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Abstract

This research is inspired by the work of A. Hsu on parallel compilers in APL

[1]. His findings are interesting, although might be underappreciated due to the

unpopularity and complexity of APL1. Therefore, I attempt to not only replicate

his results, but to provide a purely-functional, Haskell-based implementation for

parallel compilation steps, such as flattening expressions or lifting functions.

My implementation, although needs optimisation, provides an easy-to-

use functions for construction and manipulation of array-based representation

of a tree. Moreover, with little to no effort a variety of functions may be used

as standalone, especially general ones, such as innerProduct or selectRows.

My implementation is available in GitHub via link:

https://github.com/DanProgrammer1999/parallel-compiler-haskell

1Wikipedia: https://en.wikipedia.org/wiki/APL (programming language)

https://github.com/DanProgrammer1999/parallel-compiler-haskell
https://en.wikipedia.org/wiki/APL_(programming_language)


Chapter 1

Introduction

In this research I took inspiration from the article of A. Hsu [1]. The

author describes an efficient and novel approach to an important compilation

step using APL. Aaron’s main idea is that the resulting program eliminates

branching and recursion from parsing, which allows it to efficiently run on CPU

or GPU.

In my research, I attempt to not only replicate his approach in Haskell

with Accelerate library, but to create a purely-functional and modular inter-

face to an efficient array-based syntax tree manipulation. For this purpose, I

provide a toolset of functions and operations on parallel-by-construction tree

representation.

To understand the importance of my research goal, let me first describe

several concepts, closely related to the topic.

1.1 Trees

Trees are one of the most important concepts in programming, second

only to, probably, lists or arrays. They are used for a variety of things, such as
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compilers, JSON parsing, fast searching, and many others.

In general, a tree is a mathematical structure similar to graph [2]. In fact,

it can be described as a simple, connected, acyclic, and undirected graph.

On of the most common definition of a tree in computer science is a

collection of nodes, where each node has a value, and a possibly empty list of

children. This is a recursive definition, as each child is also a node, and can

have another list of child nodes, and so on. Therefore, the most convenient and

straightforward way to operate on a tree is using recursive algorithms.

For example, a traditional AST is traversed and transformed multiple

times during various compiler stages, such as flattening expressions, lifting

functions, folding constants, and others. With traditional approaches, most

of the traversals require recursion over the whole tree and conditional branch-

ing. However, both recursion and branching prevent compilers from efficient,

parallel execution on multi-core CPU or GPU devices.

Historically, Haskell is an excellent choice for dealing with trees, as well

as other recursive structures. Haskell’s focus on recursion optimization, as

well as convenient mechanisms of pattern matching, allow for straightforward

and efficient tree manipulation algorithms. Moreover, since ASTs result from

parsing a language, we can use an extensive Haskell tool set for implementing

a parser, further streamlining the process.

However, even though recursive approach is the most straightforward, it

is not the most efficient one. Moreover, it is almost impossible to enable the

recursive algorithm to run in parallel.
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1.2 Different Approach to AST

Recursive structure is not the only way to represent a tree in software.

Much like it is possible to describe a graph using adjacency matrix, a 2-

dimensional array, it is as well possible to come up with an efficient way to

describe a tree using arrays. Depending on the purpose, there are a variety of

ways to do so.

In the case of AST, abstract syntax tree, A. Hsu [1] has designed a very

efficient structure for storing and operating on a tree. He describes node coor-

dinates, a matrix of values, where each row describes a unique address, almost

a path, to a node. This allows to easily find out if one node is a sibling to the

other, does it appear higher than the other, is it a direct or an indirect ancestor

of the other, etc.

By applying different transformations and operations on the node coor-

dinates matrix, it is possible to perform several compiler stages, such as expres-

sion flattening, function lifting, and constants folding, without any recursion

and branching.

The algorithm consists of several steps:

• convert a recursive representation to an array representation with 3

columns: node depth in the tree, and its type and value. A. Hsu [1]

uses preorder traversal 1 for this.

• convert depth vector to node coordinate matrix. This includes several

steps:

– construct boolean matrix from depth vector. That is, a matrix where
1Wikipedia: https://en.wikipedia.org/wiki/Tree traversal

https://en.wikipedia.org/wiki/Tree_traversal
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each row corresponds to a depth, and has 1 at i = depth, and 0

everywhere else

– compute cumulative sum along the columns of the matrix obtained

in the previous step

– finally, drop values (replace with 0) at each row where i > depth

• find the node coordinates of the nodes we are interested in (e.g. in case

of expression flattening, nodes with type ‘Expr’)

• transform the node coordinates matrix into parent coordinates matrix,

where each row would specify the coordinates of the node’s parent. It is

easy to do: just replace with zero the last non-zero element at each row

• using parent coordinates matrix, compute an inner product with the focus

nodes, such that: for each row i , each element j is 1 if focus nodesj is

an ancestor of the node coordinatesi , otherwise 0. Parent coordinates

matrix is used to ensure that a node is not marked as an ancestor to itself

• using the result of the previous step, find for each row the column index

of the last non-zero element

• the indices obtained in the previous step signify the closest ancestor of

the desired type. Use this vector as indices into node coordinates matrix

to construct the matrix of closest focus ancestors

• finally, use the key operator to group the node coordinates by the closest

focus ancestors
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1.3 My Contribution

In this research, I attempt to not only replicate the results of A. Hsu

[1] for compiler stages, but to provide a declarative-style, purely-functional

and easy to use interface to array-based operations on any tree. This work

might be a beginning of creating purely-functional library of functions and

operators in Haskell, which allows one to avoid dealing with complexities of

array programming, while retaining efficiency and parallelisation capabilities of

array programming language.

