com
www.upwork.com
www.upwork.com
www.upwork.com

LIST OF FIGURES 5

4.6 CC calculation for the whole project with COCOMO cost calcu-

lations. 48

4.7 CC calculation for the front-end including COCOMO cost cal-

culations. 48

4.8 CC calculation for the back-end including COCOMO cost calcu-

lations. 49

Abstract

Having multiple software metrics to choose from can represent an issue when it

comes to selecting an specific set of metrics to apply in a program. Currently,

there exist different standards that state how these metrics are used and what

measures they perform in written code; however, many of them address aspects

of quality that are not primarily relevant to a program, and on the other hand,

when there is a feature of a program that needs to be evaluated, several metrics

can be used but some with less or more precision than others. To provide

a guide to understand under what circumstances a certain metric of software

can be used, an analysis of the most commonly used metrics is performed in a

software which was written with a set of programming languages. These metrics

are applied in the code of the program, and after the analysis, a few set of

conclusions is performed, to lead the reader towards a series of thoughts that will

help them make a better choice when it comes to selecting the most appropriate

software metrics to assess the quality of a software program. Although the

present work evaluates software with specific characteristics at a fairly general

level, it will certainly be useful for professionals in the field of Information

Technologies and Computer Science.

Chapter 1

Introduction

Since people started to code computer programs, there existed several dif-

ferent ways to measure the quality of a given software. Formerly, programming

languages were rusty and very tedious to work with. The first languages implied

deep connection with the way in which the hardware of a computer worked, and

knowledge about this field was strictly necessary. These languages are called

low-level languages, and they were used to interact directly with the processor

of a computer. Then there exist middle-level languages, languages that con-

tain a certain level of abstraction; and finally, there are high-level languages,

where the level of abstraction is superior and they do not have a straightforward

connection with the processor instructions of a computer.

This is why, when it comes to measuring the quality of software, there

exist several ways to do it. Precisely because of being so many programming

languages, there are different standards and different software quality metrics

that can be used, and this sometimes creates a difficulty for the person in charge

to evaluate quality of code. This is the reason why this research is executed,

in order to alleviate the load of having to choose among so many features

1.1 Research Question 8

and giving the possibility to the reader to implement only the most relevant

ones according to their goals. For this project, the Software Quality ISO 9126

Standards are used as a reference to choose the quality software metrics and

apply them in the program that this research analyzes. After the analysis, some

conclusions will be made and hopefully, the reader will be able to get a helpful

guide that will collaborate with his or her decisions.

1.1 Research Question

The goal of this project is to bring the reader an analysis of different

metrics applied in a software project for the reader to have a general guide on

how to select metrics according to the project the reader works on. Therefore

the research question arises:

• What metrics could be more suitable to apply when measuring the quality

of code of a software product?

With this question, the attempted objective of the present work is to provide

the reader with a general, yet comprehensible guideline on how to analyze what

metrics could best be used when taking quality measurements in a software

product.

1.2 Software Metrics in Software Engineering

As mentioned already, there exist several metrics that evaluate different

aspects of quality and production of a software. Likewise, there are different

angles of measure of a software product that is released. Mainly, there are two

1.2 Software Metrics in Software Engineering 9

main sections of a software product that metrics evaluate in Software Engineer-

ing: Product Metrics and Process Metrics [1].

1.2.1 Product Metrics

Product metrics of a software program are related to the analysis of soft-

ware development at any of its phases. The measures can be done either at

the requirement assessment phase or even to already built systems. Product

metrics are related to the features of software, and they are subdivided in two

parts, Dynamic metrics and Static metrics [2].

Dynamic Product Metrics

These metrics assist with the evaluation of how efficient and reliable a

program can be. They are in general highly closely connected to the quality

properties of software. It is fairly feasible to quantify the time used for a

task to run and to start a system. Dynamic metrics work to check for system

efficacy and failure types, and the failure area can be directly connected to how

trustworthy a software product is.

Static Product Metrics

Static metrics are gathered by analysis of a system in terms of its pro-

grams, design, or also the measures can be performed in the system’s docu-

mentation. Static metrics in general give support with the comprehensibility

and complexity maintenance of a software product. These metrics indirectly

related to the quality properties of a program. Several of these metrics were

designed to understand the and validate the connection among maintainability,

1.2 Software Metrics in Software Engineering 10

complexity and level of understanding of software. Metrics such as the length

of a program, and the complexity that it has among others.

1.2.2 Process Metrics

These metrics evaluate the process in which the development of software

and its parts is executed. For instance, a common metric of this type is com-

monly related to process time measurement of software parts.

Starting from the point that product quality is intrinsically linked to its

creation process, process metrics have the goal of monitoring, estimating and

enhancing the quality and level of reliability of software products. In fact,

there exist standards created to establish benchmarks and references to results

of measures taken when evaluating software products. The main standard is

the ISO-9000 referencing the "Standards of Management Quality", which is a

series of guidelines delivered by the International Standard Organization - ISO

[3].

Quite frequently process metrics are used as operational tools that can

help improve and control the management of how software is created. In its

nature, software is not a tangible object, but an abstract product that consists

of several other intangible parts. Therefore, it is at a certain level difficult

to keep track of the progress of software development with an objective set

of measurements. Generally management of a software product focuses on

administrating the productivity level of software, its progress and time it takes

to be developed. The objective of management is to improve these areas and

foresee results about them.

Process metrics pertain to models of elaboration of software. A highly

known model in this field is the Boehm’s COCOMO, which stands for Construc-

1.2 Software Metrics in Software Engineering 11

tive Cost Model. This model consists of performing cost evaluations concerning

software. Another common model is the Thebaut’s COPMO, whih basically

predicts how much extra work will be necessary to finalize big projects.

It is worth to mention that even though metrics of this type are usually

considered important for software management, they do not aim at compre-

hending in depth how a program is built. These metrics address more the areas

of prediction and management of resources, time of development and software

utilization.

1.2.3 People Metrics

Metrics in reference to the performance of people in the development of

IT products are also important in terms of software quality management and

analysis. Another name for such metrics is personnel metrics. Several writers

reference the analysis of human performance using this term.

Personnel metrics make quantifiable different attributes that have to do

with software generation in professionals. They help analyze properties like

productivity, presence in work, and other rates such as time required to build

code [4].

