Оганесон: попасть в клеточку

0   20   0

Химия
22 янв. 19:00


587fe64a5f1be77c221ee580

Международный союз теоретической и прикладной химии (IUPAC) утвердил названия четырёх новых элементов таблицы Менделеева: 113-го, 115-го, 117-го и 118-го. Последний назван в честь российского физика, академика Юрия Оганесяна. Учёные попадали «в клеточку» и раньше: Менделеев, Эйнштейн, Бор, Резерфорд, чета Кюри… Но лишь второй раз в истории это произошло при жизни учёного. Прецедент случился в 1997 году, когда такой чести удостоился Гленн Сиборг. Юрию Оганесяну давно прочат Нобелевскую премию. Но, согласитесь, получить собственную клеточку в таблице Менделеева куда круче.

Юрий Оганесян (р. 1933)

Выпускник МИФИ, специалист в области ядерной физики, академик РАН, научный руководитель лаборатории ядерных реакций ОИЯИ. Председатель научного совета РАН по прикладной ядерной физике. Имеет почётные звания в университетах и академиях Японии, Франции, Италии, Германии и ряда других стран. Лау­реат Государственной премии СССР, кавалер орденов Трудового Красного Знамени, Дружбы народов, «За заслуги перед Отечеством» и пр.

В нижних строках таблицы вы легко найдёте уран, его атомный номер 92. Все последующие элементы начиная с 93-го — это так называемые трансура­ны. Некоторые из них появились примерно 10 миллиардов лет назад в результате ядерных реакций внутри звёзд. Следы плутония и нептуния были обнаружены в земной коре. Но большинство трансурановых элементов давно распалось, и теперь можно лишь предсказывать, какими они были, чтобы потом пытаться воссоздать в лабораторных условиях.

Первыми это сделали в 1940 году американские учёные Гленн Сиборг и Эдвин Макмиллан. Родился плутоний. Позднее группа Сиборга синтезировала америций, кюрий, берклий… К тому времени чуть ли не весь мир включился в гонку за сверхтяжёлыми ядрами.

В 1964 году новый химический элемент с атомным номером 104 впервые синтезировали в СССР, в Объединённом институте ядерных исследований (ОИЯИ), который находится в подмосковной Дубне. Позднее этот элемент получил имя «резерфордий». Руководил проектом один из основателей института Георгий Флёров. Его имя тоже вписано в таблицу: флеровий, 114. По следам тех событий классик советской журналистики Валерий Аграновский написал документальную повесть «Взятие сто четвёртого». Цитаты из неё мы приводим в тексте.

Юрий Оганесян был учеником Флёрова и одним из тех, кто синтезировал резерфордий, потом дубний и более тяжёлые элементы. Благодаря успехам советских учёных Россия вырвалась в лидеры трансурановой гонки и сохраняет этот статус до сих пор.

«Мне по наивности казалось, что каждый физик по секрету от своих коллег всё же мечтает забраться внутрь атома, чтобы собственными глазами увидеть протоны и нейтроны, собственными руками пощупать их и до конца разгадать тайну их взаимодействия и ещё выяснить, нет ли у альфа-частиц, как у ангелов, маленьких крыльев, когда они вылетают из атома».
Из повести Валерия Аграновского «Взятие сто четвёртого», 1966 г.

Как дают названия новым элементам? Научные коллективы — авторы открытий направляют свои предложения в IUPAC. Комиссия рассматривает аргументы «за» и «против», исходя из следующих правил: «…вновь открытые элементы могут быть названы: (а) по имени мифологического персонажа или понятия (включая аст­рономический объект), (б) по названию минерала или аналогичного вещества, (в) по названию населённого пункта или географической области, (г) в соответствии со свойствами элемента или (д) по имени учёного».

На этот раз названия новым элементам присваивали долго, почти год. Дата объявления решения несколько раз ото­дви­га­лась. Напряжение нарастало. Наконец 28 ноября 2016 года, по истечении пятимесячного срока для приёма предложений и возражений общественности, комиссия не нашла причин отвергнуть нихоний, московий, теннессин и оганесон и утвердила их.

Кстати, суффикс «-он-» не очень типичен для химических элементов. Для оганесона он выбран потому, что по химическим свойствам новый элемент аналогичен инертным газам — это сходство подчёркивает созвучие с неоном, аргоном, криптоном, ксеноном.

