
Implementation of a DevOps environment with
pre-commits for a Java web app

Dmitry Kochetov
BS17-SE-01 student
Innopolis University

Innopolis, Russia
d.kochetov@innopolis.ru

Ramil Askarov
BS17-SNE student

Innopolis University
Innopolis, Russia

r.askarov@innopolis.ru

Roberto Chavez
BS17-SE-02 student
Innopolis University

Innopolis, Russia
r.chavez@innopolis.ru

Abstract—In nowadays software engineering, DevOps has
taken notorious importance, since with it developers and their
teams can work consistently and simultaneously on software
projects. In order to do so, many factors must be checked:
how the commit process will be executed, tests that must be
run to test changes in software, deploying the application in
a specific environment, etc. DevOps is a set of techniques that
addresses these tasks by performing them all in an effective
manner by organizing all these steps with a highly structural
implementation. DevOps environment must have a deployment
pipeline which defines all the steps from its creation to the
hands of its end user and ensures the product satisfies the
expectations. The following work describes the implementation of
a DevOps environment which can be automatically deployed on
any machine. It automatically builds, tests and deploys a Java
web app using the following open source tools: GitLab(SCV),
Jenkins(CI/CD), Artifactory(artifact repo) and Docker/Ansible
for creating different app environments such as development,
stage and production.

Index Terms—Open source software, Software design, Software
reusability, Software architecture, Software testing, Pipeline pro-
cessing, Application virtualization.

I. INTRODUCTION

The project is a deployable DevOps environment imple-
mentation which contains CI/CD tools for automating build-
ing, testing and deploying for a basic Java web app which
can perform basic math operations, i.e. it can add, subtract,
multiply and divide numbers. Although this paper assumes
that the reader already has understanding of Development and
Operations principles, we will describe what a deployment
pipeline is in order to briefly familiarize the reader with this
field. Also we will describe our general objectives, and then in
the following sections we will explain what our design consists
of, including unique provided features and the tools that we
decided to choose for the completion of this project.

A. Pipeline in Computer Science

We would like to start by mentioning what a pipeline is. A
pipeline in a Software Engineering team is a set of automated
processes that allows developers and DevOps professionals to
reliably and efficiently compile, build and deploy their code
to their production compute platforms [1]. There is no hard
and fast rule stating what a pipeline should look like and the
tools it must utilise, however the most common components of

a pipeline are: build automation, continuous integration, test
automation and deployment automation.

A DevOps environment generally consists of a set of tools
which are normally broken down into the following categories:

• Source Control
• Build tools
• Containerisation
• Configuration Management
• Monitoring
The key objective of a software delivery pipeline is automa-

tion with no manual steps or changes required in or between
any steps of the pipeline. Human error can and does occur
when carrying out boring and repetitive tasks manually and
ultimately does affect the ability to meet requirements and
produce quality software.

B. Deployment pipeline

A Deployment pipeline is the process of taking code from
version control and making it readily available to users of
your application in an automated fashion. When a team of
developers are working on projects or features they need a
reliable and efficient way to build, test and deploy their work.
Historically, this would have been a manual process involving
lots of communication and a lot of human error. The stages
of a typical deployment pipeline are shown in Fig.1 are as
follows [2].

• Version Control: Software developers working on their
code generally commit their changes into source control
(e.g. github). When a commit to source control is made
a the first stage of the deployment pipeline is started
which triggers the code compilation, unit tests and code
analysis. If all of these steps complete successfully the
executable files are assembled into binaries and stored
into an artefact repository for later use.

• Acceptance Tests: Acceptance testing is a process of
running a series of tests over compiled code to test against
the predefined acceptance criteria set by the business.

• Independent Deployment: An independent deployment
is the process of deploying the compiled and tested
artefacts onto development environments. Development
environments should be a carbon copy of production



Fig. 1. General Operations diagram in a deployment pipeline.

environments or very similar at worst. This allows the
software to be functionally tested on production like
infrastructure ready for any further automated or manual
testing.

• Production Deployment: Also called releasing. This pro-
cess is normally handed by the Operations or DevOps
team. This should be a very similar process to indepen-
dent deployments and should deliver the code to live
production servers. Typically this process would involve
either deployments or releases to allow for zero down
time deployments and easy version roll backs in the event
of unpredicted issues.