In fact, the primary objective of applying such kind of metrics is to help

the human resources stay at ease and furthermore, concentrated on the assign-

ments they are given. Although these metrics were not applied in the present

work, it is still worthwhile to mention them briefly. Below their categorization:

1. Metrics related to the working experience:

• Experience in programming languages.

• Experience in designing and writing methods.

1.3 The ISO Standards for Software Quality 12

• Experience in software management.

2. Metrics concerning the level of productivity:

• Level of productivity.

• Statistics of productivity.

• Quality in productivity.

3. Metrics to asses communication level:

• Experience in team working.

• Ability of communicate between software and hardware.

• Personal time that can be invested in the project.

4. Metrics to check for team structure:

• Metrics of hierarchy.

• Metrics to perform stability in conformed teams.

All these metrics are essential when evaluating the performance of devel-

opment of a software product. They help determine the resources distribution

amongst workers developing the software. Also these metrics very much help

understand in what stages of the project more time and effort should be spent.

1.3 The ISO Standards for Software Quality

The standard applicable to the measurement of software quality is the

ISO/IEC 9126, which depicts a model of quality that sets the quality of soft-

ware into six different areas that are also split into its corresponding features.

1.3 The ISO Standards for Software Quality 13

These features are shown upon usage of software made by its internal software

properties [5].

These internal properties are assessed with the help of inner metrics. For

example, an inner metric could be the control of software development before it

is released. There are different internal metrics that can be found in the subsec-

tion of the norm ISO 9126-3. As to quality features, these are evaluated with

the implementation of outer metrics; for example, the assessment of software

products that will be taken into the market. Again, different examples of these

external metrics are in the subsection ISO 9126-3 of the norm.

For this work, internal quality, which ca be measured in the source code,

was taken for the evaluation. Now, the quality model contained in the section

ISO 9126-1 is briefly explained in general terms.

1. Functionality: It checks how well functions work when software is writ-

ten.

2. Reliability: The ability of a program to work without failure under a

certain period of time.

3. Usability: An aspect to analyze how much of use can a program have

once it is written and released.

4. Efficiency: It evaluates the ability of software to provide resources when-

ever they are needed.

5. Maintainability: This area focuses and how much work must be put on

in order to perform editions and modifications to an existing software.

6. Portability: It checks for the level of adaptation of a software when it

is intended to be transferred from one environment to another.

Chapter 2

Literature Review

As in every existing piece of work, there usually is an initial stage of

background on which a research can be built, and this research is by no means

an exception. The field of Software Metrics includes an extensive set of tools

that measure the quality of software and several sources of information have

developed knowledge in them. For this current research, a number of relevant

sources will be cited that will help with the development of this work.

2.1 Works on Software Metrics

Different software metrics have been established for the measurement of

code consistency and quality. They have to do a lot with how and why the

code is implemented. In fact, these metrics present different nuances when they

evaluate different scenarios; moreover, when different software metrics tools are

used, they evaluate software differently with different approaches [6].

But this does not seem to be negative, as a matter of fact, the world of

software engineering is so big that a few set of tools would not be enough to

cover the evaluation of different types of software. That is why software metrics,

2.2 Works on Product Metrics 15

as already mentioned, is an extensive field in software engineering with lots of

implementations that help evaluate software and predict its attributes, factor

that is very important when assessing software quality [7].

There exist a considerable number of software metrics that evaluates dif-

ferent aspects of software development, for example, lines of code evaluates how

big a program is and how long it can take for this program to compile and run.

On the other hand, cyclomatic complexity determines how structured and en-

capsulated the architecture of a program is [8]. Again, different metrics evaluate

different aspects of software products, and understanding their functioning is

essential for the research process of this work.

2.2 Works on Product Metrics

Product metrics is another area of interest for this research because it is a

superset of software metrics that evaluate different aspects of software products,

including software requirements and level of product interaction with its end

user [9].

Whereas software metrics mostly focus their attention on the source code

of a program, product metrics bring a higher understanding of what the source

code of a program is intended for, and therefore, understanding how it is possible

to evaluate a product in a higher level will be a great complementary tool to

perform the task of this research, which is to evaluate software metrics on a

program and determine which of those metrics can be the most appropriate to

apply.

However, it is at times difficult to pick what product metrics will be used

for program assessment, and that is why it is primarily important to under-

2.3 Programming Languages 16

stand the purpose of a software product and its functional and non-functional

requirements [10].

2.3 Programming Languages

In computer science, there exist several types of programming languages

available for the programmer for the execution of a program. These languages

basically follow different structures and architectures that differentiate them

one from the other. Two of the main programming types are functional pro-

gramming (FP) and object oriented programming (OOP) [11]. In functional

programming, the written code is subdivided in subsystems of functions that

perform different types of operations, and these operations can be used inside

other functions to carry out other operations. This type of programming is

highly useful when designing user interfaces, for example, in web applications

[12]. On the other hand, OOP focuses more on the formation of objects and

classes that encloses a bigger abstract representation of a model [13]. For exam-

ple, a model that needs to be set in code could be a house, where chair would

be an object of type furniture, being furniture a class and along with other

classes, they would form the model of a house. This kind of programming is

much more seen in backend coding, where languages like Java are utilized.

There are many programming languages that work under these

paradigms; therefore, it must be of key importance to understand the type of

language that is being analyzed in order to grasp what software metrics might

be the best to apply. In general terms, cyclomatic complexity would work for

an OOP solution, whereas lines of could could be a more suitable metric to

apply in a functional programming language, such as ReactJS.

2.4 Code Evaluation 17

2.4 Code Evaluation

As to the evaluation of code, standards to indicate software quality and

to evaluate software metrics have also been established. A very well known

standard for measuring quality of software is the ISO/IEC 9126, a standard

that measures software quality by utilizing a set of software metrics and values

that indicate how well a program is written and how structured it is [14].

And it is also primordial to get clear knowledge in the standards that

currently exist for software quality, because this research aims at providing a

comprehensible guide towards selecting appropriate metrics when analyzing the

source code of a program. Hence, this software quality standard will be used

to perform the software metrics analysis of the source code.

2.4.1 Use of Metrics for code evaluation

Several works and papers have been written to classify a certain software

metric into a more precise set of characteristics that they describe. One example

of such works can be related to the counting of lines of code in the source code.

One interesting sub classification can be found in the paper “A SLOC Counting

Standard” written by Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry

Boehm [15].