Therefore, my research question is: is it possible to build purely func-

tional, high-level Haskell interface to highly parallelizable array computational

language (such as Accelerate)? And is it possible to do so without sacrificing

efficiency?



Chapter 2

Literature Review

In this chapter I enlist and review the work already done on parallel-by-

construction trees, as well as explain the purpose and novelty of my work.

2.1 Compilers in Haskell

One of the reasons for choosing Haskell as a primary language for this

research is that the language is often considered to be a great tool for writing a

compiler. There exist many efficient easy to use libraries [3] for various stages

of compilation. Moreover, the declarative style and expressivity of the Haskell

language make it a good choice for writing compilers.

2.1.1 Functional quantum programming language

One example of a compiler written in Haskell is Quantum program-

ming language (QML) [4]. J. Grattage uses Haskell to implement a func-

tional language for quantum computations. This language can be used to write

functional-style programs and compile them to an annotated quantum circuit.
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2.2 The Key to a Data Parallel Compiler

Research that is of particular importance to this topic is described in arti-

cle [1]. A. Hsu presents an approach to an inherently data-parallel compiler and

provides the details of its implementation in an array programming language

(APL). His idea is simple but powerful. Let me describe it briefly here with an

example (fig. 2.1) from the article [1].

2.2.1 Algorithm outline

• Given an AST, construct a depth vector, as in fig. I

• Construct node coordinate matrix, where each row is a unique coordinate

for a node. This can be done in 3 steps (as shown by example in fig. II:

– For a given depth vector, construct a corresponding boolean matrix

with dimensions (node count X max depth). We can describe each

row by the function of corresponding depth d: f (d) = [if d =

i then 1 else 0 | i ∈ [0,max depth)]. You can see this matrix for

our example in part 1 of II

– Accumulate the values along the column. In other words, in each

new column j , X ′0,j = X0,j , and X ′i ,j = Xi−1,j + X ′i ,j . You can see

the result in part 2 of II

– Finally, we need to fix some inaccuracies introduced by the previous

step. Since each row is a unique address, and can be understood

as a path from root to the node, each row needs not to be longer

than the depth of the corresponding node. In other words, ∀ i ∈
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[0, node count), j ∈ (depth vec[i ],max depth) : Xi ,j = 0. You can

see the result in part 3 of II

• Find the coordinates of focus nodes (e.g. either expression or function

nodes). See fig. III for given example.

• Transform node coordinates so that each coordinate represents the coor-

dinate of its parent. It’s easy to do: just set to 0 the last non-zero element

in the row. See fig. IV.

• Next important part is finding the closest ancestor from focus nodes. See

fig. V for the example of described steps.

– First, we construct a new matrix, where each row i is a boolean vec-

tor, each element j denotes whether the focus nodesj is an ancestor

of the node i . In other words, Xi ,j = and [for k ∈ [0,max depth) :

parent nodesi ,k == focus nodesi ,k || parent nodesi ,k == 0], where

and simply folds an array with logical ‘and’.

– In the resulting matrix, the closest ancestor’s index (in focus nodes)

is the index of the rightmost non-zero element. To get it, we can

replace each non-zero element with its index, and then simply re-

trieve the maximum for each row. We get an array of indices into

the focus nodes matrix.

– Finally, construct the matrix of closest ancestors by indexing the

focus nodex matrix with the array from previous step.

• Using the ancestor matrix, group nodes with the same ancestor. (see

example in fig. 2.2)
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Figure 2.1: Example AST

Depth Type Value
0 E v
1 E 0
2 V a
2 P +
2 V b
1 P /
1 E 0
2 V c
2 P *
2 V d

Table I: Depth Vector example

• Now that we have grouped the whole tree into several independent chunks,

we can give names to these subgroups and reference them in other sub-

groups. This helped to reduce the nesting and avoid recursion or branch-

ing (which perform poorly on GPU).

2.2.2 Key operator

In his work, A. Hsu emphasizes the Key operator [5] as central to his

strategy. This operator was first introduced in J language [6], and subsequently

implemented in some other programming languages, such as APL. The idea is

straightforward: given any 2 arrays a, b of the same outer dimension, and a
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1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

1 0 0
1 1 0
1 1 1
1 1 2
1 1 3
1 2 3
1 3 3
1 3 4
1 3 5
1 3 6

1 0 0
1 1 0
1 1 1
1 1 2
1 1 3
1 2 0
1 3 0
1 3 4
1 3 5
1 3 6

Table II: Construction of node coordinates

1 0 0
1 1 0
1 3 0

Table III: Node coordinates of nodes of type E (Expression)

0 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 3 0
1 3 0
1 3 0

Table IV: Node coordinates of nodes of type E (Expression)
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0 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 0 1
1 0 1
1 0 1

0
0
1
1
1
0
0
2
2
2

1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 3 0
1 3 0
1 3 0

Table V: Finding closest ancestor

Figure 2.2: Node coordinates grouped by expression nodes
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function f, find all equivalent rows in a, and However, Haskell Accelerate library

does not provide a built-in key operator, so I will attempt to implement it in

my project.