Рождение нового элемента — ­событие исторического масштаба. На сегодняш­ний день синтезированы ­элементы седьмого периода до 118-го включительно, и это не предел. Впереди 119-й, 120-й, 121-й… Изотопы элементов с атом­ными номерами более 100 зачастую живут не более тысячной доли секунды. И кажется, чем тяжелее ядро, тем короче его жизнь. Это правило действует до 113-го элемента включительно. В 1960-х годах Георгий Флёров предположил, что оно не обязано неукоснительно соблюдаться по мере углубления в таблицу. Но как это доказать? Поиск так называемых островов стабильности более 40 лет был одной из важнейших задач физики. В 2006 году коллектив учёных под руководством Юрия Оганесяна подтвердил их существование. Научный мир вздохнул с облегчением: значит, смысл искать всё более тяжёлые ядра есть.

[Кот Шрёдингера] Юрий Цолакович, что же всё-таки представляют собой острова стабильности, о которых много говорят в последнее время?

[Юрий Оганесян] Вы знаете, что ядра атомов состоят из протонов и нейтронов. Но только строго определённое количество этих «кирпичиков» связаны друг с другом в единое тело, которое представляет ядро атома. Комбинаций, которые «не срабатывают», оказывается больше. Поэтому, в принципе, наш мир находится в море нестабильности. Да, есть ядра, которые остались со времён образования Солнечной системы, они стабильны. Водород, например. Участки с такими ядрами будем называть «континентом». Он постепенно уходит в море нестабильности по мере того, как мы продвигаемся к более тяжёлым элементам. Но, оказывается, если далеко уйти от суши, возникает остров стабильности, где рождаются ядра-долгожители. Остров стабильности — это открытие, которое уже сделано, признано, но точное время жизни долгожителей на этом острове пока не предсказывается достаточно хорошо.

«Итак, что значит искусственным путём получить новый элемент? Это значит изменить количество протонов в атомном ядре уже известного элемента так, чтобы ядро изменило свой порядковый номер. Если взять, например, ядро плутония (атомный вес — 94), влить в него ядро неона (атомный вес — 10), а потом заставить выпустить четыре нейтрона, то и получится 104-й элемент».
Из повести Валерия Аграновского «Взятие сто четвёртого», 1966 г.

[КШ] Как были открыты острова стабильности?

[ЮО] Мы долго их искали. Когда ставится задача, важно, чтобы был однозначный ответ «да» или «нет». Причин нулевого результата на самом деле две: либо ты не дотянулся, либо того, что ищешь, вообще нет. У нас был «ноль» до 2000 года. Мы думали, что, может быть, теоретики и правы, когда рисуют свои красивые картины, но нам до них не дотянуться. В 90-е мы пришли к выводу, что стоит усложнить эксперимент. Это противоречило реалиям того времени: нужна была новая техника, а средств не хватало. Тем не менее к началу ХХI века мы были готовы опробовать новый подход — облучать плутоний кальцием‑48.

[КШ] Почему для вас так важен кальций-48, именно этот изотоп?

[ЮО] Он имеет восемь лишних нейтронов. А мы ­знали, что остров стабильности там, где избыток нейтронов. Поэтому тяжёлый изотоп плутония‑244 облучали кальцием‑48. В этой реакции синтезировали изотоп сверхтяжёлого элемента 114 — флеровия‑289, который ­живёт 2,7 секунды. В масштабах ядерных превращений это время считается достаточно длительным и служит доказательством того, что остров стабильности существует. Мы доплыли до него, и по мере продвижения вглубь стабильность только росла.

[КШ] Откуда бралась уверенность, что существуют острова стабильности?

[ЮО] Уверенность появилась, когда стало понятно, что ядро имеет структуру… Давно, ещё в 1928 году, наш великий соотечественник Георгий Гамов (советский и американский физик-теоретик. — «КШ») высказал предположение, что ядерное вещество похоже на каплю жидкости. Когда эту модель начали проверять, выяснилось, что она удивительно хорошо описывает глобальные свойства ядер. Но потом наша лаборатория получила результат, который коренным образом изменил эти представления. Мы выяснили, что в обычном состоянии ядро не ведёт себя подобно капле жидкости, не является аморфным телом, а имеет внутреннюю структуру. Без неё ядро существовало бы всего 10–19 секунд. Наличие же структурных свойств ядерной материи приводит к тому, что ядро живёт секунды, часы, и мы надеемся, что может жить сутки, а может быть, даже миллионы лет. Возможно, это слишком смелое предположение, но мы надеемся и ищем трансурановые элементы в природе.