In this paper, the authors talk about lines of code (abbreviated as LOC)

mentioning that they are one of the most widely utilized metrics in the industry

as well as in pieces of literature. LOC is the main measurement when calculat-

ing models like the COCOMO, the SLIM and the SEER-SEM1. Even so other

standardization organizations like the IEEE have elaborated other definitions
1These are estimation models that check for the cost of software

2.4 Code Evaluation 18

for the calculation of LOC, there are still exist lots of questions as to how prop-

erly LOC should be counted to have a proper result and valid information. The

problem of particularly measuring LOC in different ways triggers in generat-

ing issues when finding the cost of software; therefore, the estimations of cost

may vary and even worse, they might differ galore. To alleviate this unfortu-

nate predicament, some clear and widely used standard should be used and

more importantly, the calculation of LOC and other metrics in general could

be more efficiently done by the implementation of other software tools that can

actually facilitate finding results and generating similar measurements rather

than calculating metrics by hand.

When checking the quality of a program, its size (how big the source code

is) should be taken into account as one of the primary factors to understand

and find software estimations in terms of software cost. In fact, LOC is not

the only measurement that can be evaluated to find the cost of software, but it

definitely affect how other metrics will be calculated, and what other metrics

will also be implemented to analyze software quality and determine its cost.

Chapter 3

Methodology

The present work aims at giving an understanding of what metrics should

be applied among the vast set of them to a specific software project that has

been successfully built and has practical use. The idea of the methodology is

to first identify a good project that contains different programming languages

with different programming paradigms in order to cover a good range of code

writing in the field of computer science. Then after selecting the project, the

next step is in fact the metrics selection and implementation process. Below,

the following list of steps is given in order to clearly identify the series of steps

that will be taken for the execution of the research.

1. Project selection: The first step, the choice of the project in which

the software metrics will be applied. As expressed already, this should

be a project that is written in a couple of programming languages in or-

der to see how different metrics are applied to the code written in these

languages. Other considerations could be that it would be good for the

project to be written in such a way that has in it the common general

structure of a program, i.e., a program that has a backend development

20

and a frontend development. This way a more complete program will be

evaluated. In contrast, however, the project should not be excessively

large so that more time in understanding the project and trying to run

it (either locally or in a server) is used instead of using the time to ap-

ply the metrics and draw conclusions from its results. Also, the project

should have practical use; namely, it should be a project that could be

used by users and gives them some utility rather than just being a demo

project that has no major purpose in its creation. Thereby, the measures

will be more realistically done and the results and conclusions will be

more veracious. The chosen project and explanation to its features and

characteristics can be found in the Section 3.1.

2. Metrics selection: In this step the idea is to cover some aspects of the

quality factors that were briefly described in the Section 1.3. Different

metrics were taken into consideration when doing the research. In fact,

for the selection it was considered the type of language that was used for

the coding, the design paradigms, and the most commonly used metrics

that are usually implemented when evaluating the quality of a software

product1. Based on this information, some metrics were selected to be

applied in the already selected project to later on elaborate conclusions

of the results.

3. Metrics implementation: In this part, the implementation of the met-

rics was executed. For this step, mostly only computer tools were utilized

in order to carry out the measurements and calculations of the code in

the project. As it was already mentioned in the Section 2.4.1, it was
1These metrics are considered to be the most commonly found in literature.

3.1 Selection of Project for the Analysis 21

just better to use existing tools to obtain the measurements rather than

utilizing sheer hand to make the calculations. This action helped with

the speed of calculations and with the human error when implementing

calculations and measurements by hand. The tools used to perform the

measurements and their description are stated in the Section 4.1.

4. Results and conclusions: This is the final step, and in this section the

user guide for software metrics selection was written. However, it must

be clarified that the guide was not written as a series of steps for choosing

the metrics that were going to be used in a project. Rather, the guide is

a series of conclusions that lead the reader of this work towards a series

of thoughts that might help him or her to decide among the vast range of

metrics and choose the most appropriate ones for further implementation.

The conclusions are obtained from the results found in the previous step,

and the development of this section can be found in the Chapter 6 of this

work.

3.1 Selection of Project for the Analysis

First of all, it must be taken into consideration on what kind of project the

research will be done. The selected project has to do with a machine learning2

system that can decide whether or not a given client can take a monetary loan

from a bank based on his current status and loans history. The system uses

various biometric data that the client fills out in a given form to decide about

the loan. The source code and further explanations on how this system works
2A comprehensible guide on machine learning: https://www.sas.com/en_us/insights/analytics/

machine-learning.html

https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html

3.1 Selection of Project for the Analysis 22

are given in the next subsections of this section. It is worth to mention that

the source code of the chosen system consists of a frontend and a backend sides

like most web applications do; hence, the project is quite complete in terms of

software design.

The source code of the project can be found under the following link:

https://github.com/gfredtech/loan-project

The instructions for running the project locally are given in the repository

containing the project. It should be mentioned that the project currently runs

a server online; thus, it is not necessary to run the server (backend) locally for

the project to run, only the frontend is necessary.

3.1.1 Backend Description

First of all, it should be clear what backend development of a web site or

application means. Backend or back-end is the inside development of a given

software system. It works mainly with the storing of data in databases, and the

architecture of the software product. In this area there are hidden task that are

activated when there exist some action in a website. In this area, the developer

writes code in order to help a browser to better establish communication with

the information which is contained in a database [16]. Figure 3.1 shows how

the backend of a software system works.

Functioning of the project backend

The backend is primarily written in Python, it uses the Flask web frame-

work developed precisely in Python. Flask is basically a framework to write

backend web applications that does not require any extra libraries or external

tools for its functioning. It does not contain any abstractions for database nor

https://github.com/gfredtech/loan-project

3.1 Selection of Project for the Analysis 23

Fig. 3.1. Illustration of a general backend structure. Source: www.upwork.
com.

for any other different features which would commonly require the use of other

tools. Nevertheless, Flask has different extensions that can contribute with

other features just as if these features were written in Flask. Such extensions

are useful for various tasks such as form validation and authentication features

[17].

The flask backend has routes for:

1. Login

2. Signing up new admins

3. Retrieve admin details by id or email

4. Update the admin details

For the entries:

1. Get all loan application entries

2. Add a new entry

www.upwork.com
www.upwork.com

3.1 Selection of Project for the Analysis 24

Finally, the backend also works with error handling routes, which means

that when a new loan application entry is added, the entered data is run through

a machine learning algorithm to decide whether the loan application should be

granted to the user or not.

