Application of Ensemble Learning for Views Generation in Meucci Portfolio Optimization Framework

Modern Portfolio Theory assumes that decisions are made by individual agents. In reality most investors are involved in group decision-making. In this research we propose to realize group decision-making process by application of Ensemble Learning algorithm, in particular Random Forest. Predicting accurate asset returns is very important in the process of asset allocation. Most models are based on weak predictors. Ensemble Learning algorithms could significantly improve prediction of weak learners by combining them into one model, which will have superiority in performance. We combine technical fundamental and sentiment analysis in order to generate views on different asset classes. Purpose of the research is to build the model for Meucci Portfolio Optimization under views generated by Random Forest Ensemble Learning algorithm. The model was backtested by comparing with results obtained from other portfolio optimization frameworks.

Экономика и экономические науки

Вуз: Финансовый университет при Правительстве Российской Федерации

ID: 57034c665f1be72e70aa698d
UUID: cd8bdae0-dd1c-0133-230f-525400003e20
Язык: Английский
Опубликовано: около 8 лет назад
Просмотры: 8


Alexander Didenko

Финансовый университет при Правительстве Российской Федерации


Комментировать 0

Рецензировать 0

Скачать - 0 байт

Поделиться работой
Current View


  Авторизуйтесь, чтобы добавить рецензию

- у работы пока нет рецензий -

Для лиц старше 18 лет