C. Project Objectives

So far we have seen what a Pipeline in Computer Science is
and how we can use it to perform the deployment of a software
product. But how can we actually apply this theory to a real
software? This methodology has been broadly implemented in
software products development, and the purpose of this paper
is to answer this question by implementing this deployment
technique so that it can be of contribution for those embarking
in the branch of Development and Operations. There are
several ways to implement the pipeline of a deployment, some
of them using an extensive set of tools and working with
vast amounts of developers at the same time. However, most
of them follow the general structure which was previously
presented in this document. An example of such implemen-
tations can be found in the Tech Beacon technologies site,
where the authors present a clear explanation of how to apply
a deployment pipeline; and moreover, they indicate what tools
can be used to carry out this process [3]. Our design will be
based partially on the indications stated by Tech Beacon and
also on the general structure of a deployment pipeline.

D. Project Considerations

Once that we understand how the general solution of
our problem will be, we establish some considerations and
limitations for the project implementation:

• The Integration server installation must be fully auto-
mated

• Split the pipeline into several stages each of them respon-
sible for one task, following the general structure

• One limitation to consider is the computational power and
requirements that the machines running this pipeline must
have in order not to experience problems. Equipment and
environment specifications are discussed in detail in the
section ”IV. Discussion - Equipment and Environment
specifications” of this document.

• The deployment will incorporate some unique features,
such as precommits [4] and multiple concurrent stage
servers, which will also be explained in the section ”IV.
Discussion - Unique features of this implementation”.

Having established the general goals for this project and some
particular considerations, we will describe our methods to
achieve them.

II. METHODS

In this section we will discuss about the tools used to carry
out the solution of the project. We will also be explaining
the procedures that were taken in order to implement the
deployment pipeline and how the tools were used.

A. Project tools

There are quite a few DevOps tools that can execute
different parts of the pipeline. For example, for the first
stage of the pipeline, the commit stage, where the code
must be fetched from a Version Control System (VCS), tools
like GitHub or GitLab can be used. For further processes
there are other technologies that can be used according the
Operating system requirements and specific features of the
pipeline. For example, Jenkins is an open-source automation
server in which the central build and continuous integration
process take place. It is a self-contained Java-based program
with packages for Windows, macOS, and other Unix-like
operating systems. With hundreds of plugins available, Jenkins
supports building, deploying, and automating for software
development projects [5]. Kubernetes is another example of
a powerful tool in DevOps, since it is an open-source sys-
tem for automating deployment, scaling, and management of
containerized applications [6]. In fact, there are lots of tools
that the development engineers can make use of. We leave
to the reader’s curiosity and learning to look further into the
properties and characteristics of this wide range of DevOps
tools. Here we will describe only those tools that were used
to implement this project.

1) Version Control System: For the first stage of our project
we decided to work with GitLab, an open source code
repository and collaborative development platform [7]. GitLab
offers a location for online code storage and collaborative
development of massive software projects. The repository in-
cludes version control to enable hosting different development
chains and versions, allowing users to inspect previous code
and roll back to it in the event of unforeseen problems. The



platform can be considered as competitor to GitHub, and as
GitLab is developed on the same Git basis of version control,
it functions very similarly. Some of GitLab’s features include:

• Lightweight Directory Access Protocol integration [8].
• Community edition is open source (unlike GitHub).
• Pretty UI.
• Built in Web IDE.
• Commits can be tagged, it will be used for marking

released versions.
Particularly, we work with GitLab because this version

control system is the most suitable for our purposes, since
it has support for many DevOps development tools, such as
webhooks, integration with error tracking tools such as Sentry
(an application Monitoring and Error Tracking Software), also
logging, monitoring, and much more. Moreover, this system
has even an auto DevOps function and its own CI/CD support
but we preferred Jenkins to use in the project as CI/CD to get
more experience of different tools.

2) Continuous Integration and continuous Delivery
(CI/CD): Continuous integration is a coding philosophy and
set of practices that drive development teams to implement
small changes and check in code to version control
repositories frequently. Because most modern applications
require developing code in different platforms and tools,
the team needs a mechanism to integrate and validate its
changes. On the other hand, Continuous Delivery automates
the delivery of applications to selected infrastructure
environments. Most teams work with multiple environments
other than the production, such as development and testing
environments, and CD ensures there is an automated way to
push code changes to them [9].