As to the machine learning functioning of the backend, it works with a

dataset. The dataset used comes from kaggle, which is a popular data science

competition platform with different tools and resources for data scientists. The

dataset contains the loan id, the gender of the applicant, also if the applicant

is married or not.

Steps of the machine learning algorithm:

1. Fill missing values: some of the rows might be missing data, so we fill some

of them with default values if no values are found there. For example, if

there is no gender at a given field for a given profile, the gap will be filled

out with the gender as male, which is the default value. This feature can

be seen in the file ml/train.py of the source code.

2. After that, the data is split into a 1/3 split, which means that for every

1 test data, there exist 3 training data.

3. The data is then encoded into better values using the scikit-learn Label

Encoder class.

4. Then feature scaling on the data is performed, using the Standard Scaler

class also from scikit-learn.

5. Afterwards, the training of the model happens by using Logistic Regres-

sion. Logistic regression is a type of predictive analysis performed on data

3.1 Selection of Project for the Analysis 25

where the dependent variable is binary. This type of regression is utilized

to depict data and clarify the relation between a binary variable and one

or many other nominal or interval variables that are independent.

6. Eventually, the model is saved to a file so that it can be used again later

on. When someone enters their data, these data will be run through the

saved model.

3.1.2 Frontend description

Front-end development in general is the process that is done in order to

connect the internal layers of a software system with the interface that interacts

with the client that uses such system. It is the method of using technologies like

HTML, CSS and mostly JavaScript for the creation of a website. The objective

of this development is for the clients to see and use relevant information in a

friendly and interactive way. Figure 3.2 shows generally how the structure of a

frontend area of a software product works.

Fig. 3.2. Illustration of a general frontend structure. Source: www.upwork.
com.

www.upwork.com
www.upwork.com

3.1 Selection of Project for the Analysis 26

In the project, the frontend is written with ReactJS, a frontend devel-

opment framework with the purpose of designing and creating user interfaces.

This is done by means of user interface (UI) components, each component rep-

resenting an integral part of the web application. A component is code that

can be reused and has a similar purpose of that of the functions in JavaScript,

with the difference that components work independently and mostly return

HTML[18]. Figure 3.3 shows a portion of the UI of the application when a new

user is being registered.

Fig. 3.3. User interface. Data fields for a new user registration

The frontend connects with the server and the design of it is just basically

a form for submitting loan applications, alongside with a table that displays the

data of the user and his or her loan status. The frontend contains components

which represent and design the different parts of the interface the user interacts

with. Figure 3.4 shows part of the current loan status of each registered client,

3.2 Selection of Metrics 27

where it is possible to see whether a loan has been granted to a particular client

or not.

Fig. 3.4. System log for loan status

3.2 Selection of Metrics

In this section, the metrics that were used to evaluate the project are

described. The selection of these metrics was based on the type of project that

was selected, considering the programming languages that were used in the

project plus the programming paradigms that were implemented in the project

design and creation.

Another consideration for the metric selection was the type of metrics

that were going to be evaluated. In this case, to perform a quality check strictly

on the code, Static Product Metrics were selected. Finally, the metrics were

selected among the range of metrics that are supported by the ISO standards

described in Section 1.3.

3.2 Selection of Metrics 28

3.2.1 Lines of Code

Source lines of code (SLOC) or commonly called only lines of code (LOC)

merely calculates the number of lines in source code of a given software unit. It

is one of the simplest metrics to be implemented, but at the same time is one of

the most powerful ones to evaluate especially how complex software entities are.

Provided that this metric depends on some code standards and their format,

it is relevant to utilize it in code when it is generated since there might be a

lack of breaks in lines. Also, it can identify how much effort was applied when

developing a program. Figure 3.5 shows the definition of the metric according

to the ISO-9126 standard.

Fig. 3.5. Definition of the LOC metric according to the ISO 9126.

With this metric, the idea is to evaluate the re-usability, belonging to the

usability attribute of the quality model described in the Section 1.3. Inside this

attribute, the metric will check the understandability of the software, which is

the ability of a software engineer to understand the system, its components and

3.2 Selection of Metrics 29

libraries, to later on integrate the software product into new systems. Accord-

ing to the ISO standard, it is expected that understanding if software can be

appropriate for reuse, it very much depends on how big it is. Understandablity

should decrease with the increase of LOC.

3.2.2 Number of attributes and methods

Abbreviated as SIZE2, the number of attributes and methods metric in

general does the counting of attributes and methods that the developer wrote

in a class. In fact, it is mostly an object oriented paradigm metric, but it can

also be applied to other modular languages by means of taking into account

the amount of global variables in a module and the number of functions and

methods. Figure 3.6 shows how the metric is defined. The definition is done

according to the ISO standard for software quality metrics.

The purpose of this metric is to assess the portability attribute of the

quality model described in the Section 1.3 of this work. Within this attribute,

the sub-characteristic that SIZE2 measured in the project is the Replaceability

which works with the objective of finding conclusions on at what level new

software can replace existing old parts of another software. It acts in correlation

with other metrics that do measurements of other different software properties

to check for opportunity of change and required effort utilizing it instead of other

provided software inside the environment of such a software. Consequently,

according to the ISO standard, replaceability evaluates that the incorporation

of a new component instead of another component must be able to equally

simulate its interface. Big interfaces are hard to assess in terms of checking

how replaceable their units can be by other units. The size of an interface

is particularly evaluated by SIZE2. Replaceability should decrease with the

3.2 Selection of Metrics 30

Fig. 3.6. Definition of the SIZE2 metric according to the ISO 9126.

increasing of SIZE2.

3.2.3 Cyclomatic complexity

The Cyclomatic complexity, abbreviated as CC, is the measurement of

the level of complexity of a software control structure. In other words, CC is

the amount of paths that are linearly independent and hence, it is the minimum

amount of independent paths when running software. Figure 3.7 shows how the

CC metric is defined according to the ISO-9126 standard of software quality.

