Ìèíèñòåðñòâî íàóêè è âûñøåãî îáðàçîâàíèÿ Ðîññèéñêîé Ôåäåðàöèè
Ôåäåðàëüíîå ãîñóäàðñòâåííîå àâòîíîìíîå îáðàçîâàòåëüíîå ó÷ðåæäåíèå
âûñøåãî îáðàçîâàíèÿ
¾ÊÀÇÀÍÑÊÈÉ (ÏÐÈÂÎËÆÑÊÈÉ) ÔÅÄÅÐÀËÜÍÛÉ ÓÍÈÂÅÐÑÈÒÅÒ¿
ÈÍÑÒÈÒÓÒ ÂÛ×ÈÑËÈÒÅËÜÍÎÉ ÌÀÒÅÌÀÒÈÊÈ
È ÈÍÔÎÐÌÀÖÈÎÍÍÛÕ ÒÅÕÍÎËÎÃÈÉ
ÊÀÔÅÄÐÀ ÂÛ×ÈÑËÈÒÅËÜÍÎÉ ÌÀÒÅÌÀÒÈÊÈ
Íàïðàâëåíèå: 01.04.04 Ïðèêëàäíàÿ ìàòåìàòèêà
Ïðîôèëü: Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
ÌÀÃÈÑÒÅÐÑÊÀß ÄÈÑÑÅÐÒÀÖÈß
×ÈÑËÅÍÍÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ
ÍÅÑÒÀÖÈÎÍÀÐÍÛÕ ÏÎËÅÉ
ÒÅÌÏÅÐÀÒÓÐÛ È ÄÀÂËÅÍÈß
 ÓÏÎÐÍÎÌ ÏÎÄØÈÏÍÈÊÅ ÑÊÎËÜÆÅÍÈß
Ñòóäåíò 2 êóðñà
ãðóïïû 09-825
¾
¿
2020 ã.
Ôåäîòîâ Ï.Å.
Íàó÷íûé ðóêîâîäèòåëü
ä.ô.-ì.í., ïðîôåññîð
¾
¿
2020 ã.
Äàóòîâ Ð.Ç.
Çàâåäóþùèé êàôåäðîé
ä.ô.-ì.í., ïðîôåññîð
¾
¿
2020 ã.
Äàóòîâ Ð.Ç.
Êàçàíü 2020
Ñîäåðæàíèå
ÂÂÅÄÅÍÈÅ
5
1
Ïîñòàíîâêà çàäà÷è
7
1.1
Óðàâíåíèå Ðåéíîëüäñà . . . . . . . . . . . . . . . . . . . . .
8
1.2
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå . . . . . . . . . . . . .
11
1.3
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå . . . . . . . . . . . . .
14
1.4
Óðàâíåíèå ýíåðãèè â ïîäóøêå . . . . . . . . . . . . . . . . .
15
2
3
Ïðèâåäåíèå çàäà÷è ê áåçðàçìåðíîìó âèäó
17
2.1
Çàìåíà ïåðåìåííûõ
. . . . . . . . . . . . . . . . . . . . . .
17
2.2
Ïðîöåäóðà çàìåíû ïåðåìåííûõ . . . . . . . . . . . . . . . .
20
2.2.1
Êîýôôèöèåíòû â óðàâíåíèÿõ è ñêîðîñòè . . . . . .
20
2.2.2
Óðàâíåíèå Ðåéíîëüäñà . . . . . . . . . . . . . . . . .
23
2.2.3
Óðàâíåíèå íåðàçðûâíîñòè . . . . . . . . . . . . . . .
26
2.2.4
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå . . . . . . . . .
27
2.2.5
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå . . . . . . . . .
31
2.2.6
Óðàâíåíèå ýíåðãèè â ïîäóøêå . . . . . . . . . . . . .
33
Ïîñòðîåíèå ñåòî÷íûõ àïïðîêñèìàöèé óðàâíåíèé è ìåòîäû èõ ðåøåíèÿ
36
3.1
Ïîñòðîåíèå ðàñ÷¼òíûõ îáëàñòåé . . . . . . . . . . . . . . .
36
3.2
Ïîñòðîåíèå ðàçíîñòíîé ñõåìû ìåòîäîì ñóììàòîðíûõ òîæ-
3.3
3.4
äåñòâ äëÿ óðàâíåíèÿ Ðåéíîëüäñà . . . . . . . . . . . . . . .
36
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå . . . . . . . . . . . . .
43
3.3.1
Âñïîìîãàòåëüíûå îáîçíà÷åíèÿ . . . . . . . . . . . .
43
3.3.2
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé . . . .
44
3.3.3
Ïîñòðîåíèå ñåòî÷íîé ñõåìû ðàçðûâíîãî ìåòîäà Ãàë¼ðêèíà . . . . . . . . . . . . . . . . . . . . . . . . .
44
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå . . . . . . . . . . . . .
50
3.4.1
Òðèàíãóëÿöèÿ óïîðíîãî äèñêà . . . . . . . . . . . .
50
3.4.2
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé . . . .
51
3
3.4.3
3.5
3.6
4
Ïîñòðîåíèå ñõåìû ÌÊÝ äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè â äèñêå . . . . . . . . . . . . . . . . . . . .
51
Óðàâíåíèå ýíåðãèè â ïîäóøêå . . . . . . . . . . . . . . . . .
54
3.5.1
Òðèàíãóëÿöèÿ ïîäóøêè . . . . . . . . . . . . . . . .
54
3.5.2
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé . . . .
54
3.5.3
Ïîñòðîåíèå ñõåìû ÌÊÝ äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè â ïîäóøêå . . . . . . . . . . . . . . . . . . . .
54
Ìåòîä äåêîìïîçèöèè . . . . . . . . . . . . . . . . . . . . . .
57
×èñëåííûå ýêñïåðèìåíòû
59
ÇÀÊËÞ×ÅÍÈÅ
75
ÑÏÈÑÎÊ ÈÑÏÎËÜÇÓÅÌÛÕ ÈÑÒÎ×ÍÈÊÎÂ
76
ÏÐÈËÎÆÅÍÈÅ À
79
ÏÐÈËÎÆÅÍÈÅ Á
96
ÏÐÈËÎÆÅÍÈÅ Â
114
ÏÐÈËÎÆÅÍÈÅ Ã
120
ÏÐÈËÎÆÅÍÈÅ Ä
126
4
ÂÂÅÄÅÍÈÅ
Ðàáîòà ïîñâÿùåíà ïîñòðîåíèþ ñåòî÷íûõ àëãîðèòìîâ ðåøåíèÿ íåñòàöèîíàðíûõ óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ âòîðîãî ïîðÿäêà, êîòîðûå
âîçíèêàþò ïðè ìîäåëèðîâàíèè çàäà÷ ãèäðîäèíàìè÷åñêîé òåîðèè ñìàçêè óïîðíûõ ïîäøèïíèêîâ.
Îïèñàíèå òå÷åíèÿ ñìàçêè â ñìàçî÷íîì ñëîå óïîðíîãî ïîäøèïíèêà
ìàòåìàòè÷åñêè îïèñûâàåòñÿ ñèñòåìîé íåëèíåéíûõ äèôôåðåíöèàëüíûõ
óðàâíåíèé.  íàñòîÿùåé ðàáîòå èñïîëüçóþòñÿ ìîäåëè òå÷åíèÿ ñìàçêè
â ïîäøèïíèêàõ, ïðåäëîæåííûå êàçàíñêèìè ìàòåìàòèêàìè Ñîêîëîâûì,
Õàäèåâûì è Ìàêñèìîâûì [1], [2].
Ïîäîáíûå çàäà÷è ðåøàëèñü, â îñíîâíîì â äâóìåðíîé ïîñòàâêå. Çäåñü
ñëåäóåò îòìåòèòü ðàáîòû Ôåäîòîâà, Äàóòîâà è Õàäèåâà [3] [6]. Â íèõ
ïðåäëàãàëèñü ìåòîäû ðåøåíèÿ çàäà÷ äëÿ ðàçëè÷íîé ãåîìåòðèè è òèïîâ
ïîäóøêå ïîäøèïíèêîâ.  íàñòîÿùåé ðàáîòå ðàññìàòðèâàþòñÿ ìåòîäû ðåøåíèÿ äâóìåðíî-òðåõìåðíîé çàäà÷è, îïèñûâàþùåé òå÷åíèå ñìàçêè.
Óïîðíûå ïîäøèïíèêè, èñïîëüçóåìûå â êîìïðåññîðàõ, èìåþò íåïîäâèæíûå ïîäóøêè è âðàùàþùèéñÿ äèñê, ìåæäó êîòîðûìè ïðîòåêàåò
ñìàçêà. Â ðàáîòå ðåøàåòñÿ óðàâíåíèå Ðåéíîëüäñà, õàðàêòåðèçóþùåå ðàñïðåäåëåíèå äàâëåíèÿ è íåñòàöèîíàðíîå óðàâíåíèå ýíåðãèè, îïèñûâàþùåå
òåïëîïåðåäà÷ó â ïîäóøêå, äèñêå è ñìàçî÷íîì ñëîå. Óðàâíåíèå Ðåéíîëüäñà â ñìàçî÷íîì ñëîå ÿâëÿåòñÿ äâóìåðíûì, â òî âðåìÿ êàê óðàâíåíèå ýíåðãèè ÿâëÿåòñÿ òð¼õìåðíûì íåëèíåéíûì è âûïîëíÿåòñÿ â ñìàçî÷íîì ñëîå
ïåðåìåííîé òîëùèíû.
Äëÿ óðàâíåíèé â êàæäîé èç îáëàñòåé ñòàâÿòñÿ ãðàíè÷íûå çàäà÷è.