2.3 Haskell Array Computations

There are many Haskell libraries which implement efficient array data

structures. The most popular choices are Accelerate [7] and REPA [8] libraries.

Their API is similar, and they both present an embedded language (e.g. a

language with identical or similar to Haskell syntax, but with custom compil-

ers). REPA provides a compiler which targets CPU execution, while Accelerate

provides compilers which target both CPU1 and GPU2 among others.

Since Accelerate offers more flexibility and more targets for compiling, I

decided to choose it as the main Haskell library for the research.

2.4 Stack Package Tool

To simplify development and managing of multiple packages, I decided

to use Stack [9] package tool. Among other features, it allows to create new

project with boilerplate files included, automatically install GHC in an isolated

location and build the project from specification file.

The main configuration file is package.yaml, which allows developers to

specify project meta information, such as author’s name or license type, as

well as specify various parameters for different parts of the project, such as

dependencies, GHC options, and others.
1http://hackage.haskell.org/package/accelerate-llvm-native
2accelerate-llvm-ptx

http://www.acceleratehs.org/index.html
https://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/accelerate-llvm-native
http://hackage.haskell.org/package/accelerate-llvm-ptx
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By default, Stack divides the codebase into three logic parts: library,

executables, and tests. Library files are located by default in src folder and

contain the main logic of the program, while executable files are found under

App folder and serve as an entry point for the application. The executables

could also contain simple command line or graphical interface logic. Test files

are located under test folder; however, I did not implement any test suite for

this project.



Chapter 3

Methodology

In this chapter I will describe the main architectural decisions, challenges,

and technologies used for implementation of the system.

3.1 Technologies used

In the course of this study, I used several technologies to implement and

operate on various data structures.

The main technologies behind the implementation are Haskell and Accel-

erate library. Their usage will be further described in details.

I also used Haskell project management tool Stack [9] to simplify package

management and reuse best practices and structures to work with a Haskell

project.

3.2 Haskell

Since the goal in this research is to replicate and benchmark the results

achieved by A. Hsu [1] in Haskell, its usage is the main focus of implementation.
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Similarly to some other programming languages like C++ or Python, Haskell

is not a concrete implementation or system by itself. Instead, it is a language

standard [10] that must be followed for any implementation. However, even

though various implementations of Haskell [11] exist, the GHC compiler [12] is

considered a de-facto standard state-of-the-art compiler traditionally associated

with the Haskell language.

For this project, I used the latest release to date, ghc-8.10.3.

3.3 Stack

The main file of the implementation is src/AccTree.hs, which contains the

main logic of the program. Since Accelerate redefines most standard functions

and operators, which are included in Prelude and are implicitly imported in

all files, Accelerate documentation 1 suggests to explicitly import Prelude as

P with qualified keyword. This means that all Prelude functions, operators,

and structures will not be added to the namespace, but will be accessible via P

qualifier (e.g. P.map or P.==).

Another file, sec/Tree.hs, contains basic definition, as well as

Functorinstance implementation and several utility functions for Treetype.

Additionally, a few utility functions are contained in src/Utils.hs file. I did

not define them in src/AccTree.hs simply because qualified Prelude namespace

makes the definition of the utility functions much more cumbersome and harder

to read and understand.

Finally, files Demo.hs and Benchmarks.hs contain various functions for

testing and benchmarking, which will be described in detail in the next chapter.
1https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html
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3.4 Accelerate

Accelerate is an embedded array language for high performance in Haskell

[7]. "Embedded" means that the language has separate standalone compilers.

Indeed, the package provides several backends for compiling to target several

platforms, in particular, CPU and GPU. The idea behind the language is simple.

All data are represented as arrays of subtypes of Elt element and include signed

and unsigned Int, Bool, Char, as well as tuples and shapes. The arrays have

fixed size which is required to specify upon their creation. The size of an array,

its shape, and an index to it are all specified using the so-called snoc-list that is

just a sequence of elements starting with the zeroth element Z, and separated

with :. operator (e.g. Z :. 1 :. 2 :. 3 . . . ). More interestingly, this structure

serves both as a data structure to define array sizes and construct indexes, and

as a type constructor to specify an array type. As such, array dimensionality

is always specified by a type signatures, and is checked at compile time.

To perform any operation on an array, one must first make the data

accessible to accelerate via function use. Depending upon which backend is

used to eventually execute array computations, use may entail data transfer.

This function also "wraps" an array in Acc type, which is required for all array

manipulation functions of Accelerate.

As an Embedded language, an Accelerate program is not compiled by

GHC. Instead, each Accelerate backend is a runtime compiler which generates

and executes parallel code of the target language at application runtime using

function run. So, each operation on an array is combined, optimized, and then

executed at runtime.
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3.5 Node coordinates

Node coordinates matrix is a central data structure in parallel compiler

implementation. The matrix consists of multiple rows, where each row, node

coordinate, is a vector of natural numbers with length equal to the depth of

the tree. Every node in the tree is uniquely represented by a node coordinate

vector, and each such vector is zero-padded on the right, with the number of

non-zero elements equal to the depth of the tree.

Node coordinate matrix is lexicographically ordered and has dimensions

NxD , where N is the total number of nodes in the tree, and D is the depth

of the tree. In other words, each subsequent row in matrix differs from its

predecessor by only one non-zero element.

One important property, which is not observed in recursive implementa-

tion, is that every node coordinate is a prefix of each of its descendant, ignoring

zeros; and conversely, each child node contains a number of sub-sequences, each

of which points to its ancestor. This means that it is possible to identify such

node relations as siblings, ancestors, and descendants in constant time.