This metric was implemented in the research to analyze the efficiency

attribute of the quality model described by the ISO 9126 standard in Section

1.3. As mentioned earlier, efficiency of software analyzes how well software

3.2 Selection of Metrics 31

Fig. 3.7. Definition of the CC metric according to the ISO 9126.

can give a given level of performance in relation to the amount of utilized

resources. This quality attribute can be useful for the control and prediction of

how much software satisfies requirements of efficiency. That is why, inside this

attribute, the sub-characteristic of time behavior was evaluated in this work.

Time behavior checks for the time behavior of software that operates or is tested

in combination with other computer systems. As to the ISO standards, it is

defined that time behavior could actually become worse with a high degree of

Cyclomatic Complexity.

3.2 Selection of Metrics 32

3.2.4 Message passing coupling

Message passing coupling (MPC) does the measurement of the number of

method calls belonging to a class that are used in other classes. Thus, it checks

the dependency of methods that are local with methods that were implemented

in other classes. MPC helps draw conclusions about the method calls among

objects of the classes that are being evaluated. Such analysis helps assessing

the level of effort for software maintenance, also its reusability and how much

effort must be made to test the software. Figure 3.8 shows the definition of the

metric according to the ISO standard.

Fig. 3.8. Definition of the MPC metric according to the ISO 9126.

With this metric, the evaluation of the quality attribute of maintain-

ability was performed. Maintainability helps with the understanding of how

much effort is needed for software to be maintained. It can also help to analyze

the level of effort that must be applied to modify a software product or any of its

parts. Inside the attribute of maintainability, the sub-characteristic of stability

3.2 Selection of Metrics 33

was assessed. Stability helps understand how stable a software product is. It

also analyzes the risk of any unexpected effects that may occur when modifying

the software.

According to the ISO standards, software parts with a high coupling could

show less stability, since parts of the system interact and use resources of other

parts, and this could create a negative effect. Stability is reduced with a growing

MPC.

Chapter 4

Implementation

The calculation of the metrics was performed in both the backend and

frontend of the project. It should be noticed that the backend follows an object

oriented design paradigm, whereas the frontend follows a functional program-

ming paradigm. Some metrics correspond more to an object oriented design

(like the metric of message passing coupling); however, they were equally ap-

plied in the frontend and backend as there were equivalent functions in both

sides of the project.

4.1 Calculation of LOC

The lines of code were implemented initially for the “modules” section

of the front-end part of the project. The calculations were made with the

help of CLOC1, an NPM library to count lines of code. CLOC counts lines

of code, comment lines, blank lines of many different programming languages.

The tool is written in Perl2 and it is possible to use this tool in various sorts of
1To know more about CLOC, visit http://cloc.sourceforge.net/
2An introduction to Perl: https://www.perl.org/

http://cloc.sourceforge.net/
https://www.perl.org/

4.1 Calculation of LOC 35

operating systems which makes CLOC a versatile, yet efficient tool to perform

the counting of LOC in a project.

4.1.1 LOC measurement in the front-end

Figure 4.1 shows the total number of lines in the whole Components

module, where the language that was used was JavaScript in React (Jsx).

Fig. 4.1. Graph of LOC for the Components Module

Similarly, the calculation of the LOC of inside the members of the Com-

ponents module can be calculate with the help o CLOC. Figure 4.2 for example,

shows the calculation for the component Dashboard.jsx where the total amount

of actual lines of code (meaning effective lines of code) adds up to 98.

Although the separate results for the rest of the components are not

showed in this work, the calculation can be done equally for all of the other

components and files of the frontend part of the project. Figure 4.3 shows the

total calculation of LOC for the frontend, plus the report of languages that

4.1 Calculation of LOC 36

Fig. 4.2. LOC measurement for the Dashboard.jsx component of the Compo-
nents module

were used to write it.

Fig. 4.3. LOC for the frontend of the project. Ignored Files are the files that
have no lines of code in them - src: zero sized file, src/components: zero sized
file, src/util: zero sized file

4.1.2 LOC measurement in the back-end

Likewise, the LOC calculations for the backend are determined with the

help of the CLOC tool. Figure 4.4 shows the calculation of LOC for the whole

backend, which mainly consists of the machine learning implementation and

the server written with Flask. It can be seen that the backend was written

4.1 Calculation of LOC 37

with a total of 429 effective lines of code in the Python programming language.

Figure 4.5 shows the output of the file file1.txt, a file that gives information on

why some files were ignored when performing the calculation of the LOC of the

backend.

Fig. 4.4. LOC for the back-end of the project.

Fig. 4.5. Output of the file file1.txt, explaining the reasons why some files
were ignored when doing the back-end LOC calculation.

4.2 Calculation of SIZE2 38

4.2 Calculation of SIZE2

The calculation considered methods that were implemented by the pro-

grammer and not built-in methods and functions from the programming lan-

guages that the programmer imports. Likewise, attributes were calculated only

under the basis of declared attributes and not imported attributes from libraries

or built-in objects. Also, the measurements were done according to the defini-

tions and theory in Computer Science for attributes and methods (or functions

in functional programming) where an attribute was considered to be a variable

that can be modified and viewed, and a method or function is does something

or performs some action in the code.

For example, methods such as useState() and useEffect() (react built-

in methods) are seen constantly throughout the code; however, they were not

considered for the calculations. Setters are also not considered for the method

calculation since they are just extensions of the declared attributes.

4.2.1 Obtainment of SIZE2 in the front-end

The number of attributes and methods are implemented initially for the

“modules” section of the front-end part of the project.

Components Module:

1. AddUser.jsx:

• Attributes:

(a) const alert

(b) const layout

4.2 Calculation of SIZE2 39

(c) const tailLayout

• Methods:

(a) const setAlert()

(b) const onFinish()

2. Dashboard.jsx:

• Attributes:

(a) const jwt

(b) const pageIndex

(c) const collapse

(d) const push

• Methods:

(a) const currentPage()

3. Entries.jsx:

• Attributes:

(a) const dataSource

(b) const searchText

(c) const searchedColumn

(d) const visible

(e) const selectedEntry

(f) const columns

• Methods:

(a) const showDetail()

4.2 Calculation of SIZE2 40

(b) const getColumnSearchProps()

(c) const handleSearch()

(d) const handleReset()

(e) const handleClose()

4. Login.jsx:

• Attributes:

(a) const login

(b) const jwt

• Methods:

(a) const handleChange()

(b) const handleLogin()

5. Messages.jsx:

• Attributes:

(a) const userData

6. NewEntry.jsx:

• Attributes:

(a) const hasCollateral

(b) const hasGuarantor

(c) const hasAccount

(d) const positive

(e) const loading

4.2 Calculation of SIZE2 41

(f) const visible

(g) const collateralImage

(h) const name

(i) const layout

(j) const tailLayout

• Methods:

(a) const handleSubmit()

(b) const fakeFetch()

(c) const normFile()

(d) const handleClose()

(e) const handleChange()

7. Settings.jsx:

• Attributes:

(a) const userData

(b) const emailButtonDisabled

(c) const passwordButtonDisabled

(d) const form

(e) const layout

(f) const emailField

• Methods:

(a) const openNotificationWithIcon()

(b) const handleEmailUpdate()

(c) const handlePasswordUpdate()

4.2 Calculation of SIZE2 42

(d) const handleEmailChange()

(e) const handlePasswordChange()

For the components module there is a total of 32 attributes and 20 meth-

ods.