Äëÿ íèõ ñòðîÿòñÿ ñåòî÷íûå ñõåìû ìåòîäàìè ñóììàòîðíûõ òîæäåñòâ è
ÌÊÝ [7] [11]. Äëÿ ðåøåíèÿ óðàâíåíèÿ ýíåðãèè ñ äîìèíèðóþùåé êîíâåêöèåé ïîñòðîåíà ñõåìà ðàõðûâíîãî ìåòîäà Ãàë¼ðêèíà. Ñïîñîá ïîñòðîåíèÿ
òàêèõ ñõåì ïðèâåä¼í â [12]. Äëÿ ó÷¼òà òåïëîîáìåíà ìåæäó îáëàñòÿìè
ñòðîèòñÿ èòåðàöèîííûé ìåòîä íà îñíîâå ìåòîäà Ëèîíñà äåêîìïîçèöèè
îáëàñòåé [13]. Ïðåäëîæåíû ïðÿìûå è èòåðàöèîííûå ìåòîäû ðåøåíèÿ ñåòî÷íûõ óðàâíåíèé.
Äëÿ ðåøåíèÿ ïîñòðîåííûõ ñåòî÷íûõ ñõåì ñîçäàí êîìïëåêñ ïðîãðàìì
5
[14], ñ ïîìîùüþ êîòîðûõ ïðîâåäåíû ÷èñëåííûå èññëåäîâàíèÿ, äåìîíñòðèðóþùèå ýôôåêòèâíîñòü èñïîëüçóåìûõ ìåòîäîâ. Òàêæå îíè ïîçâîëÿþò
ñäåëàòü âûâîäû î ñõîäèìîñòè ñõåìû ðàçðûâíîãî ìåòîäà Ãàë¼ðêèíà ñî
ñêîðîñòüþ âûøå ëèíåéíîé íà ïîñëåäîâàòåëüíîñòè ñåòîê [15] [19]. Ïðîãðàììà ñáîðêè è ðåøåíèÿ ñèñòåì óðàâíåíèé ðåàëèçîâàíû íà ÿçûêå C++.
Äëÿ ðàáîòû ñ ðàçðåæåííûìè ìàòðèöàìè èñïîëüçóåòñÿ ñðåäñòâà áèáëèîòåêè êëàññîâ Eigen ñ îòêðûòûì èñõîäíûì êîäîì [20]. Ïîñòðîåííûé êîìïëåêñ ïðîãðàìì ïîçâîëÿåò ïðîèçâîäèòü ìîäåëèðîâàíèå óïîðíîãî ïîäøèïíèêà, èñïîëüçóåìîãî â êîìïðåññîðàõ, ñ íåîáõîäèìîé òî÷íîñòüþ, ïðè
ðàçëè÷íûõ ãåîìåòðè÷åñêèõ è ôèçè÷åñêèõ ïàðàìåòðàõ.
6
1
Ïîñòàíîâêà çàäà÷è
Ðàññìàòðèâàåòñÿ çàäà÷à î òå÷åíèè ñìàçêè â çàçîðàõ è êàíàëàõ óïîðíîãî
ïîäøèïíèêà. Óïîðíûå ïîäøèïíèêè, èñïîëüçóåìûå â êîìïðåññîðàõ, èìåþò íåïîäâèæíûå ïîäóøêè è âðàùàþùèéñÿ äèñê, ìåæäó êîòîðûìè ïðîòåêàåò ñìàçêà [1]. Óïîðíûé ïîäøèïíèê èçîáðàæ¼í íà ðèñóíêå 1.  ñìàçî÷íîì ñëîå ðàñïðåäåëåíèå äàâëåíèÿ îïèñûâàåòñÿ äâóìåðíûì óðàâíåíèåì
Ðåéíîëüäñà, à òåïëîîáìåí îïèñûâàåòñÿ òð¼õìåðíûì óðàâíåíèåì ýíåðãèè,
êîòîðîå ñòàâèòñÿ â ñìàçî÷íîì ñëîå, ïîäóøêå è äèñêå.
Ðèñóíîê 1 - Îáùèé âèä îäíîñòîðîííåãî óïîðíîãî ïîäøèïíèêà
ñêîëüæåíèÿ ñ íåïîäâèæíûìè ïîäóøêàìè
Ïðè ìîäåëèðîâàíèè äèíàìèêè ïîäøèïíèêà åñòåñòâåííî èñïîëüçîâàòü
öèëèíäðè÷åñêóþ ñèñòåìó êîîðäèíàò. ×åðåç r, ϕ, y îáîçíà÷èì êîîðäèíàòíûå îñè. Óïîðíûé ïîäøèïíèê èìååò ïåðèîäè÷åñêóþ ñòðóêòóðó, ïîýòîìó
ìîæíî ðàññìàòðèâàòü ëèøü ýëåìåíò ïåðèîäè÷íîñòè. Íà ðèñóíêå 2 ïðåäñòàâëåí ýëåìåíò ïåðèîäè÷íîñòè ïîäøèïíèêà.
7
Ðèñóíîê 2 - Âèä ýëåìåíò ïåðèîäè÷íîñòè ïîäøèïíèêà
â ïëîñêîñòè ϕ − y
Íà ðèñóíêå âèäíî, ÷òî ïîâåðõíîñòü ïîäóøêè ÿâëÿåòñÿ ïðîôèëèðîâàííîé. Òîëùèíà çàçîðà h ñìàçî÷íîãî ñëîÿ ñ ó÷¼òîì ðàçëè÷íûõ ïðîôèëåé ïîâåðõíîñòè ïðèâîäÿòñÿ íèæå. Ïîâåðõíîñòü äèñêà ÿâëÿåòñÿ ïëîñêîé.
Ìåæäó ïîäóøêàìè ðàñïîëîæåíû ìåæïîäóøå÷íûå êàíàëû, ÷åðåç êîòîðûå ïîäà¼òñÿ ñìàçêà.
1.1
Óðàâíåíèå Ðåéíîëüäñà
 îáëàñòè ñìàçî÷íîãî ñëîÿ L1 = {r ∈ [R1 , R2 ], ϕ ∈ [0, θï ], y ∈ [0, h]},
R1 , R2 , θ > 0 ôóíêöèÿ äàâëåíèÿ p óäîâëåòâîðÿåò óðàâíåíèþ Ðåéíîëüäñà:
∂
∂p
∂p
∂
r
rf0 − f1 +
f0
+ ωr2 f2 + Ar2 = 0,
(1)
∂r
∂r
∂ϕ
∂ϕ
!
∂ Rh
∂h
ρdy − ρ|y=h .
ãäå A =
∂τ 0
∂τ
Íà ãðàíèöàõ {r ∈ {R1 , R2 }, ϕ ∈ [0, θ ], y ∈ [0, h]} çàäàíî óñëîâèå ïåðâîãî ðîäà
ï
ï
p = pR1 , r = R1 ,
(2)
p = pR2 , r = R2 .
(3)
Íà ãðàíèöàõ {r ∈ [R1 , R2 ], ϕ ∈ {0, θï }, y ∈ [0, h]} âîçìîæíû äâà âàðèàíòà
8
çàäàíèÿ ãðàíè÷íûõ óñëîâèé
∂p
= 0, ϕ = 0,
∂ϕ
∂p
= 0, ϕ = θ ,
∂ϕ
(4)
(5)
ï
è
p = pϕ0 ,
(6)
ϕ = 0,
p = pϕθï ,
(7)
ϕ=θ .
ï
Âõîäÿùèå â óðàâíåíèå (1) ôóíêöèè f0 , f1 , f2 èìåþò âèä
Zh
n
f1 = ρ j −
i0 dy,
m0
Zh
m1
i0 dy,
f 0 = ρ i1 −
m0
(8)
0
0
Zh
i0
f2 = ρ 1 −
dy,
m0
0
ãäå
Zy
ik =
yk
dy,
µ
mk = ik |y=h ,
k = 0, 1,
0
Zy
j=
0
1
µ
Zy0
ρVϕ2 dy 0 dy,
n = j|y=h .
(9)
0
Ñêîðîñòü ïîòîêà â îêðóæíîì íàïðàâëåíèè Vϕ îïðåäåëÿåòñÿ ñë. îáðàçîì:
1 ∂p
m1
i0
i1 −
i0 δ1 + ωr 1 −
,
Vϕ =
r ∂ϕ
m0
m0
(
1, ϕ ∈ [0, θ ]
δ1 =
0, ϕ ∈ [θ , θ].
(10)
ï
ï
Ïðèâåä¼ííûå âûøå ôîðìóëû äëÿ êîýôôèöèåíòîâ i, m è ñêîðîñòè Vϕ
îïðåäåëÿþòñÿ äëÿ âñåõ çíà÷åíèé ïåðåìåííîé y ïî òîëùèíå ñìàçî÷íîãî
ñëîÿ. Îòìåòèì, ÷òî ïðè âûâîäå óðàâíåíèÿ Ðåéíîëüäñà äàâëåíèå â ñìàçêå
9
∂p
= 0.
∂y
Ïîýòîìó â ôîðìóëå (10) äàâëåíèå òàêæå ïîëàãàåòñÿ íå çàâèñÿùèì îò y .
 óðàâíåíèè (1) êîýôôèöèåíòû âÿçêîñòè µ è ïëîòíîñòè ρ çàâèñÿò îò
òåìïåðàòóðû è âèäà èñïîëüçóåìîãî ìàñëà. Îíè çàäàþòñÿ òàáëè÷íî.
Ïóñòü h2o òîëùèíà ñìàçî÷íîãî ñëîÿ ïðè öåíòðàëüíîì ïîëîæåíèè óïîðïî òîëùèíå ñìàçî÷íîãî ñëîÿ ïðèíèìàåòñÿ ïîñòîÿííûì, òî åñòü
íîãî äèñêà, yñì.∂ êîîðäèíàòà ðàñïîëîæåíèÿ óïîðíîãî äèñêà, êîòîðàÿ
çàäàåòñÿ, êàê ôóíêöèÿ âðåìåííîé ïåðåìåííîé; δñê = (h1 − h2 ) ãëóáèíà
êëèíîâîãî ñêîñà íà âõîäíîé êðîìêå ïîäóøêè, h1 , h2 òîëùèíà ñìàçî÷íîãî ñëîÿ ïðè ϕ = 0, ϕ = θï ; αï êîýôôèöèåíò ëèíåéíîãî ðàñøèðåíèÿ
ìàòåðèàëà ïîäóøêè è Tï (θï , r, yï ) ðàñïðåäåëåíèå òåìïåðàòóðû íà âõîäíîé êðîìêå ïîäóøêè.