3.6 Design and Architecture

3.6.1 Node coordinates construction

As described above, several steps are needed to group the nodes using

node coordinates.

To better illustrate those steps, consider a sample expression (fig. 3.1)

with the AST (fig. 3.1), and observe how it is transformed step by step. For

the purposes of this research, I simply treat AST as the input, already built
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somewhere else. This treatment allows for flexibility to not assume a specific

syntax, specific AST, or even specific purpose: in fact, this approach can be

used for something other then compiler construction.

(x ∗ 2 + 1)/(3 + y) (3.1)

Figure 3.1: Sample AST

1. Step 0: the tree is converted to vector form, so that each node is rep-

resented by its depth, type, and value (fig. VI). The resulting type and

value arrays are padded to have the same length, and the data is converted

to accelerate arrays

2. Step 1: creating boolean vector matrix, where each for each depth matrix

coordinate i elementi ,depth vector [i ] = 1, and all other values are 0.
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3. Step 2: accumulating values in columns of matrix from the previous step,

4. Step 3: removing extra numbers, so that count of non-zero elements in

each node coordinate corresponds to the depth of that node. Fig. VII

shows these steps.

3.6.2 Finding closest focus ancestors

Another important algorithm is used to find closest ancestors of certain

type, focus nodes. Similarly to node construction, this algorithm also consists of

several parts. However, these parts are independent and can be used separately

for other purposes.

1. Find focus nodes given their type (‘Expr’ in the example). Result for the

sample tree is illustrated in VIII.

2. Construct parent matrix. This matrix is used to ensure that a node is not

marked as an ancestor to itself. As mentioned in 3.5, each node coordinate

contains parent coordinates as prefixes. Therefore, to accomplish this

step, simply set the last non-zero element in each row to zero. Parent

matrix for sample AST is illustrated in IX

3. Construct matrix of closest focus ancestors, where each rowi is a node

coordinate of closest focus ancestor of nodei . This involves can be done

in several steps, described below and illustrated in X:

• Produce and inner product between parent coordinate matrix and

focus node matrix with boolean function that tests whether a vector

is a prefix to the other vector, ignoring zeros. In other word, each



3.6 Design and Architecture 28

0 Expr
1 Op /
2 Expr
3 Op +
4 Expr
5 Op *
6 Var x
6 Num 2
4 Num 1
2 Expr
3 Op +
4 Num 3
4 Var y

Table VI: Depth vector representation

elementi ,j of such matrix will specify whether or not jth focus node

is an ancestor of ith node.

• Construct an vector of indexes to focus nodes, which specifies closest

ancestor of each node from parent matrix. To do that, one can

simply replace non-zero elements in the matrix from previous step

by their column index, and take maximum in each row.

• Finally, using the vector of indexes obtained in the previous step,

construct a matrix where where each row specifies the closest ances-

tor from focus nodes for the corresponding node

3.6.3 Key operator

As mentioned in 2, key operator is crucial as the last step of Hsu’s algo-

rithm. Ideally, after applying key operator to closest focus ancestors and node

coordinates matrix, one gets result similar to the one in XI. However, this data
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0

(a) Step 1

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 2 1 2
1 1 2 1 2 1 2
1 1 2 2 2 1 2
1 1 2 2 3 1 2
1 1 2 2 4 1 2

(b) Step 2

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 2 0 0
1 1 2 0 0 0 0
1 1 2 2 0 0 0
1 1 2 2 3 0 0
1 1 2 2 4 0 0

(c) Step 3

Table VII: Constructing node coordinates

1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 0 0
1 1 2 0 0 0 0

Table VIII: Coordinates of nodes of type ‘Expr’

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 0
1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 1 2 0 0 0 0
1 1 2 2 0 0 0
1 1 2 2 0 0 0

Table IX: Parent coordinates matrix
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0 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 0 0
1 0 0 0
1 0 0 1
1 0 0 1
1 0 0 1

(a) Inner product of parent
matrix with focus nodes

0
0
0
1
1
2
2
2
1
0
3
3
3

(b) Step 2: Indexes to focus
node matrix

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 0 0 0 0
1 0 0 0 0 0 0
1 1 2 0 0 0 0
1 1 2 0 0 0 0
1 1 2 0 0 0 0

(c) Step 3: Matrix of clos-
est focus ancestors

Table X: Constructing closest focus ancestors matrix

structure is impossible in accelerate: since each grouped segment has different

length, and accelerate does not allow nested arrays. One solution to this prob-

lem is used throughout accelerate itself: simply return a tuple with segment

descriptor2 as a second element. Segment descriptor is simply a vector which

describes length of each specific segment in the return array. So the result looks

similar to XII.

2https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#t:Segments
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1 0 0 0 0 0 0

0 Expr 1 0 0 0 0 0 0
1 Op / 1 1 0 0 0 0 0
2 Expr 1 1 1 0 0 0 0
2 Expr 1 1 2 0 0 0 0

1 1 1 0 0 0 0
3 Op + 1 1 1 1 0 0 0
4 Expr 1 1 1 1 1 0 0
4 Num 1 1 1 1 1 2 0 0

1 1 1 1 1 0 0
5 Op * 1 1 1 1 1 1 0
6 Var x 1 1 1 1 1 1 1
6 Num 2 1 1 1 1 1 1 2

1 2 0 0 0 0 0
3 Op + 1 1 2 2 0 0 0
4 Num 3 1 1 2 2 3 0 0
4 Var y 1 1 2 2 4 0 0

Table XI: Result of key operator - using nested arrays

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 2 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 2 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 2 2 0 0 0
1 1 2 2 3 0 0
1 1 2 2 4 0 0

3
2
5
3

Table XII: Result of key operator - using segment descriptor
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Implementation

This chapter will further describe and dive into details of implementation.

