«В основе мироздания лежит понятие красоты»: физик объясняет квантовую теорию поля

2   70   0

Физика
29 июня 10:36


57737a715f1be7321204eb61

Квантовая механика, не говоря уже о квантовой теории поля, имеет репутацию странной, пугающей и контринтуитивной науки. В научном сообществе есть те, кто по сей день ее не признает. Однако же квантовая теория поля — единственная подтвержденная экспериментом теория, способная объяснить взаимодействие микрочастиц при низких энергиях. Почему это важно? Андрей Ковтун, студент МФТИ и сотрудник кафедры фундаментальных взаимодействий, рассказывает, как с помощью этой теории добраться до главных законов природы или придумать их самим.

Как известно, все естественные науки подчиняются определенной иерархии. Например, биология и химия имеют физические основания. И если смотреть на мир через лупу и каждый раз увеличивать ее силу, проводя таким образом редукцию знания, мы потихоньку придем к квантовой теории поля. Это наука, которая описывает свойства и взаимодействия самых маленьких крупиц матери, из которых мы состоим, — частиц, которые принято называть элементарными. Некоторые из них — такие, как, например, электрон — существуют сами по себе, другие же объединяются и образуют составные частицы. Всем известные протоны и нейтроны как раз являются таковыми — они состоят из кварков. А вот сами по себе кварки уже элементарны. Так вот задача физиков — понять и вывести все свойства этих частиц и ответить на вопрос, есть ли еще что-то, что лежит глубже в иерархии фундаментальных физических законов.

Наша реальность — полевая, она состоит из полей, а мы лишь элементарные возбуждения этих полей

Для радикальных ученых конечная цель — полная редукция знаний о мире, для менее радикальных — более глубинное проникновение в тонкости микромира или сверхмикромира. Но как это возможно, если мы имеем дело лишь с частицами? Ответ очень прост. Мы просто берем и сталкиваем их, в прямом смысле разбиваем друг о друга — как дети, которые, желая посмотреть устройство какой-нибудь занятной вещицы, просто бросают ее на пол, а потом изучают осколки. Также и мы сталкиваем частицы, а потом смотрим, какие новые частицы получаются при столкновении, а какие распадаются после продолжительного путешествия в гордом одиночестве. Все эти процессы в квантовой теории описываются так называемыми вероятностями распада и рассеяния. Расчетами этих величин и занимается квантовая теория поля. Но не только ими.

Векторы вместо координат и скоростей

Основное отличие квантовой механики — в том, что мы больше не будем описывать физические тела с помощью координат и скоростей. Основное понятие в квантовой механике — это вектор состояния. Это шкатулка с квантово-механической информацией о физической системе, которую мы изучаем. Причем я использую слово «система», потому что вектор состояния — это штука, которая может описывать состояние как электрона, так и бабушки, лузгающей семечки на скамейке. То есть это понятие имеет очень широкий круг охвата. И мы хотим найти все векторы состояния, которые содержали бы в себе всю необходимую нам информацию об изучаемом объекте.

Далее естественно задаться вопросом «А как же нам эти векторы найти, а потом извлечь из них то, что хочется?». Здесь нам на помощь приходит следующее важное понятие квантовой механики — оператор. Это правило, по которому одному вектору состояния ставится в соответствие другой. Операторы должны обладать определенными свойствами, и некоторые из них (но не все) извлекают информацию из векторов состояния о нужных нам физических величинах. Такие операторы называются операторами физических величин.

Измерить то, что трудно измерить

Квантовая механика последовательно решает две задачи — стационарную и эволюционную, причем по очереди. Суть стационарной задачи состоит в том, чтобы определить все возможные векторы состояния, которые могут описывать физическую систему в данный момент времени. Такие векторы являются так называемыми собственными векторами операторов физических величин. Определив их в начальный момент, интересно проследить, как они будут эволюционировать, то есть меняться со временем.

Мюон — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Антимюон — античастица с квантовыми числами (в том числе зарядом) противоположного знака, но с равной массой и спином.

Посмотрим на эволюционную задачу с точки зрения теории элементарных частиц. Пусть мы хотим столкнуть электрон и его партнера — позитрон. Другими словами, у нас есть вектор состояния-1, который описывает электрон-позитронную пару с определенными импульсами в начальном состоянии. А потом мы хотим узнать, с какой вероятностью после столкновения электрона и позитрона родятся мюон и антимюон. То есть система будет описываться вектором состояния, который содержит информацию про мюон и его антипартнера тоже с определенными импульсами в конечном состоянии. Вот вам и эволюционная задача — мы хотим узнать, с какой вероятностью наша квантовая система перескочит из одного состояния в другое.

Образование пары позитрон — электрон © iStock

Образование пары позитрон — электрон © iStock

Пусть мы также решаем задачу о переходе физической системы из состояния-1 в состояние-2. Допустим, у вас есть шарик. Он хочет попасть из точки A в точку B, и существует множество мыслимых путей, по которым он мог бы совершить это путешествие. Но повседневный опыт показывает, что если вы кидаете шарик под определенным углом и с определенной скоростью, то у него есть только один реальный путь. Квантовая же механика утверждает другое. Она говорит, что шарик путешествует одновременно по всем этим траекториям. Каждая из траекторий вносит свой (больший или меньший) вклад в вероятность перехода из одной точки в другую.

Полный текст читайте далее.


Автор: Саша Кононенко

Источник: T&P


2



Для лиц старше 18 лет