Òîãäà òîëùèíà ñìàçî÷íîãî ñëîÿ h ïðèíèìàåòñÿ ðàâíîé
Âèíòîâàÿ ïîâåðõíîñòü êëèíîâîãî ñêîñà
ϕ
h = h2o − y ∂ + δ
1−
δk +
θk
Zhï
+α
T (θ , r, y ) − T (ϕ, r, y )dy ; (11)
ñì.
ñê
ï
ï
ï
ï
ï
ï
ï
0
Ïîâåðõíîñòü ñ ïàðàëëåëüíûì ìåæïîäóøå÷íîìó êàíàëó ñêîñîì
r sin ϕ
h = h2o − y ∂ + δ
1−
δk +
ηk
Zhï
+α
T (θ , r, y ) − T (ϕ, r, y )dy ; (12)
ñì.
ñê
ï
ï
ï
ï
ï
ï
ï
0
ãäå r, ϕ ðàäèàëüíàÿ è óãëîâàÿ êîîðäèíàòû, ò.å. íåçàâèñèìûå ïåðåìåííûå
è δk èíäèêàòîðíàÿ ôóíêöèÿ:
äëÿ âèíòîâîé ïîâåðõíîñòè
δk = 1, ïðè ϕ ∈ [0, θk ] è δk = 0 èíà÷å.
íà ïîâåðõíîñòè ñ ïàðàëëåëüíûì ìåæïîäóøå÷íîìó êàíàëó ñêîñîì
δk = 1, ïðè ϕ ∈ [0, arcsin ηrk ] è δk = 0 èíà÷å.
10
Òå÷åíèå æèäêîñòè ìîäåëèðóåòñÿ âî âñ¼ì ïðèëåãàþùåì ê äèñêó ñìàçî÷íîì ñëîå, âêëþ÷àÿ ìåæïîäóøå÷íûé êàíàë. Ïðè ýòîì óñëîâíàÿ òîëùèíà ïîãðàíè÷íîãî ñëîÿ ïðè θï ≤ ϕ ≤ θ, â êàíàëå, ïðèíèìàåòñÿ ðàâíîé
(ϕ − θ )2 − (ϕ − θ)2
(ϕ − θ )2
h = h|ϕ=θï
+ h|ϕ=0
+
(θ − θ )2
(θ − θ )2
(ϕ − θ )(ϕ − θ)
(ϕ − θ )2 (ϕ − θ)
+ ε1 (h2o − y ∂ )
+ ε2 (h2o − y ∂ )
. (13)
θ2
θ3
ï
ï
ï
ï
ï
ï
ñì.
ñì.
Çäåñü ε1 , ε2 ïàðàìåòðû âîãíóòîñòè è âûïóêëîñòè âèðòóàëüíîé ïîâåðõíîñòè ñëîÿ, ïîäáèðàþòñÿ ñðàâíåíèåì ñ íàòóðíûì ýêñïåðèìåíòîì, è ïîçâîëÿþò èññëåäîâàòü âëèÿíèå ôîðìû óñëîâíîé òîëùèíû ïîãðàíè÷íîãî
ñëîÿ íà ðåøåíèå çàäà÷è.
1.2
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå
Óðàâíåíèå ýíåðãèè âî âñåé îáëàñòè L2 = {0 ≤ ϕ ≤ θ, R1 ≤ r ≤ R2 ,
0 ≤ y ≤ h} äëÿ ñìàçî÷íîãî ñëîÿ èìååò âèä
∂t
∂ρ
t+ρ
+
c
∂τ
∂τ
1 ∂
∂t
∂ cρ
λ ∂t
∂
+
cρVy t − λ
=
+
(cρrVr t) +
Vϕ t − 2
r ∂r
∂ϕ r
r ∂ϕ
∂y
∂y
"
2
2 #
∂Vϕ
∂Vr
=µ
+
. (14)
∂y
∂y
ì
ì
Çäåñü êîìïîíåíòà ñêîðîñòè Vϕ îïðåäåëåíà ñëåäóþùèì îáðàçîì
i0
m1
1 ∂p
i0 δ1 + ωr 1 −
Vϕ =
i1 −
,
r ∂ϕ
m0
m0
(15)
ñêîðîñòü ïîòîêà â ðàäèàëüíîì Vr íàïðàâëåíèè:
m1
1
n
∂p
Vr =
i1 −
i 0 δ1 −
j−
i0 ,
∂r
m0
r
m0
ãäå ôóíêöèÿ δ1 èíäèêàòîðíàÿ ôóíêöèÿ ïîâåðõíîñòè ïîäóøêè:
(
δ1 =
1, ϕ ∈ [0, θ ]
0, ϕ ∈ [θ , θ].
ï
ï
11
(16)
Ñêîðîñòü Vy äëÿ ñìàçî÷íîãî è ïîãðàíè÷íîãî ñëî¼â çàäàíà ñëåäóþùèì
îáðàçîì:
Vy =
Ry ∂ρ 1 ∂
1
1
∂
−
+
(rρVr ) +
(ρVϕ ) dy, y ∈ [0, y0 ],
r ∂ϕ
ρ 0 ∂τ r ∂r
(17)
h ∂ρ
R
1
1
∂
1
∂
+
(rρVr ) +
(ρVϕ ) dy, y ∈ [y0 , h],
+ρ
∂τ
r
∂r
r
∂ϕ
y
ãäå y0 ïàðàìåòð, çàäàâàåìûé íà îòðåçêå (0, h). Ïðåäñòàâëåíèå äëÿ ñêîðîñòè ÿâëÿåòñÿ ñëåäñòâèåì óðàâíåíèÿ íåðàçðûâíîñòè
∂ρ 1 ∂
1 ∂
∂
+
(rρVr ) +
(ρVϕ ) + (ρVy ) = 0.
∂τ r ∂r
r ∂ϕ
∂y
Ïðè ýòîì ðàññìàòðèâàåìàÿ êîìïîíåíòà ñêîðîñòè âû÷èñëÿåòñÿ èç ýòîãî
óðàâíåíèÿ âîïðåêè ïðåäïîëîæåíèþ î ïîñòîÿíñòâå äàâëåíèÿ ïî òîëùèíå
ñìàçî÷íîãî ñëîÿ.
Äëÿ óðàâíåíèÿ ýíåðãèè ïðèíèìàþòñÿ ñëåäóþùèå íà÷àëüíîå è ãðàíè÷íûå óñëîâèÿ.
 êà÷åñòâå íà÷àëüíîãî óñëîâèÿ íåñòàöèîíàðíîé çàäà÷è (14) áåð¼òñÿ
ðåøåíèå ñòàöèîíàðíîé çàäà÷è
∂
1 ∂
(cρrVr t) +
r ∂r
∂ϕ
cρ
λ ∂t
Vϕ t − 2
r
r ∂ϕ
ì
∂t
cρVy t − λ
=
∂y
"
2
2 #
∂Vϕ
∂Vr
=µ
+
, (18)
∂y
∂y
∂
+
∂y
ì
äëÿ êîòîðîãî ãðàíè÷íûå óñëîâèÿ ñîâïàäàþò ñ ãðàíè÷íûìè óñëîâèÿìè
äëÿ íåñòàöèîíàðíîé çàäà÷è, à íà÷àëüíîå óñëîâèå èìååò âèä
t = t0 (r, ϕ, y) ïðè τ = 0,
(19)
ãäå t0 çàäàííàÿ òåìïåðàòóðà.
Ïî êîîðäèíàòå ϕ íà ãðàíèöàõ ϕ = 0 è ϕ = θ ñòàâÿòñÿ óñëîâèÿ "ïåðèîäè÷íîñòè" òåìïåðàòóðû:
cρ
λ ∂t
Vϕ t − 2
r
r ∂ϕ
ì
t|ϕ=0 = t|ϕ=θ ,
=
ϕ=0
cρ
λ ∂t
Vϕ t − 2
r
r ∂ϕ
R1 ≤ r ≤ R2 ,
12
ì
,
ϕ=θ
0 ≤ y, ≤ h1
(20)
Ïî êîîðäèíàòå y ïðè y = 0 íà ïîâåðõíîñòè óïîðíîãî äèñêà ïðè r ∈
[R1 , R2 ], ϕ ∈ (0, h1 ) ñòàâèòñÿ óñëîâèå íåïðåðûâíîñòè òåìïåðàòóð è òåïëîâûõ ïîòîêîâ (íà ðàçäåëå ñìàçî÷íûé è ïîãðàíè÷íûé ñëîé óïîðíûé
äèñê).
∂T∂
∂t
= λ∂
,
(21)
t|y=0 = T∂ |y∂ =h∂ ,
cρVy t − λ
∂y y=0
∂y∂ y∂ =h∂
ì
ãäå T∂ òåìïåðàòóðà óïîðíîãî äèñêà, h∂ òîëùèíà äèñêà, λì , λ∂
ïàðàìåòðû (êîýôôèöèåíòû òåïëîïðîâîäíîñòè ìàñëà è äèñêà).
Ïî êîîðäèíàòå y ïðè y = h, r ∈ [R1 , R2 ], ϕ ∈ (0, θï ) ñòàâÿòñÿ óñëîâèÿ:
 ïðåäåëàõ y = h, ϕ ∈ (0, θï ) íà ïîâåðõíîñòè ïîäóøêè òåìïåðàòóðà è
òåïëîâûå ïîòîêè íåïðåðûâíû (ðàçäåë ñìàçî÷íûé ñëîé ïîäóøêà), ò.å.
t|y=h = T |yï =0 ,
ï
∂t
− cρVy t − λ
∂y
=λ
ì
ï
y=h
∂T
∂y
ï
ï
,
(22)
yï =0
ãäå Tï òåìïåðàòóðà ïîäóøêè, h çàçîð â óïîðíîì ïîäøèïíèêå,
λ , λ ïàðàìåòðû (êîýôôèöèåíòû òåïëîïðîâîäíîñòè ìàñëà è ïîäóøêè).  ïðåäåëàõ ìåæïîäóøå÷íîãî êàíàëà, íà óñëîâíîé ãðàíèöå ïîãðàíñì
ï
ëîÿ y = h, ϕ ∈ (θï , θ), çàäà¼òñÿ
óñëîâèå íåïðîòåêàíèÿ
∂t
∂y
= 0.