[КШ] Один из самых волнующих вопросов: есть ли предел разнообразию химических элементов? Или их бесконечно много?

[ЮО] Капельная модель предсказывала, что их не более ста, — таков предел существования новых элементов. Сегодня их открыто 118. Сколько ещё может быть?.. Надо понять отличительные свойства «островных» ядер, чтобы делать прогноз для более тяжёлых. С точки зрения микроскопической теории, которая учитывает структуру ядра, мир наш не кончается за сотым элементом уходом в море нестабильности. Когда мы говорим о пределе существования атомных ядер, то должны обязательно это учитывать.

«Летом 1959 года по одной из шоссейных дорог двигалась в Москву странная процессия. Впереди на мотоциклах — два капитана милиции, а за ними тяжёлый трейлер, обычно перевозящий танки. На этот раз он тащил груз, укрытый брезентом и весящий не менее сорока тонн. В кабине машины сидел мрачный пятидесятилетний шофёр с неизменной трубкой во рту, которого грузчики называли Павликом. <…> А рядом с ним — молодой человек по имени Юрий Оганесян.
И вот однажды процессия остановилась перед мостом через речку. На знаках было написано, что сооружение выдерживает одиннадцать тонн. <…> Павлик мрачно посоветовал выйти всем из кабины, заклинить руль, включить скорость, и будь что будет. Оганесян даже не улыбнулся.
Он вёз в Дубну главную часть нового цикло­трона, и с его приездом должно было наступить то счастливое равновесие между мыслью учёных и техническими возможностями, которое предопределяет успех».
Из повести Валерия Аграновского «Взятие сто четвёртого», 1966 г.

[КШ] Есть ли достижение, которое вы считаете главным в жизни?

[ЮО] Я занимаюсь тем, что мне на самом деле интересно. Иногда увлекаюсь очень сильно. Иногда получается что-то, и я радуюсь, что получилось. Это жизнь. Это не эпизод. Я не принадлежу к категории людей, которые мечтали быть научными работниками в детстве, в школе. Просто у меня хорошо получалось с математикой и физикой, поэтому я пошёл в тот вуз, где надо было сдавать эти экзамены. Ну, сдал. И вообще, я считаю, что в жизни мы все очень сильно подвержены случайностям. Правда ведь? Многие шаги мы делаем совершенно случайным образом. А потом, когда ты становишься взрослым, тебе задают вопрос: «Почему ты это сделал?» Ну, сделал и сделал. Это моё обычное занятие наукой.

Где нужны трансурановые элементы?

// Ядерное оружие, космос, медицина

Нептуний используется для получения плутония. Теоретически может служить топливом для ядерных реак­торов нового поколения, работающих на быстрых нейтронах.

Плутоний — в производстве ядерного оружия, ядерного топлива, атомной энергии, а также элементов питания в космических аппаратах. Именно плутониевая бомба была взорвана в 1945 году на полигоне Аламогордо в США во время первого в мире испытания ядерного оружия.

Америций — для синтеза других сверхтяжёлых элементов и создания контрольно-измерительных приборов (в частности, для детекторов дыма). Теоретически мог бы стать топливом для ядерных реакторов на межпланетных космических кораблях.

Кюрий — в некоторых областях ядерных технологий. Мог бы иметь и более широкое применение, но уж очень дорог.

Берклий — для получения одного из изотопов калифорния.

Калифорний — в лучевой терапии для лечения опухолей и получения новых элементов: для синтеза 118-го мишень из калифорния‑249 бомбардировали кальцием‑48.

Эйнштейний — для получения менделевия.

Фермий — для синтеза дальнейших элементов.

Остальные трансураны, начиная с менделевия, пока не нашли применения: жизнь их ядер слишком коротка.

Читать далее.


Автор: Светлана Соколова

Источник: kot.sh


0



Для лиц старше 18 лет