Util Module:

1. hooks.js:

• Attributes:

(a) const storedValue

• Methods:

(a) function useLocalStorage(key, initialValue)

For the Util module there is a total of 1 attribute and 1 method.

To finish the evaluation for the frontend, the analysis for the file service-

Worker.js where there are 1 attribute and 4 methods:

1. Attributes:

(a) const isLocalhost

2. Methods:

(a) function register(config)

(b) function registerValidSW(swUrl, config)

(c) function checkValidServiceWorker(swUrl, config)

(d) function unregister()

4.2 Calculation of SIZE2 43

4.2.2 Obtainment of SIZE2 in the back-end

Machine learning module (ML):

1. predict.py:

• Methods:

(a) def load-model()

(b) def predict(entry: Entries)

2. train.py:

• Attributes:

(a) data

(b) X-train, X-test

(c) y-train, y-test

(d) sc

(e) classifier

(f) y-pred

• Methods:

(a) def fill-missing-values()

(b) def split-data()

(c) def encode-data(X-train, y-train)

In total, there are 8 attributes and 5 methods for the Machine Learning

module.

Now the calculation for the server and models implementation which con-

sist of the following files:

4.2 Calculation of SIZE2 44

1. app.py:

• Attributes:

(a) DEFAULT-TAG

(b) app

• Methods:

(a) def create-app(test-config=None)

2. models.py:

• Attributes:

– db

– database-path

– id

– email (class Admins)

– password (class Admins)

– primary-key (class Admins)

– id (class Entries)

– firstName (class Entries)

– surname (class Entries)

– dob (class Entries)

– gender (class Entries)

– maritalStatus (class Entries)

– numberOfDependents (class Entries)

– isSelfEmployed (class Entries)

4.2 Calculation of SIZE2 45

– education (class Entries)

– telephoneNumber (class Entries)

– email (class Entries)

– city (class Entries)

– address (class Entries)

– presentEmployer (class Entries)

– occupation (class Entries)

– yearsOfExperience (class Entries)

– monthlyNetSalary (class Entries)

– socialSecurityNumber (class Entries)

– loanAmount (class Entries)

– loanAmountTerm (class Entries)

– loanPurpose (class Entries)

– loanCategory (class Entries)

– propertyType (class Entries)

– creditScore (class Entries)

– isAccountHolder (class Entries)

– accountNumber (class Entries)

– hasPendingLoan (class Entries)

– hasCollateral (class Entries)

– collateralImage (class Entries)

– hasGuarantor (class Entries)

– guarantorName (class Entries)

– guarantorIncome (class Entries)

4.3 Calculation of CC 46

– hasBankingRelationship (class Entries)

– hasIncomeSentViaBank (class Entries)

– loanStatus (class Entries)

• Methods:

(a) def setup-db(app)

(b) def create-tables()

(c) def create-superuser(email, password)

(d) def insert(self) (class Admins)

(e) def update(self) (class Admins)

(f) def delete(self) (class Admins)

(g) def format(self) (class Admins)

(h) def insert(self) (class Entries)

(i) def update(self) (class Entries)

(j) def delete(self) (class Entries)

(k) def format(self) (class Entries)

There are 44 attributes and 12 methods for this section.

4.3 Calculation of CC

Cyclomatic Complexity can be calculated with the help of the following

formula [19]:

CCCCCC = E − N + 2P (4.1)

4.3 Calculation of CC 47

In this equation:

P = number of disconnected parts of the flow graph (e.g. a calling pro-

gram and a subroutine).

E = number of edges (transfers of control).

N = number of nodes (sequential group of statements containing only

one transfer of control).

This translates to the number of decisions + one. Binary decisions — such

as “if” and “while” statements — add one to complexity. Boolean operators can

add either one or nothing to complexity. For example, one may be added if a

Boolean operator is found within a conditional statement.

In fact, instead of using the formula manually, there exist already soft-

ware programs that have been written to automatically calculate the cyclomatic

complexity of a software project. For this project, the calculation was imple-

mented with the boyter3 tool, which is a very fast accurate code counter with

cyclomatic complexity and COCOMO calculations written in pure Go4. Using

the software tool, the following results were obtained initially for the whole

project, where the results are showed in Figure 4.6.

As it is observed in Figure 4.6 the complexity amounts up to 91 for the

entire project. The last 3 rows of the figure show the COCOMO calculations

to estimate different costs of the project. Likewise, Figure 4.7 shows the results

for the frontend, where the CC is equal to 55, and Figure 4.8 shows the results

for the backend part of the project, where the CC is equal to 36.
3To know more about boyter visit: https://github.com/boyter/scc
4To learn more about Go visit: https://golang.org/

https://github.com/boyter/scc
https://golang.org/

4.3 Calculation of CC 48

Fig. 4.6. CC calculation for the whole project with COCOMO cost calcula-
tions.

Fig. 4.7. CC calculation for the front-end including COCOMO cost calcula-
tions.

4.4 Calculation of MPC 49

Fig. 4.8. CC calculation for the back-end including COCOMO cost calcula-
tions.

4.4 Calculation of MPC

Like in the other sections of this chapter, the MPC measurement was di-

vided in two parts, the measurement for the frontend and then for the backend.

4.4.1 MPC measurement in the front-end

In the frontend some components are nested, which means that they

interact with each other. Props5 are the ones that are in charge of generating

the coupling mechanisms among these components; thus, the counting for the

MPC will include them as well as methods that are used in different files of the

frontend.