4.1 Project configuration

As mentioned above, this project uses Stack [9] package manager. It

allows to specify all project-related configuration details in package.yaml, and

specify extra dependencies in stack.yaml.

Dependencies for this project include accelerate, along with accelerate-

native for CPU targeting, and criterion 1 for benchmarking.

4.2 Types

In the previous chapter, it was established that the input to our system

is an AST. Therefore, I implemented several simple data structures to repre-

sent them, along with Functor, Foldable, and Show instances to simplify various

operations on trees. You can see the type specifications in fig. 4.1. Instance im-
1https://hackage.haskell.org/package/criterion
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data Tree a = Tree
{ treeRoot :: a
, treeChildren :: [Tree a]
}

data ASTNode = ASTNode
{ nodeType :: String
, nodeValue :: String
}

type AST = Tree ASTNode

Figure 4.1: AST Data Structure

plementation is intentionally omitted, since it is mostly trivial and not essential

to the solution.

4.3 General functions

Throughout the implementation several patterns and operations emerge.

These operations are common enough to be abstracted to separate general

functions. Moreover, implementing separate functions for common operations

allows for easier optimization. That is, instead of optimizing the same operation

throughout the codebase, which could possibly be implemented in a variety of

ways, one simply needs to focus on one function to improve overall efficiency of

a library.

This section lists and describes such functions in my codebase.

4.3.1 Inner product

First common function is inner product. It is similar to matrix product2,

but instead of multiplying rows by columns, it multiplies rows by rows. Also,
2https://en.wikipedia.org/wiki/Matrix multiplication
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innerProduct :: (Elt a, Elt b, Elt c)
=> (Exp a -> Exp b -> Exp c)
-> (Exp c -> Exp c -> Exp c)
-> Acc (Matrix a)
-> Acc (Matrix b)
-> Acc (Matrix c)

innerProduct prodF sumF a b = fold1 sumF $ zipWith prodF aExt bExt
where

(I2 r1 _) = shape a
(I2 r2 _) = shape b

aExt = replicate (lift (Z :. All :. r2 :. All)) a
bExt = replicate (lift (Z :. r1 :. All :. All)) b

Figure 4.2: Inner product function

instead of multiplication for elements and summation for rows, the two functions

can be given as parameters, first is a product function (how to combine 2

elements from 2 matrices), and second is sum function (how to combine the row

of results into a single element). That is, given two matrices Am,n :: Matrixa

and Bk ,m :: Matrixb, and two combination functions f :: a− > b− > c, and

g :: c− > c− > c, an element in resulting matrix is obtained by combining

rows Ai and Bj with f, and folding the resulting vector with g. In practice, since

Accelerate does not facilitate easy operations on segments, one can implement

inner product in Accelerate by transforming matrices to the same dimensions

by replication. See the implementation in fig. 4.2 for more details.

4.3.2 Select rows

Another useful general function is selectRows. The logic is very simple:

given a matrix, and a vector of indices, return a new matrix with rows selected

by the index vector. But since the index vector is constrained only by maximum

number it can contain, number of matrix rows - 1, selectRows has multiple
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selectRows :: (Elt a) => Acc (Vector Int) -> Acc (Matrix a) -> Acc (Matrix a)
selectRows rowIndex arr = zipWith (\i j -> arr ! I2 i j) rowIndexMat colIndexMat

where
nResultRows = size rowIndex
(I2 _ nCols) = shape arr
rowIndexMat = replicate (lift (Z :. All :. nCols)) rowIndex
colIndexMat = replicate (lift (Z :. nResultRows :. All))

$ enumFromN (I1 nCols) (0 :: Exp Int)

Figure 4.3: Select rows function

applications, such as selecting a subset of matrix rows, replicating rows into a

bigger matrix with a given order, and simply rearranging the existing rows.

The implementation is quite simple: replicate index vector as a column,

replicate column indices as a row, and zip the two matrices with function to

index from the original array. See the implementation in fig. 4.3.

4.4 Node coordinates construction

4.4.1 Tree to array representation

To be able to work with this data in Accelerate, we first need to convert it

to arrays. There are several steps involved. First, one has to transform tree to

depth vector representation. This involves several steps. First, the tree needs

to be transformed into depth vector representation. It can be accomplished via

a simple recursive function. See Second step pertains to transforming types and

values data. Since Accelerate does not support String type, the only solution is

to use Char matrix for storing both types and values of nodes. But this requires

all strings in a matrix to be of the same length, which is not guaranteed in case

of types of values. Therefore, in order to enable this conversion, we first need

to make all types and values to be of equal length by padding them with some
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padRight :: Int -> a -> [a] -> [a]
padRight n e arr

| length arr == n = arr
| otherwise = arr ++ replicate (n - length arr) e

padToEqualLength :: a -> [[a]] -> [[a]]
padToEqualLength e arr = map (padRight maxLength e) arr

where
maxLength = maximum $ map length arr

Figure 4.4: Padding to equal length code

character. I chose ‘

0’, since it is guaranteed to not be used inside the strings themselves. For this,

I implemented simple functions in file Util.hs to avoid namespace conflicts. See

fig. 4.4 for its implementation.