Therefore, we chose to work with Jenkins to implement
this part of the project. Earlier in this document we already
mentioned in short what Jenkins is. Here we would like to
add that Jenkins has managed to establish well in the field of
CI/CD since 2011 [10]. The assembly of the project is quite
simple and intuitively configured via the web interface, but
since it was required to make the deploying of the Integration
server automated, it was spent a lot of hours to configure Jenk-
ins through command line. A lot of settings allow developers
to set up the pipeline for the needs of each project. We would
also like to note that the assembly can be launched in various
ways, for example, by the event of committing changes in the
version control system, by schedule, by request to a specific
URL, after completing another assembly in the queue, which
allows developers to organize the deployment of even a very
large project. Moreover, the advantages of this tool include a
large number of available plug-ins, which very well expand
its functionality.

3) Configuration Management (CM): Configuration man-
agement is a process for maintaining computer systems,
servers, and software in a desired, consistent state. It’s a way
to make sure that a system performs as it’s expected to as
changes are made over time [11].

Configuration management also prevents small or large
changes in a project from going undocumented. Without
configuration management, we could end up not knowing what
is on a server or what software updates were executed, which
would make it hard to manage and maintain.

That is why implement CM in this project, and for this part
we will use Ansible. Ansible is a technology that allows us to
describe the environments we need by using simple yaml files
in their structure [12]. Also, Ansible differs from other tools
with the same functionality in its simplicity and in that it does
not need to install an agent/client on target systems. Using
this tool avoids the huge amount of written bash scripts and
concentrates on the goal by writing human readable commands
in YAML format. Moreover, this will allow us to deploy a
necessary environment on any system with just a couple of
commands, as well as facilitate the scaling of the current
system. We use Ansible for both provisioning the Integration
server itself and for provisioning Docker containers with tools
for testing or running our app.

4) Artifact repository: We would like to start by defining
what an Artifat repository is. An artifact repository can be
thought of as a manager that controls end-to-end artifact
lifecycle and supports different software package management
systems while providing consistency to the CI/CD workflow
[13]. An artifact repository is both, a source for artifacts
needed for a build, and a target to deploy artifacts generated
in the build process. Since we must build binaries only once
to avoid related errors, the artifact repository is the best place
to store and retrieve them. The DevOps artifact repository is
crucial for the software development process, and that is why
we also use it in our project. JFrog Artifactory’s universal
artifact repository manager is one of the most popular at the
moment and has managed to establish itself as an excellent
tool. This repository has many integrations with CI/CD tools
including Jenkins. Moreover, this repository has support for
most binaries of different languages, which makes this tool
universal. There is also support for many plugins that extend
the functionality [14].

5) Virtualization: Service virtualization is the process of
simulating the behavior of select components within an ap-
plication to enable end-to-end testing of the application as a
whole. Application development teams can use virtual services
for emulating production or real services to conduct integration
testing earlier in the development process [15].

For virtualization of the DevOps environment in this project
we use Vagrant with VirtualBox as a provider. Vagrant is a
tool for building and managing virtual machine environments
in a single workflow. With an easy-to-use workflow and focus
on automation, Vagrant lowers development environment setup
time, increases production parity, and makes the ”works on my
machine” excuse a relic of the past [16].

Vagrant allows to very clearly and intuitively run images
of virtual machines using just one file. In our project we
used it for launching the integration server. Another tool
that we utilize for the virtualization process in our project



is Docker. Docker is software for automating the deployment
and management of applications in environments that support
containerization. Allows you to ”pack” the application with
all its surroundings and dependencies in a container that can
be ported to any Linux-system [17].

In our system, each individual component is wrapped in a
docker container, which allows us to isolate each application
well from each other. Initially we wanted to use Virtualisation
for our application servers but since these servers are inside the
DevOps environment and VirtualBox does not support nested
Virtualization, we moved to Containerization with Docker
which even benefited us because of flexibility and decreased
time of launching new containers.

6) Testing: Software testing in the DevOps world requires
an automated test process that provides feedback at every
checkpoint. Unit and Integration testing is needed on the
build server to make sure the basic functionality works before
proceeding to more time consuming tests. Functional testing,
regression testing and more are needed on the test server [18].

• For the Unit and Integration testing we use JUnit, a
library for testing JAVA applications [19]. In our case
this tool will be necessary to test the backend part of our
deploying project. With integration of Selenium, which
is a tool for the automation of web browser actions [20],
JUnit makes tests of frontend part ensuring that all the
buttons execute what they are supposed to do.

• One of the important metrics of good code is test cover-
age. It measures how many lines of our code are executed
during automated tests. We use JaCoCo to create code
coverage reports for the project and if the coverage is less
that a certain limit the pipeline fails.

• The last testing tool is PIT which provides mutation
testing reports that can tell about quality of Unit tests.
The tool creates copies of the code with slight changes
like negated conditions that must force to fail the Unit
test which cover this part of code. If it does not fail, it’s
a useful indication for developers that the automated test
must be reworked.

