Разработан новый эффективный метод обессоливания морской воды

0   4   0

Биология
27 июня 13:00


5ef752e8cd3d3e00013c3309

Методика позволяет добиться нулевого сброса жидкости без испарения и конденсации воды, что экономит большое количество энергии.

Безопасность водоснабжения сегодня считается крайне острой глобальной проблемой. Дефицит пресной воды уже испытывают сотни миллионов людей, а к 2030 году, согласно прогнозам ООН, около половины населения мира будет проживать в местах, где не хватает этого ресурса. Кризис водоснабжения коснется не только бедных стран, но и экономически развитых государств.

Для увеличения запасов питьевой воды используются технологии опреснения. И в сложившихся условиях они приобретают все большую распространенность. По оценкам экспертов, глобальная мощность опреснительных установок к 2030 году будет вдвое больше, чем в 2016-м. Но процессы опреснения могут быть достаточно дорогими, а их побочные продукты — гиперсоленые растворы — зачастую вредят окружающей среде.

Специалисты из Школы инженерных и прикладных наук Колумбийского университета разработали нетрадиционный подход к опреснению подобных растворов, который назвали TSSE (temperature swing solvent extraction, сольвентная экстракция при температурных колебаниях). Статья об этом опубликована в журнале Environmental Science & Technology. В TSSE используется экстракция растворителем и не применяются мембраны и фазовые переходы (испарения). Благодаря этому новый подход экономически выгоден, стабилен и легко масштабируется.

Стадии TSSE: смешивание с реагентом, сброс осадка, нагревание и декантация, охлаждение / Boo, Yin Yip et al., Environmental Science & Technology, 2020.
Стадии TSSE: смешивание с реагентом, сброс осадка, нагревание и декантация, охлаждение / Boo, Yin Yip et al., Environmental Science & Technology, 2020.

В своей статье авторы TSSE утверждают, что смогли «выйти на последний рубеж опреснения» — добиться нулевого сброса жидкости (ZLD, zero liquid discharge). Это означает, что в процессе не производится никаких стоков, требующих дополнительной обработки или захоронения. «Испарение и конденсация воды — стандартный современный подход для достижения ZLD, но он очень энергоемкий и непомерно дорогой. Мы смогли достичь ZLD без нагрева и кипения воды — это серьезный прогресс в опреснении рассолов сверхвысокой солености, который показывает, что наша технология TSSE может преобразовать мировую индустрию [питьевой] воды», — комментирует результаты один из авторов разработки Нгай Ин Ип.

TSSE начинается с того, что низкополярный растворитель диизопропиламин (DIPA) смешивают с соленым водным раствором. Растворитель извлекает воду из раствора при достаточно низких температурах (разработчики тестировали метод при пяти градусах Цельсия). Контролируя соотношение растворителя и рассола, можно извлечь из рассола всю воду — соли при этом формируют кристаллы и осаждаются на дно емкости с раствором.

Расслоение диизопропиламина и воды при разных соотношениях рассола (brine) к растворителю (solvent) / Boo, Yin Yip et al., Environmental Science & Technology, 2020.
Расслоение диизопропиламина и воды при разных соотношениях рассола (brine) к растворителю (solvent) / Boo, Yin Yip et al., Environmental Science & Technology, 2020.

После того как соляные кристаллы извлекаются из емкости, раствор нагревают до температуры 70 °C. При этом аффинность (степень химического сродства) растворителя к воде снижается, и вода «выжимается словно из губки». Полученная целевая жидкость и диизопропиламин расслаиваются из-за разницы в плотности; воду можно откачать, а сольвент — использовать повторно.

В лабораторных условиях ученым удавалось осадить 90% всей соли из исходного водного рассола — стока ирригационных дренажных вод с полей в Центральной Калифорнии. При этом экономия энергии по сравнению с термическим испарением составила около 75%. Растворитель был повторно использован в течение нескольких циклов без значимого снижения производительности.

Благодаря относительно низкому потреблению энергии для TSSE можно использовать геотермальные и солнечные электростанции. Метод отлично подойдет для получения питьевой воды из морской. Кроме того, его можно использовать для обработки продуктов выщелачивания, стоков горнообогатительных комбинатов, водных выбросов при разработке нефтяных и газовых месторождений.

Ранее группа ученых из Калифорнийского университета сообщила, что на поверхности Луны может оказаться намного больше ледяной воды, чем считалось ранее. Их коллеги из Саудовской Аравии разработали технологию получения дистилированной воды и электроэнергии при помощи солнечного света.


Автор: Денис Гордеев

Источник: naked-science.ru


0



Для лиц старше 18 лет