MPC mechanisms for the Components Module:

1. Dashboard.jsx:
5Read about what a Prop is in React at: https://reactjs.org/docs/components-and-props.html

https://reactjs.org/docs/components-and-props.html

4.4 Calculation of MPC 50

• Lines 42 and 43: id = jwt . Here, the current component passes a

message to the other ones in the form of id , which holds the json

web token for authenticating the user.

• Line 23: prop history is passed onto the component Dashboard.

• method useLocalStorage(), implemented in the file hooks.js does

message passing as well, it passes data from local storage to the

component.

2. Login.jsx:

• Line 6: prop history is passed onto the component Login

• method useLocalStorage(), implemented in the file hooks.js also does

message passing in the component.

3. Messages.jsx:

• Line 5: prop id is passed onto the component Messages

4. Settings.jsx:

• Line 5: prop id is passed onto the component Settings

For the components module there is a total of 8 props and 2 methods

doing the message passing coupling among components.

4.4.2 MPC measurement in the back-end

The file app.py file contains the following methods and objects imple-

mented in the models.py file:

• Method setup-db

4.4 Calculation of MPC 51

• Class Entries

• Method create-tables

• Method create-superuser

• Class Admins

The import happens in line 8 of the app.py file: from models import

setup-db, Entries, create-tables, create-superuser, Admins.

Then, the following coupling happens in the backend:

1. Method setup-db: used once

• In line 17 of app.py file: setup-db(app)

2. Object of class Entries: used 2 times

• In line 150 of app.py file: entries = Entries .query .all()

• In line 201 of app.py file: entry = Entries(firstName =

firstName, surname = surname, dob = dob, gender = gender , ...

3. Method create-tables: used once

• In line 18 of app.py file: create − tables()

4. Method create-superuser: used once

• In line 22 of app.py file: create − superuser(email , password)

5. Objects of class Admins: used 12 times

• Used 2 times in line 21 of app.py file: if not

Admins .query .filter(Admins .email == email).first()

4.4 Calculation of MPC 52

• Used 3 times in line 53 of app.py file:

admin = Admins .query .filter(Admins .email ==

email ,Admins .password == password).first

• In line 64 of app.py file: admins = Admins .query .all()

• In line 78 of app.py file: admin = Admins .query .get(admin − id)

• Used 2 times in line 94 of app.py file: admin =

Admins .query .filter(Admins .email == email).first()

• In line 102 of app.py file: admin = Admins(email =

email , password = password)

• In line 112 of app.py file: admin = Admins .query .get(admin − id)

• In line 131 of app.py file: admin = Admins .query .get(admin − id)

6. Method setup-db: used once

• In line 17 of app.py file: setup − db(app)

Chapter 5

Evaluation and Discussion

5.1 LOC results evaluation

As it can be seen in the measurements, there are 429 lines in the back-

end plus 1700 lines written in the frontend, having a total of 2129 effective

SLOC written in the project. Previously, it was mentioned that the level of

understandability of a project for a software engineer decreases as the number

of SLOC goes up.

It has been shown in the different researches, that projects containing

around 140001 physical SLOC are considered to be already big enough to have

a level of understanding that requires a lot of time to reach when studying code

of a software product. Therefore, the evaluated project is not considered to be

large in comparison to larger projects. Consequently, the level of understand-

ability is high enough since little effort is required to comprehend the code for a

software developer or engineer who has some experience working with software.
1Data obtained from source marked in reference [15] of this work

5.2 SIZE2 results evaluation 54

5.2 SIZE2 results evaluation

The level of portability in its sub-characteristic of Replaceability was mea-

sured with the implementation of this metric. It was written that the ability of

a software to be replaced by other parts of code when performing maintenance

or updating of software goes down with a high number of SIZE2. After analy-

sis of this metric in the entire project it has been found that the backend has

52 attributes and 17 methods written by the developer, whereas the frontend

contains 34 attributes and 25 methods, making a total of 86 attributes and

42 methods for all the project.

Therefore, it can be understood that replacing parts of the backend might

be more difficult than replacing parts in the frontend, given the fact that there

are more attributes in the backend. In fact, methods are also important to

consider, however, unless they are nested into other components, they usually

work only inside the component where they are written, and replacing them

with other methods may not complicate the functioning of all the project.

All in all, a total of 86 attributes and 42 methods are not big numbers

for a project (previously, in Section 5.1 it has been determined that the project

in analysis is rather small); thus, replaceability is feasible in this project.

5.3 CC results evaluation

With the McCabe’s cyclomatic complexity, the purpose was to determine

the time behavior efficiency of the project. The results for the project gave a

complexity of 55 for the frontend and 36 for the backend, giving a total of CC

= 91. Usually, it is considered that single methods with a complexity up to 10

are manageable to understand without major difficulties [20].

5.4 MPC results evaluation 55

Hence, the complexity found for the project does not seem to be high,

given the fact that the complexity of 91 is for the whole project where there

exist 42 methods written solely by the developer, besides many other methods

that were fetched from built-in libraries. And this is clearly showed in the time

behavior when running the project, because the program functions well and

does not suffer time delays when operating it.

5.4 MPC results evaluation

With this metric, in the project the sub-characteristic of Stability was

measured inside the quality attribute of maintainability. With a growing value

of MPC, the system tends to be less stable, taking into account that a single

edition in the code could break other parts of the project that interact and are

nested with this part of the code.

The frontend has 10 coupling mechanisms, and the backend 18, adding

up to a total of 28 MPC mechanisms for the whole project. Besides, there

are other mechanisms that come from the use of libraries in the project; hence,

for a program of 2129 SLOC, the number of MPC could be a little high, taking

into consideration that components in the frontend and classes in the backend

are dependant on one another in different props, attributes and methods. This

factor could trigger in the fact that a change in a class or module could highly

affect the functioing of other classes and modules inside the project. Therefore,

the project might not have a high level of stability. However, still the maintain-

ability of the project would not be costly, since the project itself is not large,

and, although not high, the level of stability is not low either.

Chapter 6

Conclusion

The objective of the present research is to answer the Research Question

formulated in the Section 1.1, where the idea is to determine what metrics could

best describe and give information about the quality attributes of the analyzed

project, and what criteria it could be used to choose these metrics.