B. Project Architecture

1) Implementation of the Integration Server:
• Gitlab: An instance of Gitlab is deployed, with a pre-

created user (which parameters can be configured in the
configuration files) and the first repository is, in fact,
our project. We have access to this instance with the
development environment on the developer’s device and
the development environment inside the integration server
using the http protocol. Gitlab itself is also able to access
the Jenkins services via set up webhooks.

• Artifactory: It is used to store candidates for the release.
Jenkins deploys a specified artifact on the production
environment.

• Jenkins: A Jenkins instance that receives webhooks from
Gitlab and then takes the Jenkins file to launch the
pipeline. Jenkins also creates a runner for each branch of

the repository with the ”ready/*” mask, which contributes
to the scalability of the integration server because there
can be multiple such runners simultaneously. In addition
to these runners, Jenkins has another, for the master
branch, to deploy production environment.

• Ansible and Vagrant allow you to automate the deploy-
ment of the integration server so that it can be run on
any machine without unnecessary actions

Fig. 2. High level architecture and tools for the Integration Server

2) Implementation of the Environments: We explain now
how we develop the workflow of this process.

• Development Environment: The development environ-
ment is used for the active development of new features
or fixes, it is deployed on the device of the developer
himself, if necessary, have access to each other using
ssh or http, for debugging. In Integration server this
environment is used on ”ready/*” branches for building
and unit testing, this process starts when a push to the
branch with the ready mask occurs.

• Staging Environment: In this environment, a candidate
undergoes acceptance and manual tests. If everything is
successful the developer can move on and submit the
changes to the master branch which is done in automated
way in Jenkins, also the artifact will be pushed to Arti-
factory. Otherwise the developer will add new commits
to the same branch to fix the issue.

• Production Environment: If the previous step was suc-
cessful, it means the master master branch was updated
with quality and tested code. With the help of Jenkins,
the production environment is configured, and will pull
the last artifact from the repository updating the version
in production.

Fig.2 shows the design of architecture with used tools and
how they are connected inside the Integration Server. Fig.3-5
show in what stages our tools are precisely used.

Up to this point, we have described the implementation of
our pipeline and the tools that we used to deploy it. In the
next sections we now will present the results that we obtained
when deploying the system.

III. RESULTS

Now we will discuss about what we have achieved when
implementing our pipeline with the architecture that we de-



Fig. 3. Pipeline stages (1)

Fig. 4. Pipeline stages (2)

signed.

A. Functional Requirements

Functional requirements refer to the technical side of a
software project. After our implementation, we accomplished
the goals described below.

• The Code is the same during different stages.
• Different environments serve different purposes: The De-

velopment environment is for building and testing, stage
for manual testing and production will be accessible by
the end user.

• Code produced by one team can be integrated with code
produced by other teams: Developers must pull changes
from master otherwise their branch wont be accepted
because it cannot be merged into master in a fast-forward
way.

• Team members can work on different versions of the
project and have build/stage environments for each
version concurrently. Our architecture allows multiple
ready/some-name branches where Devs can push and test
their changes in a special remote environment assigned
for their branch.

• Rollback option: If it appears that a bug squeezed through
tests somehow, we can deploy an old working version.

B. Non-Functional Requirements

Non-functional requirements refer to the criteria that can
be used to judge the operation of a system. In our project, we

Fig. 5. Pipeline stages (3)

accomplished the next requirements:
• Achieved reliability in our project. This means that only

tested code of a release candidate can be pushed to master
by Jenkins. Thus, master branch is never broken

• Achieved good performance of deploying process. Us-
ing automated build scripts and test cases significantly
reduces the cycle time. Project can be deployed on big
mainframes

• Achieved efficiency by parallel running of Jenkins execu-
tors.

• Achieved maintainability - using configuration file set-
tings changes easily

• Achieved scalability - Number of Jenkins executors can
be increased easily

C. Processes

1) Build Process: It starts only after pushing to “ready/*”
branches. It is completely automated with Maven, JUnit and
other testing tools. The Build process also builds the .war can-
didate only once and takes less than 4 minutes for launching
environments, building and testing.

2) Deployment Process: After a successful build, it deploys
to the stage environment for manual testing. If the branch is
accepted by user, the candidate is pushed to the Artifactory.
This process takes less than 1.5 minutes for launching the
stage environment.