(23)
y=h
òåìïåðàòóðà ïîäà÷è ñìàçêè
t|y=h = t0 .
(24)
 ìåæïîäóøå÷íîì êàíàëå ïðè r = R1 , r = R2 , ϕ ∈ (θï , θ), y ∈ [0, h]
òàì, ãäå ïðîèñõîäèò âòåêàíèå ñìàçêè, ñòàâèòñÿ óñëîâèÿ Äèðèõëå, ò.å. òåìïåðàòóðà íà ãðàíèöå ñ÷èòàåòñÿ ðàâíîé òåìïåðàòóðå ïîäà÷è ñìàçêè
t|r=R1 = t0 , åñëè Vr > 0,
t|r=R2 = t0 , åñëè Vr < 0.
(25)
Çàìåòèì, ÷òî ôèçè÷åñêèå ñîîáðàæåíèÿ, à òàêæå èçâåñòíûå ðåøåíèÿ
àíàëîãè÷íîé çàäà÷è äëÿ ïðÿìîóãîëüíîé îáëàñòè, óêàçûâàþò íà òî, ÷òî
13
êîìïîíåíòà ñêîðîñòè Vr òå÷åíèÿ ñìàçêè ðàâíà íóëþ âáëèçè ñðåäíåé ëèíèè r∗ (ϕ) ≈ Rcp =
R1 +R2
2
ñëîÿ íàä ïîäóøêîé è ìåíÿåò ñâîé çíàê ñ
îòðèöàòåëüíîãî íà ëèíèè r = R1 íà ïîëîæèòåëüíûé íà ëèíèè r = R2 [2].
Ïðè òàêîì ðàñïðåäåëåíèè ïîëÿ ñêîðîñòåé çàäà÷à äëÿ óðàâíåíèÿ ýíåðãèè
â ñìàçî÷íîì ñëîå íå òðåáóåò ãðàíè÷íûõ óñëîâèé ïðè r = R1 è r = R2 .
1.3
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå
Óðàâíåíèå, îïèñûâàþùåå ðàñïðåäåëåíèå òåìïåðàòóðû â òîëùå óïîðíîãî
äèñêà â äâóìåðíîì âèäå â îáëàñòè L4 = {R1 ≤ r ≤ R2 , 0 ≤ y∂ ≤ h∂ }
∂T∂
−
∂τ
1 ∂
∂T∂
∂
ωr
λ∂ ∂T∂
∂
∂T∂
−
rλ∂
+
c∂ ρ∂ T∂ − 2
−
λ∂
= 0,
r ∂r
∂r
∂ϕ
r
r ∂ϕ
∂y
∂y
(26)
c∂ ρ ∂
ãäå c∂ , ρ∂ , λ∂ ïàðàìåòðû (êîýôôèöèåíò óäåëüíîé òåïëî¼ìêîñòè, ïëîòíîñòü è êîýôôèöèåíò òåïëîïðîâîäíîñòè ìàòåðèàëà óïîðíîãî äèñêà).
 êà÷åñòâå íà÷àëüíîãî óñëîâèÿ íåñòàöèîíàðíîé çàäà÷è (26) áåð¼òñÿ
ðåøåíèå ñòàöèîíàðíîé çàäà÷è
1 ∂
∂T∂
∂
ωr
∂
∂T∂
λ∂ ∂T∂
−
rλ∂
+
c∂ ρ∂ T∂ − 2
−
λ∂
= 0, (27)
r ∂r
∂r
∂ϕ
r
r ∂ϕ
∂y
∂y
äëÿ êîòîðîãî ãðàíè÷íûå óñëîâèÿ ñîâïàäàþò ñ ãðàíè÷íûìè óñëîâèÿìè
äëÿ íåñòàöèîíàðíîé çàäà÷è, à íà÷àëüíîå óñëîâèå èìååò âèä
T∂ (0, r, ϕ, y∂ ) = T∂,0 (r, ϕ, y∂ ),
(28)
τ = 0,
ãäå T∂,0 çàäàííàÿ òåìïåðàòóðà.
Äëÿ óðàâíåíèÿ íà ãðàíèöå ðàçäåëà "óïîðíûé äèñê - ñìàçî÷íûé ñëîé è
ïîãðàíè÷íûé ñëîé ìåæïîäóøå÷íîãî êàíàëà" ïðè R1 ≤ r ≤ R2 , 0 < ϕ < θ
ñòàâÿòñÿ óñëîâèÿ ñîïðÿæåíèÿ
t|y=0 = T∂ |y∂ =h∂ ,
∂t
cρVy t − λ
∂y
= λ∂
ì
y=0
∂T∂
∂y∂
,
(29)
y∂ =h∂
ãäå T∂ òåìïåðàòóðà óïîðíîãî äèñêà, h∂ òîëùèíà äèñêà, λì , λ∂
ïàðàìåòðû, êîýôôèöèåíòû òåïëîïðîâîäíîñòè ìàñëà è äèñêà.
14
Ïðè y∂ = 0 ñ òûëüíîé ñòîðîíû óïîðíîãî äèñêà ñòàâèòñÿ ãðàíè÷íîå
óñëîâèå òðåòüåãî ðîäà
−λ∂
∂T∂
r + αT∂ 0 T∂ r = αT∂ 0 Tα r,
∂y∂
(30)
y∂ = 0,
ãäå αT∂ 0 êîýôôèöèåíò òåïëîîòäà÷è ñ òûëüíîé ñòîðîíû óïîðíîãî äèñêà, Tα òåìïåðàòóðà îêðóæàþùåé ñðåäû ñ òûëüíîé ñòîðîíû óïîðíîãî
äèñêà.
Íà ãðàíèöå îáëàñòè ïðè r = R1 è r = R2 òàêæå ñòàâÿòñÿ ãðàíè÷íûå
óñëîâèÿ òðåòüåãî ðîäà
−λ∂
∂T∂
r + αT∂ R1 T∂ r = αT∂ R1 Tα r,
∂y∂
(31)
r = R1 ,
∂T∂
r + αT∂ R2 T∂ r = αT∂ R2 Tα r, r = R2 ,
(32)
∂y∂
ïàðàìåòðû (êîýôôèöèåíòû òåïëîîòäà÷è äèñêà ïðè
+λ∂
ãäå αT∂ R1 , αT∂ R2
r = R1 è r = R2 , Tα òåìïåðàòóðà îêðóæàþùåé ñðåäû ïðè r = R1 è
r = R2 .
Íà ãðàíèöàõ ϕ = 0 è ϕ = θ ñòàâÿòñÿ óñëîâèÿ "ïåðèîäè÷íîñòè":
ωr
ωr
λ∂ ∂T∂
λ∂ ∂T∂
c∂ ρ∂ T∂ − 2
= c∂ ρ∂ T∂ − 2
,
(33)
r
r ∂ϕ ϕ=0
r
r ∂ϕ ϕ=θ
T∂ |ϕ=0 = T∂ |ϕ=θ ,
1.4
R1 ≤ r ≤ R2 ,
0 ≤ y, ≤ h1
Óðàâíåíèå ýíåðãèè â ïîäóøêå
Óðàâíåíèå, îïèñûâàþùåå ðàñïðåäåëåíèå òåìïåðàòóðû â òîëùå ïîäóøêè
â òð¼õìåðíîì âèäå â îáëàñòè L3 = {0 ≤ yï ≤ hï , R1 ≤ r ≤ R2 , 0 ≤ ϕ ≤
θ } èìååò âèä
ï
∂T
1 ∂
−
c ρ
∂τ
r ∂r
ï
ï
ï
∂T
1 ∂
∂T
∂
∂T
rλ
− 2
λ
−
λ
= 0, (34)
∂r
r ∂ϕ
∂ϕ
∂y
∂y
ï
ï
ï
ï
ï
ï
ãäå cï , ρï , λï ïàðàìåòðû, êîýôôèöèåíò òåïëî¼ìêîñòè, ïëîòíîñòü è
êîýôôèöèåíò òåïëîïðîâîäíîñòè ìàòåðèàëà ïîäóøêè.
15
 êà÷åñòâå íà÷àëüíîãî óñëîâèÿ íåñòàöèîíàðíîé çàäà÷è (26) áåð¼òñÿ
ðåøåíèå ñòàöèîíàðíîé çàäà÷è
1 ∂
−
r ∂r
1 ∂
∂
∂T
∂T
∂T
rλ
− 2
λ
−
λ
= 0,
∂r
r ∂ϕ
∂ϕ
∂y
∂y
ï
ï
ï
ï
ï
ï
(35)
äëÿ êîòîðîãî ãðàíè÷íûå óñëîâèÿ ñîâïàäàþò ñ ãðàíè÷íûìè óñëîâèÿìè
äëÿ íåñòàöèîíàðíîé çàäà÷è, à íà÷àëüíîå óñëîâèå èìååò âèä
T = T ,0 (r, ϕ, y ),
ï
ï
ï
(36)
τ =0
ãäå Tï,0 çàäàííàÿ òåìïåðàòóðà.