From the analysis and results obtained in Chapter 5 it is possible to

conclude that some metrics give more information than others. For example,

SLOC give mostly the information of how large the project in analysis is. At

the same time, other metrics like SIZE2 and MPC give information about

the difficulty that could exist when maintaining the project or updating it.

However these last two metrics do not seem to be quite useful once that it was

determined that the project was small, because in a small project, the levels

of understandability and replaceability are by default not high, and evaluating

metrics in reference to these attributes may not be completely worth it.

As to the calculation of the Cyclomatic Complexity, it gave a reference

of how complex the project is. This metric is in fact important with the results

obtained, because it gives information of the efficiency of the program and the

6.1 Final thoughts and future work 57

difficulty of understanding it has. Unlike the SIZE2 and MPC metrics, this

metric also marked relevance in the evaluation of the project.

In conclusion, to select metrics when evaluating a software project with

similar characteristics of the project analyzed in this research, there should

first have to be considered the size of the project (LOC), and the complexity of

it (CC). Once these factors are determined, other metrics such as the SIZE2,

MPC, and others could be also implemented to check for quality in a software

product.

6.1 Final thoughts and future work

In fact, all metrics have a level of importance when the quality of a soft-

ware product is evaluated. However, some metrics could give more information

and be more useful to assess a project than others, and the idea of this research

was to contribute to the decision making process when selecting a set of met-

rics for the analysis by analyzing some metrics in a project and determining

the relevance of their results.

In the future, for similar works supporting or complementing the present

research, it would be good to generate the analysis of larger projects, where

more evaluators could be involved in the analysis of the metrics. Also, in this

research 4 metrics were taking into consideration, but a further research could

evaluate more metrics in order to bring a broader guideline for those who are

looking for a guide when choosing metrics among the various software quality

metrics that nowadays exist.

Bibliography cited

[1] Software engineering: Software metrics - javatpoint. [Online]. Available:

https://www.javatpoint.com/software-engineering-software-metrics.

[2] R. Rupadhyay, Product metrics in software engineering, Apr. 2020. [On-

line]. Available: https : //www.geeksforgeeks . org/product -metrics - in -

software-engineering/.

[3] Y. H. Yang, “Software quality management and iso 9000 implementation,”

Industrial Management & Data Systems, 2001.

[4] W. S. Humphrey, Managing technical people: innovation, teamwork, and

the software process. Addison-Wesley Longman Publishing Co., Inc., 1996.

[5] S. N. Bhatti, “Why quality? iso 9126 software quality metrics (functional-

ity) support by uml suite,” ACM SIGSOFT Software Engineering Notes,

vol. 30, no. 2, pp. 1–5, 2005.

[6] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software metrics

tools,” in Proceedings of the 2008 international symposium on Software

testing and analysis, 2008, pp. 131–142.

[7] N. Fenton and J. Bieman, Software metrics: a rigorous and practical ap-

proach. CRC press, 2014.

https://www.javatpoint.com/software-engineering-software-metrics
https://www.geeksforgeeks.org/product-metrics-in-software-engineering/
https://www.geeksforgeeks.org/product-metrics-in-software-engineering/

BIBLIOGRAPHY CITED 59

[8] B. Kitchenham, “What’s up with software metrics?–a preliminary map-

ping study,” Journal of systems and software, vol. 83, no. 1, pp. 37–51,

2010.

[9] K. El Emam and N. F. Schneidewind, “Methodology for validating soft-

ware product metrics,” Encyclopedia of Software Engineering, 2002.

[10] L. Briand, V. R. Basili, and S. Morasca, Goal-driven definition of product

metrics based on properties. Citeseer, 1994.

[11] B. C. Pierce and C. Benjamin, Types and programming languages. MIT

press, 2002.

[12] R. S. Bird and P. L. Wadler, Functional programming. Prentice Hall, 1988.

[13] B. J. Cox, “Object-oriented programming: An evolutionary approach,”

1986.

[14] H.-W. Jung, S.-G. Kim, and C.-S. Chung, “Measuring software product

quality: A survey of iso/iec 9126,” IEEE software, vol. 21, no. 5, pp. 88–

92, 2004.

[15] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A sloc counting

standard,” in Cocomo ii forum, Citeseer, vol. 2007, 2007, pp. 1–16.

[16] O. Filipova and R. Vilão, “Backend development,” in Software Develop-

ment From A to Z, Springer, 2018, pp. 101–131.

[17] M. Grinberg, Flask web development: developing web applications with

python. " O’Reilly Media, Inc.", 2018.

[18] S. Aggarwal, “Modern web-development using reactjs,” International

Journal of Recent Research Aspects, vol. 5, no. 1, pp. 2349–7688, 2018.

BIBLIOGRAPHY CITED 60

[19] J. Britton, What is cyclomatic complexity? Oct. 2016. [Online]. Available:

https://www.perforce.com/blog/qac/what-cyclomatic-complexity.

[20] D. Schneller, Why good metrics values do not equal good quality, Apr.

2021. [Online]. Available: https://blog.codecentric.de/en/2011/10/why-

good-metrics-values-do-not-equal-good-quality/.

https://www.perforce.com/blog/qac/what-cyclomatic-complexity
https://blog.codecentric.de/en/2011/10/why-good-metrics-values-do-not-equal-good-quality/
https://blog.codecentric.de/en/2011/10/why-good-metrics-values-do-not-equal-good-quality/

	Introduction
	Research Question
	Software Metrics in Software Engineering
	Product Metrics
	Process Metrics
	People Metrics

	The ISO Standards for Software Quality

	Literature Review
	Works on Software Metrics
	Works on Product Metrics
	Programming Languages
	Code Evaluation
	Use of Metrics for code evaluation

	Methodology
	Selection of Project for the Analysis
	Backend Description
	Frontend description

	Selection of Metrics
	Lines of Code
	Number of attributes and methods
	Cyclomatic complexity
	Message passing coupling

	Implementation
	Calculation of LOC
	LOC measurement in the front-end
	LOC measurement in the back-end

	Calculation of SIZE2
	Obtainment of SIZE2 in the front-end
	Obtainment of SIZE2 in the back-end

	Calculation of CC
	Calculation of MPC
	MPC measurement in the front-end
	MPC measurement in the back-end

	Evaluation and Discussion
	LOC results evaluation
	SIZE2 results evaluation
	CC results evaluation
	MPC results evaluation

	Conclusion
	Final thoughts and future work

	Bibliography cited

