Единая теория эволюции: Дарвин плюс Ламарк

0   46   0

Биология
9 янв. 13:00


5872d7af5f1be7700d517edd

В 1850-х, когда Дарвин описал механизм естественного отбора, еще не было известно о лежащих в его основе молекулярных механизмах. Но достижения в области генетики и молекулярной биологии обозначили основные принципы эволюции: последовательности ДНК мутируют случайным образом. А размножаются и доминируют те организмы, чьи ДНК лучше всего приспособлены к окружающей среде.

Большая часть современной биологии основана на теории Чарльза Дарвина (Charles Darwin) об эволюции как процессе естественного отбора, когда природа выбирает сильнейшие и наиболее приспособленные к условиям обитания организмы для размножения, увеличения популяции и выживания. Этот процесс также называется адаптацией, и адаптивными считаются те черты, которые лучше прочих помогают выживанию организма. С изменением и укоренением новых модификаций организмов появляются и развиваются виды. В 1850-х, когда Дарвин описал двигатель естественного отбора, еще не было известно о лежащих в его основе молекулярных механизмах. Но достижения в области генетики и молекулярной биологии последнего столетия обозначили основные принципы современной неодарвинистской теории о том, как действует эволюция: последовательности ДНК мутируют случайным образом, и размножаются и доминируют те организмы, чьи ДНК лучше всего приспособлены к окружающей среде. Эти виды преобладают, пока условия окружающей среды не начинают меняться, и двигатель эволюции не запускается вновь.

Но если предположить, что и другие молекулярные механизмы играют свою роль в развитии видов, то это объяснение эволюции оказывается неполным. Проблема теории Дарвина заключается в том, что пока виды вырабатывают более адаптивные свойства (которые в биологии называются фенотипами), скорость возникновения случайных мутаций в последовательностях ДНК оказывается слишком мала, чтобы ей можно было объяснить многие из наблюдаемых изменений. Хорошо осведомленные об этой проблеме ученые предлагают целый ряд компенсаторных генетических механизмов: дрейф генов, когда серьезные генетические изменения происходят внутри небольшой группы организмов, или эпистаз, когда один набор генов подавляет другой. И это только два из множества примеров.

Но даже учитывая подобные механизмы, уровень генетических мутаций среди сложных организмов, таких как человек, значительно ниже, чем частота изменений в ряду признаков от регуляции обмена веществ до сопротивляемости болезням. Быстрое проявление разнообразия признаков сложно объяснить только методами классической генетики и неодарвинистской теории. Цитируя выдающегося биолога-эволюциониста Джонатана Б. Л. Барда (Jonathan B L Bard), перефразировавшего Т. С. Элиота (T S Eliot): «Между фенотипом и генотипом упала тень».

Проблемные моменты теории Дарвина выходят за пределы теории эволюции и простираются в другие области биологии и биомедицины. Например, если наши черты определяются наследственностью, то почему у идентичных близнецов с одной и той же совокупностью генов, как правило, бывают разные заболевания? И почему лишь малое число (часто менее 1%) страдающих конкретными болезнями имеют общие генетические мутации? Если скорость мутаций случайна и равномерна, то почему доля многих заболеваний выросла в десятки раз всего за пару десятилетий? Почему сотни типов загрязнений окружающей среды меняют обстоятельства дебюта болезней, но не последовательности ДНК заболевших? В эволюции и биомедицине скорость формирования отклонений от фенотипических признаков гораздо выше, чем скорость генетических изменений и мутаций, но почему?

Некоторые ответы можно найти в идеях Жана Батиста Ламарка (Jean-Baptiste Lamarck), обнародованных за 50 лет до публикации работ Дарвина. Теория Ламарка, давно отправленная на свалку истории, помимо прочего, утверждала, что «окружающая среда видоизменяет свойства, которые затем наследуются новыми поколениями». Ламарк был профессором зоологии беспозвоночных в Национальном музее естественной истории в Париже, и в конце XVIII — начале XIX века он изучил множество организмов, включая насекомых и червей. Это он ввел в научный лексикон слова «биология» и «беспозвоночные», также он был автором нескольких книг о биологии, беспозвоночных и эволюции. Несмотря на выдающуюся научную карьеру, Ламарка с его богохульными эволюционными идеями отрицали многие современники, так же как и ученые в последующие 200 лет.

Изначально Ламарка осуждали как религиозного еретика, а в наше время его имя вспоминают не иначе, чем в шутку, из-за консерватизма науки, и в особенности неприкосновенной теории эволюции Дарвина. В конце научного пути Ламарк и сам поменял свои убеждения: даже без подтверждений из области молекулярной биологии он видел, что случайные изменения не могут стать полноправным доказательством его теории.