Äëÿ óðàâíåíèÿ íà ãðàíèöå ðàçäåëà ñìàçî÷íûé ñëîé R1 ≤ r ≤ R2 ,
0 < ϕ < θ íà ïîâåðõíîñòè ïîäóøêè ñòàâÿòñÿ óñëîâèÿ ñîïðÿæåíèÿ
∂T
∂t
=λ
,
(37)
t|y=h = T |yï =0 , − cρVy t − λ
∂y y=h
∂y yï =0
ï
ï
ï
ï
ì
ï
ãäå Tï òåìïåðàòóðà ïîäóøêè, h çàçîð â óïîðíîì ïîäøèïíèêå, λì , λï
ïàðàìåòðû, êîýôôèöèåíòû òåïëîïðîâîäíîñòè ìàñëà è ïîäóøêè.
Íà ãðàíèöàõ ïîäóøêè ïðè r = R1 , r = R2 , ϕ = 0, ϕ = θï , yï = hï ,
ñîîòâåòñòâåííî, ñòàâÿòñÿ ãðàíè÷íûå óñëîâèÿ òðåòüåãî ðîäà:
∂T
r + αTï R1 r = αTï R1 Ta2 r, r = R1 ,
(38)
∂r
∂T
r + αTï R2 r = αTï R2 Ta3 r, r = R2 ,
(39)
+λ r
∂r
λ ∂T
−
r + αTï 0 r = αTï 0 Ta1 r, ϕ = 0,
(40)
r ∂ϕ
λ ∂T
r + αTï θï r = αTï θï Ta1 r, ϕ = θ ,
(41)
+
r ∂ϕ
∂T
+λ
r + αTï hï r = αTï hï Ta4 r, y = h ,
(42)
∂y
ãäå αTï hï , Ta4 êîýôôèöèåíò òåïëîîòäà÷è è òåìïåðàòóðû ñ òûëüíîé ñòîðîíû ïîäóøêè, αTï 0 , αTï θï êîýôôèöèåíòû òåïëîîòäà÷è ïðè ϕ = 0 è ϕ =
θ ), Ta1 òåìïåðàòóðà ñìàçêè â ìåæïîäóøå÷íîì êàíàëå, αTï R1 ,αTï R2 , Ta2 ,
ï
−λ r
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
Ta3 ïàðàìåòðû êîýôôèöèåíò òåïëîîòäà÷è è òåìïåðàòóðà îêðóæàþùåé
ñðåäû ïðè r = R1 , r = R2 .
16
2
Ïðèâåäåíèå çàäà÷è ê áåçðàçìåðíîìó âèäó
Òîëùèíà çàçîðà h = h(r, ϕ) ñìàçî÷íîãî ñëîÿ ñóùåñòâåííî ìåíüøå òîëùèí ïîäóøåê è óïîðíîãî äèñêà, îíà ÿâëÿåòñÿ ïåðåìåííîé âåëè÷èíîé çà
ñ÷¼ò ïðîôèëèðîâàíèÿ ïîäóøêè è âîçìîæíûõ òåìïåðàòóðíûõ äåôîðìàöèé. Òàêæå, õàðàêòåðèñòèêè òâ¼ðäûõ ìàòåðèàëîâ ïîäøèïíèêà è ñìàçêè
èìåþò ðàçëè÷íûé ïîðÿäîê. Ïîýòîìó, äëÿ óäîáñòâà è ïîâûøåíèÿ êà÷åñòâà
ðåøåíèÿ çàäà÷è, ïðîèçâîäèòñÿ îñîáàÿ çàìåíà ïåðåìåííûõ, ñîõðàíÿþùàÿ
äèâåðãåíòíûé âèä óðàâíåíèÿ ýíåðãèè â ñìàçî÷íîì ñëîå.
2.1
Çàìåíà ïåðåìåííûõ
Ïðîèçâåä¼ì çàìåíó ïðîñòðàíñòâåííûõ ïåðåìåííûõ1
r = (σr̄ + 1)Rcp ,
ϕ = θϕ̄,
y = h∗0 h̄ȳ, y = H ȳ , y∂ = H∂ ȳ∂ , τ = τ ∗ τ̄ ,
R2 + R1
R2 − R1
R2 − R1
ãäå Rcp =
,σ=
=
, h òîëùèíà çàçîðà, h∗0
2
R2 + R1
2Rcp
õàðàêòåðíàÿ òîëùèíà ñìàçî÷íîãî ñëîÿ, H òîëùèíà ïîäóøêè, H∂
òîëùèíà äèñêà, τ ∗ õàðàêòåðíîå âðåìÿ.
Ýòîé çàìåíå ñîîòâåòñòâóåò ñëåäóþùèå ìàòðèöû ßêîáè.
Äëÿ ñìàçî÷íîãî ñëîÿ
1
ï
ï
ï
ï
J =
σRcp
1
θ0
0
h̄
h̄ ȳ
ϕ̄ ȳ h∗0
− r̄
−
σRcp h̄
θh̄ h̄
.
(43)
Äëÿ ïîäóøêè è äèñêà
1
σRcp
1
J =
θ
ï
1
σRcp
1
J∂ =
θ
,
1
H
ï
1 Äàëåå,
.
1
H∂
òàì, ãäå ýòî íå âûçûâàåò íåäîðàçóìåíèé, áóäåì èñïîëüçîâàòü îáîçíà÷åíèÿ äëÿ ïðîñòðàí-
ñòâåííûõ ïåðåìåííûõ è ôóíêöèé, îïóñêàÿ ñèìâîë íàä÷¼ðêèâàíèÿ
17
Îïðåäåëèòåëè ìàòðèö ßêîáè äëÿ îáëàñòåé
1
1
1
, |J | =
, |J∂ | =
,
σRcp θH
σRcp θH∂
σRcp θh∗0 h̄
|J −1 | = σRcp θh∗0 h̄; |J −1 | = σRcp θH ; |J∂−1 | = σRcp θH∂ ;
|J| =
ï
ï
ï
ï
Òàê æå äëÿ ãðàíèö:
−1
−1
−1
|Jr,ϕ
| = σRcp θ, |Jr,y
| = σRcp h∗0 h̄, |Jϕ,y
| = θh∗0 h̄,
−1
−1
|J −1
,r,ϕ | = σRcp θ, |J ,r,y | = σRcp H , |J ,ϕ,y | = θH ,
ï
ï
ï
ï
ï
−1
−1
−1
|J∂,r,ϕ
| = σRcp θ, |J∂,r,y
| = σRcp H∂ , |J∂,ϕ,y
| = θH∂ .
Äëÿ äèôôåðåíöèðóåìîé ôóíêöèè η âûïîëíÿåòñÿ
∂ η̄ ∂ ȳ
∂η ∂ η̄ ∂r̄
=
+0+
∂r ∂r̄ ∂r
∂ ȳ ∂y
∂η
∂ η̄ ∂ ϕ̄ ∂ η̄ ∂ ȳ
=0 +
+
∂ϕ
∂ ϕ̄ ∂ϕ ∂ ȳ ∂y
∂η
∂ η̄ ∂ ȳ
=0 + 0 +
∂y
∂ ȳ ∂y
 ìàòðè÷íîì âèäå
¯
∇η = J T ∇η̄.
Òàêèì îáðàçîì, îáðàçóþòñÿ îáëàñòè
ΩRe = L̄1 = {x = (r̄, ϕ̄ ) : r̄ ∈ [−1, 1], ϕ̄ ∈ [0, θ̄ ], ȳ ∈ [0, 1]}
ï
Ω
ì
= L̄2 = {x = (r̄, ϕ̄, ȳ) : r̄ ∈ [−1, 1], ϕ̄ ∈ [0, θ̄ ], ȳ ∈ [0, 1]}
Ω = L̄3 = {x = (r̄, ϕ̄, ȳ) : r̄ ∈ [−1, 1], ϕ̄ ∈ [0, θ̄ ], ȳ ∈ [0, 1]}
ï
ï
Ω∂ = L̄4 = {x = (r̄, ϕ̄, ȳ) : r̄ ∈ [−1, 1], ϕ̄ ∈ [0, θ̄ ], ȳ ∈ [0, 1]}
Òàêæå, âûïîëíèì îáåçðàçìåðèâàíèå íåêîòîðûõ âåëè÷èí.
1. ω = ω∗ ω̄ , ãäå ω∗ õàðàêòåðíàÿ ñêîðîñòü
2. h = h∗0 h̄
3. ρ = ρ0 ρ̄
4. µ = µ0 µ̄
18
5. c = c0 c̄
2
θ
µ∗ ω∗ Rcp
p̄,
6. p =
h2∗0
2
θ
µ∗ ω∗ Rcp
7. t =
t̄ + t∗ , çäåñü t∗ õàðàêòåðíàÿ òåìïåðàòóðà ñìàçî÷íîãî
c0 ρ∗ h2∗0
ñëîÿ
2
µ∗ ω∗ Rcp
θ
T¯ + t∗ ,
8. T =
2
c0 ρ∗ h∗0
ï
ï
2
µ∗ ω∗ Rcp
θ
9. T∂ =
T¯∂ + t∗ ,
2
c0 ρ∗ h∗0
Îáåçðàçìåðèâàíèå äëÿ òåìïåðàòóðû ïîäóøêè è äèñêà àíàëîãè÷íû çàìåíå äëÿ òåìïåðàòóðû ñìàçî÷íîãî ñëîÿ. Ýòî íåîáõîäèìî äëÿ ñîáëþäåíèÿ
áàëàíñà òåïëîâûõ ïîòîêîâ.