3) Release Process: It starts only after pushing to “master”
branch. It fetches the candidate from Artifactory. Overall, this
process takes less than 1.5 minutes for launching production
environment.

4) Rollback: It starts only after reloading a “master” branch
pipeline with the corresponding tag. It fetches the candidate
with the corresponding tag from Artifactory. The process takes
less than 1.5 minutes for launching production environment
again.

IV. DISCUSSION

Now, we would like to discuss some factors that we ex-
perience during our work and also mention some technical
considerations that must be taken into account to deploy the
pipeline.



A. Initial Architecture and its posterior update

Initially the first architecture was relying on paid cloud
services and deployment of the Integration server was not au-
tomated. After discussing with our supervisor, these problems
were eliminated.

B. Problems during Development

As in any other project, teams experience difficulties, and
it was not different in our case. First of all, at the beginning
we had little to none previous experience with the tools. But
this scenario was also a great opportunity to learn how to use
them.

Secondly, as a group of 3 people it was hard to quickly
make decisions and distribute tasks. It is necessary for a team
to keep continuous communication but more importantly to be
able to come to agreements in the shortest possible time.

Also, some things cannot be automated with and API or
configuration files, therefore we had to use Selenium, and
Jenkins plugins sometimes are not customizable enough.

C. Equipment and Environment specifications

1) Equipment Requirements: The computer for the Integra-
tion server must have at least 14GB of RAM and 40GB of hard
drive memory in order to operate effectively.

2) Environment Requirements: The machine running In-
tegration server must have installed only Python, Vagrant,
Ansible and VirtualBox of versions specified in readme.txt
file.

D. Unique features of this implementation

• The integration server can be deployed with one com-
mand.

• Because the system is modular, changing particular tool
or adding new ones is simple.

• Precommit technique allows us to keep master branch
always green, enforcing CI principles and not allowing
the code which has not passed the tests to be merged by
mistake.

• The architecture allows a few developers to build and
test their versions of the app on the Integration server
simultaneously.

E. Limitations in our Design

• Since the dev/stage environments are built each time from
scratch, it takes time up to a few minutes to see the results
of a pipeline.

• Everything including production server is inside Integra-
tion server, it introduces a Single point of failure. The
system design must be distributed and replicated.

F. Further research

• Adding more different test suits to cover different cases
of bug occurrence.

• Adding a caching layer for the Integration server to
reduce time of dependency downloading.

V. CONCLUSIONS

The whole process of implementing a pipeline deployment
is a journey which can be unknown and even terrifying for
some fresh developers who are embarking in the world of
DevOps. And that was in fact the case for us, the authors
of this project. Some of us did not even know what DevOps
means, but we can certainly assure that our experience and
learning throughout the design and production of this pipeline
has improved and grown in such a way that we will be able
to perform well in the industry where DevOps engineering is
required. And so we hope for the reader to experience the
same results after reading and studying this paper. Finally,
we would like to establish some conclusions on the technical
and non-technical sides that we observed during and after the
execution of this project.

A. Conclusions on the design

• According to the articles and books we read, precommit
technique is not so common but we are convinced it helps
developers who want to test their code by doing it outside
of their computer, at the same time not disturbing other
developers by ruining a common remote branch.

• Multiple dev/stage servers running in parallel eliminate
time waiting in the queue, thus accelerating development
speed.

B. Conclusions on the results

• Automating processes is not fun but the result can save
a ton of time, we experienced it ourselves.

• DevOps techniques must be applied in every team devel-
oping software, even it’s costly to change and get used
to them, in a long run they benefit significantly in terms
of speed and quality.

ACKNOWLEDGMENTS

We would like to thank professor Alfredo Capozucca from
Innopolis University, for teaching us the fundamentals of De-
vOps and review our work so that it can be well implemented.
Also special thanks to Dmitry Kochetov, co-author of this
document, who took on the leading role for the successful
implementation and completion of the project.

REFERENCES

[1] B. Son, “A beginner’s guide to building devops pipelines with open
source tools.” [Online]. Available: https://opensource.com/article/19/4/
devops-pipeline

[2] J. Humble and D. Farley, “Continuous delivery: Anatomy of the
deployment pipeline.” [Online]. Available: https://www.informit.com/
articles/article.aspx?p=1621865

[3] R. Wilsenach, “How to set up your first deployment pipeline,” Jan 2019.
[Online]. Available: https://techbeacon.com/app-dev-testing/running-
gauntlet-setting-your-first-deployment-pipeline

[4] L. Kruse, “To branch or not to branch...” May 2015. [Online].
Available: http://www.josra.org/blog/to-branch-or-not-to-branch.html

[5] Saurabh, “What is jenkins?: Jenkins for continuous integration,” May
2019. [Online]. Available: https://www.edureka.co/blog/what-is-jenkins/

[6] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, 2015, pp. 167–167.