Function padRight pads an array with the given symbol to the specified

length, while padToEqualLength takes an array of arrays (e.g. array of Strings,

since String is equivalent to [Char]) and uses the first function to pad all arrays

to equal length.

After the padding is done, convert depth, types, and values lists to arrays.

It can be done using fromList function of Accelerate library. See the complete

implementation of the described steps in fig. 4.5.

4.4.2 Depth vector to node coordinates

The next transformation is construction of node coordinates, which was

explored in depths in section 3.6.1. Implementation simply aims to replicate

the steps in accelerate language. See fig. 4.6 for the code. Several points

need clarifications, though. Scan function in Accelerate3 is similar to scan in
3https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:35
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treeToVectorTree :: AST -> VectorTree
treeToVectorTree tree = (depthAcc, typesAcc, valuesAcc)

where
treeToList currLevel (Tree root children)

= (currLevel, nodeType root, nodeValue root)
: P.concatMap (treeToList (currLevel + 1)) children

listTree = treeToList 0 tree

depthVector = P.map (\(d, _, _) -> d) listTree
types = padToEqualLength '\0' $ P.map (\(_, t, _) -> t) listTree
values = padToEqualLength '\0' $ P.map (\(_, _, v) -> v) listTree

maxLength arr = P.maximum (P.map P.length arr)

depthAcc = fromList (Z :. P.length depthVector) depthVector
typesAcc = fromList (Z :. P.length types :. maxLength types) (P.concat types)
valuesAcc = fromList (Z :. P.length values :. maxLength values) (P.concat values)

Figure 4.5: Tree to vector conversion code

pure Haskell4, but it runs along the innermost dimension of accelerate arrays.

That is, if array is 2-dimensional, each row will be scanned separately. Function

scanl1 is a variant of scan without using an initial value. Function the ‘unpacks’

a value of single-element array, returned by maximum function in this case.

Function generate is important as one of the ways to create an accelerate array.

The function allows to construct an array by specifying the shape and index-

to-value mapping for the new array.

The final transformation step is to simply transfer node coordinates,

types, and values into an Accelerate value. To convert array to accelerate,

one can simply apply function use to the array. Depending on chosen backend,

this may entail transfer to a CPU or GPU.
4https://hackage.haskell.org/package/base-4.15.0.0/docs/Data-List.html#g:6
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constructNodeCoordinates :: Acc (Vector Int) -> Acc (Matrix Int)
constructNodeCoordinates depthVec = nodeCoordinates

where
maxDepth = the $ maximum depthVec
nodeCount = size depthVec

depthMatrix
= generate
(I2 nodeCount (maxDepth + 1))
(\(I2 i j) -> boolToInt (depthVec !! i == j))

cumulativeMatrix = transpose $ scanl1 (+) $ transpose depthMatrix

dropExtraNumbers (I2 i j) e = boolToInt (j <= depthVec !! i) * e
nodeCoordinates = imap dropExtraNumbers cumulativeMatrix

Figure 4.6: Node coordinates construction code

4.5 Towards closest focus ancestors

Finally, with tree represented as Accelerate data, one could apply various

transformations to it. If the goal is grouping expressions, the next steps are the

following:

• Find focus nodes, that is, nodes of some particular type useful for compiler

optimization, such as Expr

• Construct parent matrix - a matrix where each row is a parent of the

corresponding node

• Compute inner product using matrices from previous steps; find largest

index of non-zero element in each row, and use the resulting vector to

select rows from focus nodes matrix
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findNodesOfType :: [Char] -> NCTree -> Acc (Matrix Int)
findNodesOfType query (T3 nc types _)

= selectRows selector nc
where

queryAcc = use (fromList (Z :. P.length query) query)

-- either index is out of bounds, and the element is zero, or elements match
isValidCharacter (I2 _ j) c =

(j >= size queryAcc && c == constant '\0') || c == queryAcc ! I1 j
selector = afst

$ filter (>= 0)
$ imap (\(I1 i) v -> boolToInt v * (i + 1) - 1)
$ and (imap isValidCharacter types)

Figure 4.7: Find nodes of specified type

4.5.1 Find nodes of type

This operation is quite easy: simply compare each row element-by-

element with the query, summarise each row with and operation, obtaining

boolean vector that specifies which rows match the query, and which do not.

From there, replace each non-zero element with column index, filter for non-

zero elements, and finally, use the resulting vector to select node coordinates.

See the implementation in fig. 4.7.