Êðèòåðèè è âñïîìîãàòåëüíûå ïåðåìåííûå
1. λ =
2Rcp θ
θ
= îòíîñèòåëüíàÿ äëèíà ïîäóøêè
R2 − R1
σ
2. ψ =
h∗0
îòíîñèòåëüíàÿ òîëùèíà ñìàçî÷íîãî ñëîÿ
Rcp θ
3. ψï =
H
îòíîñèòåëüíàÿ òîëùèíà ïîäóøêè
Rcp θ
4. ψ∂ =
H∂
îòíîñèòåëüíàÿ òîëùèíà äèñêà
Rcp θ
5. Re =
ρ0 ω∗ Rcp h∗0
êðèòåðèé Ðåéíîëüäñà
µ0
6. Sh =
θ
êðèòåðèé Ñòðóõàëÿ
ω∗ τ ∗
7. P e =
c0 ρ0 ω∗ Rcp h∗0
êðèòåðèé Ïåêëå ñìàçêè
λ 0
ï
ì
8. P eï =
c0 ρ0 ω∗ Rcp H
êðèòåðèé Ïåêëå ïîäóøêè
λ 0
ï
ì
9. P e∂ =
c0 ρ0 ω∗ Rcp H∂
êðèòåðèé Ïåêëå äèñêà
λ 0
ì
19
10. N uïR1 =
αTï R1 Rcp θ
Êðèòåðèé Íóññåëüòà ïîäóøêè ïðè r = R1
λ
ï
11. N uïR2 =
αTï R2 Rcp θ
Êðèòåðèé Íóññåëüòà ïîäóøêè ïðè r = R2
λ
ï
12. N uïϕ0 =
αTï 0 Rcp θ
Êðèòåðèé Íóññåëüòà ïîäóøêè ïðè ϕ = 0
λ
ï
αTï θï Rcp θ
Êðèòåðèé Íóññåëüòà ïîäóøêè ïðè ϕ = θ
λ
13. N uïθï =
ï
ï
14. N uïHï =
αTï Hï Rcp θ
Êðèòåðèé Íóññåëüòà ïîäóøêè ïðè y = H
λ
ï
ï
15. N u∂R1 =
αT∂ R1 Rcp θ
Êðèòåðèé Íóññåëüòà äèñêà ïðè r = R1
λ∂
16. N u∂R2 =
αT∂ R2 Rcp θ
Êðèòåðèé Íóññåëüòà äèñêà ïðè r = R2
λ∂
17. N u∂0 =
2.2
2.2.1
αT∂ 0 Rcp θ
Êðèòåðèé Íóññåëüòà äèñêà ïðè y∂ = 0
λ∂
Ïðîöåäóðà çàìåíû ïåðåìåííûõ
Êîýôôèöèåíòû â óðàâíåíèÿõ è ñêîðîñòè
Âîñïîëüçóåìñÿ çàìåíîé ïåðåìåííûõ (2.1).
Zy
ik =
yk
dy =
µ
0
Îáîçíà÷èâ īk =
Zȳ
(h∗0 h̄y)k
(h∗0 h̄)k+1
h∗0 h̄dȳ =
µ
µ0
0
Zȳ
0
Rȳ ȳ k
dȳ ìîæíî çàïèñàòü
µ̄
0
(h∗0 h̄)k+1
ik =
īk
µ0
Àíàëîãè÷íî
mk =
(h∗0 h̄)k+1
m̄k ,
µ0
R1 ȳ k
çäåñü m̄k =
dȳ .
0 µ̄
20
ȳ k
dȳ,
µ̄
ï
Äëÿ ñêîðîñòåé ââåä¼ì ñîîòíîøåíèÿ
j = {r, ϕ, y}.
Vj = ω∗ Rcp V̄j ,
Òàêèì îáðàçîì,
m1
i0
1 ∂p
i1 −
i0 δ1 + ωr 1 −
=
Vϕ =
r ∂ϕ
m0
m0
2
θ
µ∗ ω∗ Rcp
∂ p̄ (h∗0 h̄)2
(h∗0 h̄)2 m̄1
1
=
ī1 −
ī0 δ1 +
θh∗0 Rcp (σr̄ + 1) ∂ ϕ̄
µ0
µ0 m̄0
ī0
+ ω∗ ω̄(σr̄ + 1)Rcp 1 −
=
m̄0
µ∗ h̄2
∂ p̄
m̄1
ī0
= ω∗ Rcp
ī1 −
ī0 δ1 + ω̄(σr̄ + 1) 1 −
.
µ0 (σr̄ + 1) ∂ ϕ̄
m̄0
m̄0
Îáîçíà÷èì òî, ÷òî íàõîäèòñÿ â êâàäðàòíûõ ñêîáêàõ êàê V̄ϕ .
Ïðåîáðàçîâàíèÿ äëÿ j è n àíàëîãè÷íû äðóã äðóãó.
Zy
j=
1
µ
Zy
ρVϕ2 dydy =
0
0
Zȳ
1
µ0 µ̄
0
Zȳ
ρ0 ρ̄(ω∗ Rcp )2 V̄ϕ2 (h∗0 h̄)2 dȳdȳ =
0
2 2
ρ0 ω∗2 Rcp
h∗0 2
=
h̄
µ0
Zȳ
0
1
µ∗
Zȳ
ρ̄V̄ϕ2 dȳdȳ = Re2
µ0 2
h̄ j̄.
ρ0
0
Òàêèì îáðàçîì
µ0 2
h̄ j̄
ρ0
µ0
n = Re2 h̄2 n̄
ρ0
Êîýôôèöèåíòû, èñïîëüçóåìûå â óðàâíåíèè Ðåéíîëüäñà
j = Re2
Zh
Z1
m1
(h∗0 h̄)2
m̄1
f 0 = ρ i1 −
i0 dy = ρ0 ρ̄
ī1 −
ī0 h∗0 h̄dȳ =
m0
µ0
m̄0
0
0
(h∗0 h̄)3
=
ρ0
µ0
Z1
m̄1
(h∗0 h̄)3 ¯
ρ̄ ī1 −
ī0 dȳ =
ρ0 f 0
m̄0
µ0
0
21
Zh
n
i0 dy =
f1 = ρ j −
m0
0
Z1
n̄
= Re2 µ0 h̄2 ρ̄ j̄ −
ī0 h¯∗0 h̄dȳ = Re2 µ0 h∗0 h̄3 f¯1 .
m̄0
0
Zh
i0
f2 = ρ 1 −
dy = ρ0 h∗0 h̄f¯2 .
m0
0
A=
ρ0 h∗0 ∂
h̄
τ∗
∂ τ̄
Z1
ρ̄dȳ − ρ̄|ȳ=1
∂ h̄ ρ0 h∗0
=
Ā.
∂ τ̄
τ∗
0
Îáåçðàçìåðèì îñòàâøèåñÿ êîìïîíåíòû âåêòîðà ñêîðîñòè.
∂p
m1
1
n
Vr =
i1 −
i 0 δ1 −
j−
i0 =
∂r
m0
r
m0
2
µ∗ ω∗ Rcp
θ (h∗0 h̄)2 ∂ p̄
m̄1
=
ī1 −
ī0 δ1 −
σRcp h2∗0 µ0 ∂r̄
m̄0
µ
n̄
1
0
Re2 h̄2 j̄ −
ī0 =
−
(σr̄ + 1)Rcp
ρ0
m̄0
µ∗ θh̄2 ∂ p̄
m̄1
= ω∗ Rcp
ī1 −
ī0 δ1 −
µ0 σ ∂r̄
m̄0
n̄
Reµ0 h̄2 ρ0 ω∗ Rcp h∗0
−
j̄ −
ī0
=
2 ω ρ µ
(σr̄ + 1)Rcp
m̄0
∗ 0 0
µ∗ 2 ∂ p̄
m̄1
Reψσλh̄2
n̄
= ω∗ Rcp
λh̄
ī1 −
ī0 δ1 −
j̄ −
ī0
= ω∗ Rcp V̄r .
µ0
∂r̄
m̄0
(σr̄ + 1)
m̄0
Âûïîëíèì çàìåíó ïåðåìåííûõ â âûðàæåíèè äëÿ ñêîðîñòè â íàïðàâ-
22
ëåíèè y
1
Vy = −
ρ
Zy
∂ρ 1 ∂
1 ∂
+
(rρVr ) +
(ρVϕ ) dy =
∂τ r ∂r
r ∂ϕ
0
= ω∗ Rcp
1
−
ρ0 ρ̄
Zȳ
ρ0 ∂ ρ̄
+
τ ∗ ∂ τ̄
0
1
1 ∂
(σr̄ + 1)Rcp ρ0 ρ̄ω∗ Rcp V̄r +
(σr̄ + 1)Rcp σRcp ∂r̄
∂
1 ∂
h̄0r̄ ȳ
+
+
(σr̄ + 1)Rcp ρ0 ρ̄ω∗ Rcp V̄r −
ρ0 ρ̄ω∗ Rcp V̄ϕ +
∂ ȳ
θ ∂ ϕ̄
σRcp h̄
!
h̄0ϕ̄ ȳ
∂
h∗0 h̄dy =
+
ρ0 ρ̄ω∗ Rcp V̄ϕ −
∂ ȳ
θh̄
+
Zȳ
h∗0
Sh ∂ ρ̄
= ω∗ Rcp −
+
σθρ̄
Rcp ∂ τ̄
0
∂
1
θ
(σr̄ + 1)ρ̄V̄r +
+
(σr̄ + 1)Rcp ∂r̄
0
h̄ ȳθ ∂
+ − r̄
(σr̄ + 1)ρ̄V̄r +
∂ ȳ
h̄
!
h̄0ϕ̄ ȳσ ∂
∂
h̄dȳ =
+σ
ρ̄V̄ϕ + −
ρ̄V̄ϕ
∂ ϕ̄
∂ ȳ
h̄
= ω∗ Rcp
ψ
−
σ ρ̄
Zȳ
∂ ρ̄
Sh +
∂ τ̄
0
∂
1
∂
h̄ θ
(σr̄ + 1)ρ̄V̄r + σ
ρ̄V̄ϕ −
σr̄ + 1
∂r̄
∂ ϕ̄
0 ∂
∂
− ȳ h̄r̄ θ
(σr̄ + 1)ρ̄V̄r + h̄0ϕ̄ σ
ρ̄V̄ϕ
dȳ = ω∗ Rcp V̄y ,
∂ ȳ
∂ ȳ
+
ïðè y ∈ [0, y0 ], äëÿ y ∈ [y0 , h] àíàëîãè÷íî.
2.2.2
Óðàâíåíèå Ðåéíîëüäñà
Ðàññìîòðèì óðàâíåíèå Ðåéíîëüäñà (1) ñ ãðàíè÷íûìè óñëîâèÿìè (2)(4).