[7] G. Fedoseev, A. Degtyarev, O. Iakushkina, and V. Korkhov, “A contin-
uous integration system for mpd root: Deployment and setup in gitlab,”
Saint-Petersburg State University, pp. 525–529, 2016.

https://opensource.com/article/19/4/devops-pipeline
https://opensource.com/article/19/4/devops-pipeline
https://www.informit.com/articles/article.aspx?p=1621865
https://www.informit.com/articles/article.aspx?p=1621865
https://techbeacon.com/app-dev-testing/running-gauntlet-setting-your-first-deployment-pipeline
https://techbeacon.com/app-dev-testing/running-gauntlet-setting-your-first-deployment-pipeline
http://www.josra.org/blog/to-branch-or-not-to-branch.html
https://www.edureka.co/blog/what-is-jenkins/


[8] M. Rouse, “What is ldap (lightweight directory access protocol)?” Nov
2019. [Online]. Available: https://searchmobilecomputing.techtarget.
com/definition/LDAP

[9] I. Sacolick, “What is ci/cd? continuous integration
and continuous delivery explained,” Jan 2020. [On-
line]. Available: https://www.infoworld.com/article/3271126/what-is-
cicd-continuous-integration-and-continuous-delivery-explained.html

[10] “Jenkins official website.” [Online]. Available: https://www.jenkins.io/
[11] “Red hat - we make open source technologies for the enterprise. what

is configuration management?” [Online]. Available: https://www.redhat.
com/en/topics/automation/what-is-configuration-management

[12] M. Mohaan and R. Raithatha, Learning Ansible. Packt Publishing Ltd,
2014.

[13] Mohamad and M. Masarwa, “What is an artifact repository?” Apr
2019. [Online]. Available: https://jfrog.com/knowledge-base/what-is-
an-artifact-repository/

[14] “Universal artifact management for devops acceleration. official jfrog
website.” [Online]. Available: https://jfrog.com/

[15] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee
Software, vol. 33, no. 3, pp. 94–100, 2016.

[16] M. Hashimoto, Vagrant: up and running: create and manage virtualized
development environments. ” O’Reilly Media, Inc.”, 2013.

[17] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32,
no. 3, pp. 102–c3, 2015.

[18] “Devops and software testing. test.io website.” [Online]. Available:
https://test.io/devops/

[19] E. Gamma and K. Beck, “Junit,” 2006.
[20] P. Watson, “Advanced selenium in java: With examples,” 2016.

SUPPLEMENTARY MATERIAL

As supplementary Material, we place the links of the project
implementation for the reader’s research and learning.

• DevOps environment (GitHub) http://tiny.cc/jsw5oz
• The Java web app (GitHub) http://tiny.cc/00w5oz
• Presentation slides (GoogleSlides) http://tiny.cc/9pw5oz

https://searchmobilecomputing.techtarget.com/definition/LDAP
https://searchmobilecomputing.techtarget.com/definition/LDAP
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.jenkins.io/
https://www.redhat.com/en/topics/automation/what-is-configuration-management
https://www.redhat.com/en/topics/automation/what-is-configuration-management
https://jfrog.com/knowledge-base/what-is-an-artifact-repository/
https://jfrog.com/knowledge-base/what-is-an-artifact-repository/
https://jfrog.com/
https://test.io/devops/
http://tiny.cc/jsw5oz
http://tiny.cc/00w5oz
http://tiny.cc/9pw5oz

	Introduction
	Pipeline in Computer Science
	Deployment pipeline
	Project Objectives
	Project Considerations

	Methods
	Project tools
	Version Control System
	Continuous Integration and continuous Delivery (CI/CD)
	Configuration Management (CM)
	Artifact repository
	Virtualization
	Testing

	Project Architecture
	Implementation of the Integration Server
	Implementation of the Environments


	Results
	Functional Requirements
	Non-Functional Requirements
	Processes
	Build Process
	Deployment Process
	Release Process
	Rollback


	Discussion
	Initial Architecture and its posterior update
	Problems during Development
	Equipment and Environment specifications
	Equipment Requirements
	Environment Requirements

	Unique features of this implementation
	Limitations in our Design
	Further research

	Conclusions
	Conclusions on the design
	Conclusions on the results

	References

