Быстрые ускоренные движения массивных тел порождают заметные гравитационные волны — периодические колебания пространства-времени, существование которых следует из общей теории относительности Эйнштейна. Для поиска таких сигналов было предложено множество идей, но реальной регистрации удалось достичь только с использованием гравитационных антенн, которые представляют собой крупные лазерные интерферометры, регистрирующие относительную задержку во времени движения света по разным направлениям.
Сегодня в мире работает пять основных гравитационных антенн: пара американских установок LIGO, европейская Virgo, японская KAGRA и немецкая GEO600. Последняя обладает недостаточным размером, что не позволяет ей фиксировать реальные события, но ее используют для отработки новых технологий.
Одно из таких новшеств — сжатый свет. Это квантовое явление позволяет «перераспределить» фундаментальные неточности в определении параметров света, связанных с принципом Гейзенберга. В контексте поиска гравитационных волн более важным параметром оказывается фаза фотона, а его амплитуда — вторична. Следовательно, применяемый сжатый свет делают со сниженной неопределенностью фазы и увеличенным разбросом амплитуд. Это позволяет улучшить параметры установок, так как уменьшает дробовой шум счета фотонов.
В паре работ сотрудники Virgo и LIGO отчитались о результатах применения сжатого света на практике. Новшество применялось 99 процентов времени работы установок в течение текущего наблюдательного периода и позволило сузить распределение времен приходов фотонов, то есть уменьшить разброс времени их прихода. Это, в свою очередь, положительно сказалось на характеристиках установок. Чувствительность увеличилась на 2–3 децибела, что соответствует увеличению размера области Вселенной, в которой можно зафиксировать слияние двух нейтронных звезд на 5–14 процентов до примерно 140 мегапарсек.
Существуют различные методы борьбы с дробовым шумом счета фотонов. Наиболее прямолинейным будет увеличение статистики, то есть, фактически, повышение мощности используемых лазеров. Физики пишут, что для подобного прироста точности можно было бы добиться усилием лазеров на 65–85 процентов, что не только недоступно для установленных сегодня генераторов света, но также приведет к росту других источников шумов, в том числе связанных с нагревом и давлением излучения.
Эффект сжатия света на мощность шумов зависит от частотного диапазона. Наиболее значительное улучшение наблюдается для высоких частот, а на самых низких, в которых другие источники шумов доминируют, суммарная эффективность антенны может даже слегка ухудшиться. Однако именно высокие частоты наиболее чувствительны к направлению на источник гравитационной волны, что увеличивает вероятность успешного наблюдения «обычного» электромагнитного сигнала от объекта.
Ранее квантовый шум гравитационных антенн впервые воспроизвели при комнатной температуре, а японская установка KAGRA присоединилась к глобальной сети гравитационных антенн. Также в рамках текущего наблюдательного сеанса впервые удалось зафиксировать слияние нейтронной звезды и черной дыры.
Комментарии:
Авторизуйтесь, чтобы оставить отзыв