Óìíîæèì îáå ÷àñòè óðàâíåíèÿ íà 1/r è ïðîáíóþ ôóíêöèþ v : v|ΓR =
23
0. è ïðîèíòåãðèðóåì ïî îáëàñòè Ω.
Z
1
∂
∂
∂p
∂p
2
2
r
rf0 − f1 +
f0
+ ωr f2 + Ar vdx = 0
r ∂r
∂r
∂ϕ
∂ϕ
Ω
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì.
∂p
= 0, x ∈ Γϕ , v|ΓR = 0, cos(ν, r) = 0, x ∈ Γϕ , ãäå ν
∂ϕ
âíåøíÿÿ íîðìàëü ê ãðàíèöå, òî èíòåãðàëû ïî ãðàíèöàì îáðàòÿòñÿ â íóëü.
Z
Z
Z
Z
Z
1 ∂p ∂v
∂f1
∂f2
∂p ∂v
rf0
dx +
f0
dx = −
vdx + ωr
vdx + Arvdx
∂r ∂r
r ∂ϕ ∂ϕ
∂r
∂ϕ
Ïîñêîëüêó
Ω
Ω
Ω
Ω
Ω
Ââåä¼ì çàìåíó ïåðåìåííûõ r = (σr̄ + 1)Rcp , ϕ = θϕ. Åé ñîîòâåòñòâóåò
ñëåäóþùàÿ ìàòðèöà ßêîáè
1
J = σRcp
1
θ
1
, |J −1 | = σRcp θ.
σRcp θ
Ðàññìîòðèì êàæäûé èíòåãðàë â îòäåëüíîñòè.
|J| =
Z
I1 =
Ω
Z
2
θ ∂ p̄ ∂v
∂p ∂v
(σr̄ + 1)Rcp ρ0 h3∗0 h̄3 µ∗ ω∗ Rcp
dx =
f0
σRcp θdx =
rf0
∂r ∂r
(σRcp )2 µ0
h2∗0
∂r̄ ∂r̄
Ω
Z
2
(σr̄ + 1)Rcp
h∗0 µ∗ ω∗ θ2 ρ0 3 ∂ p̄ ∂v
=
h̄ f¯0
dx =
σµ0
∂r̄ ∂r̄
Ω
Z
∂ p̄ ∂v
2
= Reλ σµ∗ Rcp (σr̄ + 1)h̄3 f¯0
dx
∂r̄ ∂r̄
Ω
Z
I2 =
Ω
2
ρ0 ω∗ Rcp
h∗0 σµ∗
1 ∂p ∂v
f0
dx =
r ∂ϕ ∂ϕ
µ0
h̄3
∂ p̄ ∂v
f¯0
dx =
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
Ω
Z
h̄3
∂ p̄ ∂v
f¯0
dx
= Reσµ∗ Rcp
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
Z
Ω
24
Z
∂f1
σRcp θ 2
∂(h̄3 f¯1 )
I3 = −
vdx = −
vdx =
Re µ0 h∗0
∂r
σRcp
∂r̄
Ω
Ω
Z
Z
∂(h̄3 f¯1 )
∂(h̄3 f¯1 )
2
2
2 2
= −Re θµ0 h∗0
vdx = −Re ψσ λ µ0 Rcp
vdx
∂r̄
∂r̄
Z
Ω
Z
I4 =
∂f2
ωr
vdx =
∂ϕ
Ω
Z
Ω
Ω
ω∗ ω̄(σr̄ + 1)Rcp ρ0 h∗0 σRcp θ ∂(h̄f¯2 )
vdx =
θ
∂ ϕ̄
Z
∂(h̄f¯2 )
vdx
= Reω̄µ0 Rcp σ (σr̄ + 1)
∂ ϕ̄
Ω
Z
I5 =
Z
ρ0 h∗0
(σr̄ + 1)Rcp ĀvσRcp θdx =
τ∗
Ω
Z
Z
µ0 σθRcp
Ā(σr̄ + 1)vdx = ReShµ0 Rcp σ Ā(σr̄ + 1)vdx
= Re
ω∗ τ ∗
Arvdx =
Ω
Ω
Ω
Ïîñëå çàìåíû ïåðåìåííûõ èìååì
Z
∂
p̄
∂v
∂ p̄ ∂v
h̄3
Reλ2 σµ∗ Rcp (σr̄ + 1)h̄3 f¯0
dx + Reσµ∗ Rcp
f¯0
dx =
∂r̄ ∂r̄
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
Ω
Ω
Z
Z
3¯
∂(h̄ f1 )
∂(h̄f¯2 )
2
2 2
= −Re ψσ λ µ0 Rcp
vdx + Reω̄µ0 Rcp σ (σr̄ + 1)
vdx+
∂r̄
∂ ϕ̄
Ω
Ω
Z
+ ReShµ0 Rcp σ (σr̄ + 1)Āvdx
Z
Ω
Óìíîæèì îáå ÷àñòè ðàâåíñòâà íà âåëè÷èíó
λ2
Z
Ω
1
Reσµ∗ Rcp
Z
∂
p̄
∂v
h̄3
∂ p̄ ∂v
3¯
(σr̄ + 1)h̄ f0
dx +
f¯0
dx =
∂r̄ ∂r̄
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
Ω
Z
Z
3¯
µ0
∂(h̄ f1 )
µ0
∂(h̄f¯2 )
= −Reψσλ
vdx + ω̄
(σr̄ + 1)
vdx+
µ∗
∂r̄
µ∗
∂ ϕ̄
Ω
Ω
Z
µ0
+ Sh
(σr̄ + 1)Āvdx (44)
µ∗
Ω
25
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì è ïîëó÷èì áåçðàçìåðíûé âèä óðàâíåíèÿ Ðåéíîëüäñà
3
h̄
∂
∂
p̄
∂
p̄
f¯0
(σr̄ + 1)h̄ f¯0
−
=
∂r̄
∂ ϕ̄ (σr̄ + 1) ∂ ϕ̄
µ0
µ0
µ0 ∂(h̄3 f¯1 )
∂(h̄f¯2 )
+ ω̄ (σr̄ + 1)
+ Sh (σr̄ + 1)Ā. (45)
= −Reψσλ2
µ∗ ∂r̄
µ∗
∂ ϕ̄
µ∗
∂
−λ
∂r̄
2
2.2.3
3
Óðàâíåíèå íåðàçðûâíîñòè
Ïåðåä ïðåîáðàçîâàíèåì óðàâíåíèÿ ýíåðãèè ðàññìîòðèì óðàâíåíèå íåðàçðûâíîñòè
∂ρ 1 ∂
1 ∂
∂
+
(rρVr ) +
(ρVϕ ) +
(ρVy ) = 0
∂τ r ∂r
r ∂ϕ
∂y
(46)
Óìíîæèì óðàâíåíèå2 íà c, r è ïðîáíóþ ôóíêöèþ v : v|ΓR = 0, çàòåì
ïðîèíòåãðèðóåì ïîëó÷èâøååñÿ óðàâíåíèå ïî îáëàñòè Ω.
Z
∂ρ
c vrdx +
∂τ
Z
Vϕ
∂
∂
∂
crρVr +
cρ
r+
cρVy r vdx = 0
∂r
∂ϕ
r
∂y
Ω
Ω
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì
Z
∂v
∂v
∂ρ
Vϕ ∂v
c vrdx −
cρVr
+ cρ
+ cρVy
rdx+
∂τ
∂r
r ∂ϕ
∂y
Ω
Ω
Z
Vϕ
+
cρVr cos(ν, r) + cρ
cos(ν, ϕ) + cρVy cos(ν, y) vrdx = 0
r
Z
Γ
Îáîçíà÷èì
Vr
Vϕ
V = cρ
r ,
Vy
∇v =
∂v
∂r
∂v
∂ϕ
∂v
∂y
.
Óðàâíåíèå ïðèîáðåòàåò âèä
Z
Ω
2 Ïîñêîëüêó
c
∂ρ
c vrdx −
∂τ
Z
Z
V · ∇vrdx +
Ω
V · νvrdx = 0.
Γ
ñëàáî çàâèñèò îò òåìïåðàòóðû, áóäåì ïîëîãàòü äàëåå ïðè âûâîäå óðàâíåíèé
const
26
c=
Ïðîèçâåä¼ì çàìåíó ïåðåìåííûõ ñîãëàñíî (2.1)
c0 ρ0
τ∗
Z
c̄
Ω
∂ ρ̄
v(σr̄ + 1)Rcp |J −1 |dx−
∂ τ̄
Z
− c0 ρ0 ω∗ Rcp V̄ · J T ∇v(σr̄ + 1)Rcp |J −1 |dx+
Ω
Z
V̄ · νv(σr̄ + 1)Rcp |J −1 |dx = 0. (47)
+ c0 ρ0 ω∗ Rcp
Γ
2.2.4
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå
Ðàññìîòðèì óñëîâèå ðàâåíñòâà òåìïåðàòóð è òåïëîâûõ ïîòîêîâ (21).
Âûïîëíåíî
(48)
−(V t − K∇t) · ν = −K∂ ∇T∂ · ν∂ ,
ãäå
Vr
Vϕ
V = cρ
r ,
Vy
0
K=
λ
r2
(49)
,
ì
λ
ì
λ∂
λ∂
r2
K∂ =
(50)
,
λ∂
ν âåêòîð íîðìàëè ê ãðàíèöå ñìàçî÷íîãî ñëîÿ ïðè y = 0, ν∂ âåêòîð
íîðìàëè ê ãðàíèöå äèñêà ïðè y∂ = H∂ .
Ïîñêîëüêó òåìïåðàòóðû íà ãðàíèöå ðàâíû, òî ñïðàâåäëèâî
−(V t − K∇t) · ν + ωα∂ t = −K∂ ∇T∂ · ν∂ + ωα∂ T∂ ,
çäåñü ωα∂ íåêîòîðîå âåùåñòâåííîå ÷èñëî.