4.5.2 Parent matrix

The second input to generating closest focus ancestor matrix is parent ma-

trix: matrix of parents of each corresponding node coordinate. Due to the prop-

erties of node coordinates, one can simply replace with zero the last non-zero

element to obtain the parent matrix. And this is exactly what getParenCoords

function accomplishes. See the implementation in fig. 4.8.
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getParentCoordinates :: Acc (Matrix Int) -> Acc (Matrix Int)
getParentCoordinates nc = imap (\i e -> boolToInt (not (isReplacedWithZero i)) * e) nc

where
(I2 _ nCols) = shape nc
isReplacedWithZero (I2 i j) = j + 1 == nCols || nc ! I2 i j == 0

Figure 4.8: Get parent coordinates function

findAncestorsOfType :: [Char] -> NCTree -> Acc (Array DIM2 Int)
findAncestorsOfType query tree@(T3 nc _ _)

= selectRows closestAncestorIndexVec focusNodes
where

focusNodes = findNodesOfType query tree
parentCoords = getParentCoordinates nc

closestAncestorIndexVec = fold1 max $ imap
(\(I2 i j) e -> boolToInt e * j)
(innerProduct (\a b -> a == b || b == 0) (&&) parentCoords focusNodes)

Figure 4.9: Function for finding closest ancestors of specified type

4.5.3 Closest focus ancestors

Finally, after finding focus nodes and obtaining parent matrix, it is pos-

sible to compute matrix of closest focus ancestors. To accomplish this, it is

required to compute inner product of parent coordinates matrix with focus

nodes matrix, using (==) operator as product function for combining two ele-

ments of different matrices, and (&&) as sum function to fold a row of results

into a single value. As a result, a boolean vector matrix is produced, where each

elementi ,j specifies whether or not row i of parent matrix is a prefix of node

coordinate of focus node j . Replacing each true element with column index,

each false with 0, and selecting maximum in each row, one obtains a vector of

indexes of focus nodes, which are closest focus ancestors of the corresponding

nodes. Using selectRows, one finally obtains a matrix of closest focus nodes for

each node. See the implementation in fig. 4.9.
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4.6 Key

Key is an important part of the algorithm of A. Hsu. He relies on a native

APL implementation of the key operator of an easy and efficient grouping.

Unfortunately, Accelerate library does not provide such an operator, so it was

my task to implement it. However, due to the complexity of Accelerate and

limited time, I was only able to only partially implement a 2-dimensional version

of the key operator.

While the key operator by definition groups the values matrix by the equal

rows in key matrix, applying the given function each row of keys and values to

get the resulting row, my implementation currently only functions as a grouping

function. In other words, while the operator accepts a row transformation

function, it currently remains unused.

It was the hardest hard to implement, since accelerate does not provide

any tools for operations on rows, only either on the values themselves, or on

the array in general. Of course, there are functions like scan and fold, but those

operate on elements rather than on rows.

On the other hand, grouping part works and produces correct results.

Once again, it involves both innerProduct and selectRows functions.

To implement grouping in key, one might begin by finding equal rows in

keys. This can be done simply by computing inner product of key with itself,

using (==)) as product function, and (&&) as sum function. As result, a matrix

of groups is generated where each elementi ,j is true if the row i is equal to the

current row. In other words, the rows in the matrix of groups show which other

rows are equal to the current one.

Next, one can replace the true elements with column number, and fold the

matrix by selecting minimum non-zero number. Finally, a vector is generated
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which contains possibly repeating indexes of unique rows. But it can easily

be fixed to contain unique numbers. Since each repeating row in the matrix of

groups is equal, and the first element in the first encounter of a unique row is the

index of the row itself, the resulting vector, where we select minimum non-zero

index of row, has an interesting property: the first encounter of a number n is

necessarily at index n. That is, to obtain a vector of indices of unique rows in

matrix of groups, one simply needs to fold each row to the minimum non-zero

value, replace in the resulting vector each value that is different from its index

by -1, and filter the result with (>= 0) function.

Using the obtained vector, one can select unique rows from groups matrix,

and filter non-zero elements. As a result, a vector is generated which contains

the arrangement of rows in vectors array. Moreover, as a second argument of

tuple, filter returns segment descriptor, which in this case describes a number of

value rows in each group. Finally, one can simply select rows using the earlier

obtained vector.

See the implementation in fig. 4.10.

Even though I was not able to implement n-dimensional key operator, I

have designed the type signature for it. See the type signature in fig. 4.11.
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key2 :: (Elt k, Elt v, Elt r, Eq k)
=> (Acc (Vector k) -> Acc (Vector v) -> Acc (Vector r))
-> Acc (Matrix k)
-> Acc (Matrix v)
-> Acc (Matrix v, Segments Int)

key2 _ keys vals = T2 (selectRows selectors' vals) descriptor
where

(I2 nKeysRows nKeysCols) = shape keys

-- each row contains indexes of equal rows
-- groupsMatrix: nKeysRows x nKeysRows
groupsMatrix = imap (\(I2 _ j) v -> boolToInt v * (j + 1) - 1)

$ innerProduct (==) (&&) keys keys

-- if a or b is zero, min a b is zero, and if not, (a == 0 || b == 0) is zero
chooseMinId a b = if a < 0 || b < 0 then max a b else min a b
uniqueRowsIdxVec = afst

$ filter (>= 0)
$ imap (\(I1 i) n -> boolToInt (i == n) * (n + 1) - 1)
$ fold1 chooseMinId groupsMatrix

(T2 selectors' descriptor) = filter (> 0) $ selectRows uniqueRowsIdxVec groupsMatrix

Figure 4.10: 2-dimensional key operator

key :: (Shape sh, Shape sh', Elt k, Elt v, Elt r)
=> (Acc (Array sh k) -> Acc (Array sh' v) -> Acc (Array sh' r))
-> Acc (Array (sh :. Int) k)
-> Acc (Array (sh' :. Int) v)
-> Acc (Array (sh' :. Int) r, Vector Int)

key f keys vals = undefined

Figure 4.11: N-dimensional key operator signature
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Evaluation and Discussion

5.1 Measuring Performance

To measure the performance of the system, I used a popular Haskell

library for benchmarks Criterion1. It allows a simple but powerful way to

measure efficiency of code.