Вопрос заключается в следующем: если на генетические мутации воздействует не только естественный отбор, то каковы молекулярные силы, формирующие полный набор изменений в признаках, необходимых, чтобы завершить работу естественного отбора? Один из ключей к разгадке был найден почти через столетие после того, как Дарвин представил свою теорию. В 1953 году, когда Джеймс Уотсон (James Watson) и Фрэнсис Крик (Francis Crick) распутывали тайны ДНК и двойной спирали, эволюционный биолог Конрад Уоддингтон (Conrad Waddington) из Эдинбургского университета сообщил, что внешние химические раздражители или изменения температуры во время эмбрионального развития могут стать причиной появления различных вариантов строения крыла у дрозофил. Изменения, которые действия ученого вызвали у организмов одного поколения, впоследствии передались потомству. Чтобы объяснить этот механизм быстрых изменений, Уоддингтон ввел в обращение современный термин «эпигенетика». Следует отметить, что Уоддингтон осознавал, какое значение его открытие может иметь для теории эволюции, еще прежде, чем Уотсон и Крик вывели данные о структуре ДНК. Изменения строения крыльев одного поколения дрозофил подтверждали первоначальные идеи еретика Ламарка. Оказалось, что окружающая среда способна напрямую влиять на признаки организма.

Хотя Уоддингтон и описал общую роль эпигенетики, о молекулярных элементах и механизмах он знал не больше, чем Дарвин или Ламарк. Но чем глубже молекулярная биология декодирует систему функционирования жизни, тем большим смыслом наполняются концепции Уоддингтона — и Ламарка. Действительно, подавляющее большинство факторов окружающей среды не могут напрямую влиять на молекулярную последовательность ДНК, но они регулируют множество эпигенетических механизмов, управляющих функциями ДНК: запускают или гасят экспрессию генов, диктуют способы экспрессии в клетках белков — продукта наших генов.

Сегодня существует точное определение эпигенетики — это совокупность молекулярных факторов, определяющих, как функционирует ДНК и какие гены проявляются, независимо от самой последовательности ДНК. Эпигенетика включает в себя ряд молекулярных процессов, существенно влияющих на активность генома без изменения последовательности ДНК в самих генах.

Один из наиболее распространенных процессов такого типа — метилирование ДНК, когда к ДНК присоединяются молекулярные компоненты, называемые метильными группами (состоящими из метана), которые включают и выключают гены, а также регулируют уровень генной экспрессии. Было показано, что факторы среды, такие как температура и эмоциональный стресс, могут изменять ход метилирования ДНК, и изменения могут стать частью постоянной программы и начать передаваться по наследству последующим поколениям. Этот процесс известен как эпигенетическое наследование.

Еще один важный эпигенетический процесс, обнаруженный в последние годы, — модификация гистонов. Гистоны — это белки, которые присоединяются к ДНК и изменяют ее структуру, а ДНК, в свою очередь, обвивается вокруг гистонов, подобно бусинам на нитке. Сочетание ДНК и гистонов называется хроматиновыми структурами, а спирали, петли и жгуты в хроматине — это ответ на стресс, полученный в результате воздействия окружающей среды и способный навсегда изменить экспрессию генов.

Совсем недавно ученые задокументировали процесс метилирования РНК, при котором метиловые группы присоединяются к вспомогательным молекулам, изменяя экспрессию генов и продуцирование белка у последующих поколений. Кроме того, действие так называемых некодирующих РНК — малых молекул РНК, которые связываются с ДНК, РНК и белками, также изменяет экспрессию генов вне зависимости от последовательности ДНК.

Все эти механизмы эпигенетики имеют критическое значение и играют важную роль в молекулярной регуляции функций ДНК. Из этого следует, что нормы биологии никогда не строятся только на генетических или только на эпигенетических процессах. Напротив, процессы генетики и эпигенетики переплетаются. Один не работает без другого.

По законам эпигенетики, чтобы изменение могло оказать влияние на эволюцию, оно должно быть унаследовано последующими поколениями в виде последовательностей ДНК или генных мутаций. Но эпигенетическое наследование не соотносится со многими законами Менделя, применимыми к классической генетике или неодарвинистской теории эволюции. По этим правилам, последовательности ДНК и гены функционируют разрозненно, подобно частицам: в процессе воспроизведения «частицы» от одного родителя случайным образом объединяются с парой от второго родителя, что приводит к возникновению новой последовательности ДНК и новому проявлению наследственных признаков.

Читать далее.


Автор: Майкл Скиннер (Michael Skinner)

Источник: inosmi.ru


0



Для лиц старше 18 лет