To compare an array-based implementation, I implemented Functorand

Foldableinstances of a tree using recursion, which allowed to easily manipu-

late a tree and create recursive analogs of accelerate-based operations. The

implementation is mentioned in chapter 4.

Using instances, I created a simple recursive algorithm for finding closest

focus ancestor. See the implementation in fig. 5.1

Finally, I needed a large enough data sample to avoid statistical errors.

Therefore, I implemented a simple function which, given a number of levels,

creates a simple tree of sum expressions. See the implementation in fig. 5.2.
1https://hackage.haskell.org/package/criterion

https://hackage.haskell.org/package/criterion
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findAncestorsOfTypeRec :: AST -> [Char] -> [(ASTNode, ASTNode)]
findAncestorsOfTypeRec tree targetType =

let root = treeRoot tree
in findClosestAncestors tree root [(root, root)]
where

findClosestAncestors (Tree root []) _ res = res
findClosestAncestors node@(Tree root children) currClosest res

= mconcat [
newRes,
mconcat $ map (\node -> findClosestAncestors node newClosest []) children

]
where

newClosest = if nodeType root == targetType then root else currClosest
newRes = res ++ zip (map treeRoot children) (repeat newClosest)

Figure 5.1: Recursive algorithm for finding closest ancestors

buildNLevelAST :: Int -> Int -> AST
buildNLevelAST width n

| n <= 0 = astLeafNode "Num" "42"
| otherwise =

Tree (ASTNode "Expr" "")
[

Tree (ASTNode "Op" "+")
(replicate width (buildNLevelAST width (n - 2)))

]

Figure 5.2: Simple tree generation
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5.2 Comparison

5.2.1 Interface

One of the goals of this research was to create a purely-functional Haskell

interface to array-based computations. The implementation proposed by A.

Hsu [1] is efficient and important to the development of compilers, but it has a

problem: the programming language that the author uses, APL2, while efficient

and concise, is not general purpose, and hard to understand for those who have

not worked with it. The language uses a large variety of characters to represent

operations. This might impose a negative effect on the true appreciation of his

findings.

Therefore, in my code I tried to amend this problem by providing a solu-

tion which uses a more readable and general purpose programming language,

Haskell, as well as providing a purely-functional interface to all operations. As

a result, one needs to simply define or provide an AST to use any of the defined

functions as easily as writing a pure Haskell code.

5.2.2 Performance

As mentioned above, I have created benchmarks for testing accelerate

implementation against a recursive one. Unfortunately, the accelerate imple-

mentation is much less efficient than the recursive one. Benchmarks show the

recursive implementation to be a factor of 1000 times more efficient (16 ms.

against 14 ns.). But this does not mean that the approach itself is wrong.

There are multiple reasons for the lack of efficiency, such as
2https://www.dyalog.com/what-is-dyalog.htm
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• Lack of time and knowledge on my part led to inefficient implementation

of various functions

• Accelerate documentation does not mention efficiency of the functions, so

there may be some functions which are more efficient, and some functions

which should not be used, or used as less as possible

• I benchmark finding closest focus ancestors, and not the key operator,

which might prove to be more efficient in accelerate than in recursive

implementation

5.3 Future work

As mentioned above, the current results do not necessarily signify the

unfitness of this approach for Accelerate or Haskell. On the contrary, it opens

up a big room for optimizations and improvements to the current code.

For example, one might want to measure each accelerate function, and

make a conclusion about their efficiency. Another option is to implement most

crucial functions, such as selectRowor innerProductnatively in C++ or even in

LLVM instruction code.

Another possible research direction is to generalize current functions and

implement additional ones to provide, ideally, a library of parallel computations

in pure Haskell.

Overall, if current toolset is both optimised and expanded with new func-

tions, it could become an important step towards library for parallel compiler

in pure Haskell.
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Conclusion

In the course of my research I have successfully implemented the novel

approach to parallel compilation in Haskell. This approach, originally suggested

by A. Hsu [1], focuses on eliminating recursion and branching in the compilation

process to allow for concurrent execution of various compilation steps on multi-

core CPU or GPU.

In his research, Hsu proposes an array-based approach for an AST and

implements it in APL, Array Programming Language. He describes a series of

steps which allow group the nodes in the tree by the closest ancestor of a chosen

type, e.g. Expr. Selecting different types allows to accomplish several crucial

compilation steps, namely expression flattening, function lifting, and constant

folding.

Unfortunately, Hsu’s findings might not be appreciated enough, since he

uses an unpopular and hard to understand language, APL. Therefore, in my

implementation I focused not only on replicating his result, but also on provid-

ing a purely functional, declarative-style interface for various general and spe-

cific operations. For example, I implemented such functions as inner_product,
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select_rows, and grouping part of 2-dimensional key operator. Therefore, while

the implementation is oriented towards parallel compilers, it could be used for

other applications.

Unfortunately, the implementation turned out to be inefficient compared

to recursive approach. But this does not mean the general ineffectiveness of

this approach, and should not discourage further research on this topic.

There are multiple areas of improvement for future researches. Firstly,

one could optimize the existing functions by using Accelerate more efficiently,

or even implementing some crucial functions as native ones. Another research

goal is to add other general functions to the system, with the end goal of

creating a library of with various array operators and functions, found in APL

or similar array programming languages, with purely functional, easy-to-use

Haskell interface.
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