Åñëè îáîçíà÷èòü gì∂ = −K∂ ∇T∂ · ν∂ + ωα∂ T∂ , òî óðàâíåíèå âûøå ïðèìåò âèä
−(V t − K∇t) · ν + ωα∂ t = g ∂ ,
ì
r ∈ [R1, R2], ϕ ∈ [0, θ], y = 0.
(51)
Ïîâòîðÿÿ ðàññóæäåíèÿ íà ãðàíèöå ñìàçî÷íîãî ñëîÿ ïðè y = h ïîëó÷èì
−(V t − K∇t) · ν + ωα t = g ,
ï
ìï
r ∈ [R1, R2], ϕ ∈ [0, θ ], y = h.
ï
27
(52)
Äîïîëíèì óðàâíåíèå (14) ãðàíè÷íûìè óñëîâèÿìè (51) è (52). Äëÿ
óäîáñòâà çàïèñè ïðåäñòàâèì èõ â âèäå
(53)
−(V t − K∇t) · ν + ωα t = g , x ∈ ΓN 3
ì
ãäå ΓN 3 ãðàíèöà ñìàçî÷íîãî ñëîÿ, ñîïðèêàñàþùàÿñÿ ñ äèñêîì è ïîäóøêîé,
(
ωα =
ωα∂ , y = 0
,
ωα , y = h
(
g =
ì
ï
g ∂, y = 0
g ,y = h
ì
ìï
Ïðèâåä¼ì óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå (14) ê áåçðàçìåðíîìó
âèäó. Äëÿ ýòîãî óìíîæèì åãî íà r è ïðîáíóþ ôóíêöèþ v : v|ΓR = 0,
çàòåì, ïðîèíòåãðèðóåì ïî îáëàñòè Ω.
Z
Ω
Z
∂ρ
∂t
∂
∂ cρ
λ ∂t
c
t+ρ
vrdx +
(cρrVr t) +
Vϕ t − 2
r+
∂τ
∂τ
∂r
∂ϕ r
r ∂ϕ
Ω
2
2
Z
∂t
∂Vϕ
∂Vr
∂
cρVy t − λ
r vdx = µ
+
vrdx
+
∂y
∂y
∂y
∂y
ì
ì
Ω
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì
∂ρ
∂t
c
t+ρ
vrdx−
∂τ
∂τ
Ω
Z
λ ∂t ∂v
∂t ∂v
cρ
rdx+
−
cρrVr t +
Vϕ t + − 2
+ cρVy t − λ
r
r ∂ϕ ∂ϕ
∂y ∂y
Ω
Z
cρ
λ ∂t
∂t
+
cρrVr t + Vϕ t − 2
+ cρVy t − λ
· νvrdx =
r
r ∂ϕ
∂y
Γ
2
2 #
Z "
∂Vϕ
∂Vr
= µ
+
vrdx
∂y
∂y
Z
ì
ì
ì
ì
Ω
Ïðè îáîçíà÷åíèÿõ (49) èìååì
Z
∂t
∂ρ
t+ρ
c
∂τ
∂τ
Ω
Z
vrdx −
(V t − K∇t) · ∇vrdx+
Ω
Z
(V t − K∇t) · νvrdx. =
+
"
Z
Γ
µ
Ω
28
∂Vϕ
∂y
2
+
∂Vr
∂y
2 #
vrdx
Âîñïîëüçóåìñÿ ãðàíè÷íûìè óñëîâèÿìè
Z
∂t
∂ρ
c
t+ρ
∂τ
∂τ
Z
vrdx −
Ω
(V t − K∇t) · ∇vrdx−
Ω
"
Z
Z
(g − ωα t) vrdx. =
−
µ
ì
∂Vϕ
∂y
2
+
∂Vr
∂y
2 #
vrdx
Ω
ΓN 3
Ïðîèçâåä¼ì çàìåíó ïåðåìåííûõ ñîãëàñíî (2.1). Äëÿ êðàòêîñòè t =
Ct t̄ + t∗ ,
2
µ∗ ω∗ Rcp
θ
Ct =
c0 ρ∗ h2∗0
Z
c0 ρ 0
∂ ρ̄
∂ t̄
Ct ∗
c̄
v(σr̄ + 1)Rcp |J −1 |dx−
t̄ + ρ̄
τ
∂ τ̄
∂ τ̄
Ωì
Z
h∗0
¯ t̄ · J T ∇v(σr̄
¯
V̄ t̄ −
− Ct c0 ρ0 ω∗ Rcp
K̄J T ∇
+ 1)Rcp |J −1 |dx−
Pe
Ωì
Z
−
g − ωα Ct t̄ − ωα t∗ v(σr̄ + 1)Rcp |J −1 |dx+
ì
ΓN 3
Z
c0 ρ0
+
τ∗
c̄
∂ ρ̄
v(σr̄ + 1)Rcp |J −1 |dx−
∂ τ̄
Ωì
Z
− c0 ρ0 ω∗ Rcp
¯
V̄ · J T ∇v(σr̄
+ 1)Rcp |J −1 |dx±
Ωì
Z
± c0 ρ0 ω∗ Rcp
V̄ · νv(σr̄ + 1)Rcp |J
−1
|dx t∗ =
Γ
=
2
ω∗2 Rcp
µ0
h2∗0
Z
µ̄
∂ V̄ϕ
∂ ȳ
2
+
∂ V̄r
∂ ȳ
2
|J −1 |
v(σr̄ + 1)Rcp 2 dx,
h̄
Ωì
çäåñü
V̄ = c̄ρ̄
V̄r
V̄ϕ
(σr̄ + 1)Rcp
V̄y
,
K̄ =
0
λ¯
2
(σr̄ + 1)2 Rcp
ì
λ¯
ì
29
.
 ñèëó ðàâåíñòâà (47) è ãðàíè÷íûõ óñëîâèé äëÿ óðàâíåíèÿ (14) ñëàãàåìîå â êâàäðàòíûõ ñêîáêàõ ïðè t∗ ðàâíî íóëþ. Èìååì
∂ ρ̄
∂ t̄
c̄
t̄ + ρ̄
v(σr̄ + 1)Rcp |J −1 |dx−
∂ τ̄
∂ τ̄
Ω
Z
h∗0
T ¯
¯
K̄J ∇t̄ · J T ∇v(σr̄
+ 1)Rcp |J −1 |dx−
− Ct c0 ρ0 ω∗ Rcp
V̄ t̄ −
Pe
Ω
Z
−
(g − ωα Ct t̄ − ωα t∗ ) v(σr̄ + 1)Rcp |J −1 |dx =
c0 ρ 0
Ct ∗
τ
Z
ì
ΓN 3
2
ω∗2 Rcp
µ0
=
h2∗0
"
Z
µ̄
∂ V̄ϕ
∂ ȳ
2
+
∂ V̄r
∂ ȳ
2 #
|J −1 |
v(σr̄ + 1)Rcp 2 dx,
h̄
Ω
Âîñïîëüçóåìñÿ îïðåäåëåíèåì ñîïðÿæ¼ííîé ìàòðèöû u · AT v = Au · v ,
4
θ).
∀u, v è óìíîæèì îáå ÷àñòè ðàâåíñòâà íà 1/(Ct c0 ρ0 ω∗ σRcp
Z
Z
Z
Z
∂(ρ̄t̄)
¯ · νvdx −
b
vdx −
Υ t̄ − κ ∇t
ḡ − σ t̄ vdudx = f vdx
∂ τ̄
ì
ì
Ω
ì
ì
ì
ΓN 3
Ω
ì
Ω
(54)
çäåñü
ψ
c̄h̄(σr̄ + 1)
Rcp
h∗0
Υ = σψλJ V̄ h̄(σr̄ + 1) κ = σψλ J K̄J T h̄(σr̄ + 1)
Pe
2
2
∂ V̄ϕ
(σr̄ + 1)
∂ V̄r
ω∗2 Rcp µ0
f =
µ̄
+
P eλ 0 Ct
∂ ȳ
∂ ȳ
h̄
ωα
g − ωα t ∗
σ =
(σr̄
+
1),
ḡ
=
(σr̄ + 1).
2
2
c0 ρ0 ω∗ Rcp
Ct c0 ρ0 ω∗ Rcp
Îáðàòíûìè ïðåîáðàçîâàíèÿìè ïîëó÷èì óðàâíåíèå â äèâåðãåíòíîì âèb = Sh
ì
ì
ì
ì
ì
ì
äå
∂(ρ̄t̄)
¯ t̄ = f ,
+ div Υ t̄ − κ ∇
∂ τ̄
ñ ãðàíè÷íûìè óñëîâèÿìè íà ãðàíèöå ïî y
¯ t̄ · ν + σ ∂ t̄ = ḡ ∂ , ȳ = 0,
− Υ t̄ − κ ∇
¯ t̄ · ν + σ t̄ = ḡ , ȳ = 1,
− Υ t̄ − κ ∇
b
ì
ì
ì
ì
(55)
ì
ì
ì
ì
(56)
ì
ì
ìï
ìï
(57)
çäåñü σì∂ = σì |ȳ=0 , ḡì∂ = ḡì |ȳ=0 , σìï = σì |ȳ=1 , ḡìï = ḡì |ȳ=1 .
30
2.2.5
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå
Ðàññìîòðèì óñëîâèå ðàâåíñòâà òåìïåðàòóð è òåïëîâûõ ïîòîêîâ (29).
Âûïîëíåíî
K∂ ∇T∂ · ν∂ = V t − K∇t · ν.
Âûïîëíÿÿ äåéñòâèÿ àíàëîãè÷íûå ïóíêòó (2.2.4) ïîëó÷èì ãðàíè÷íîå
óñëîâèå äëÿ óðàâíåíèÿ (26)
K∂ ∇T∂ · ν∂ + ωα∂ T∂ = g∂ ,
ì
x ∈ Γ∂
ì
(58)
ãäå Γ∂ ì ãðàíèöà äèñêà ïðèëåãàþùàÿ ê ñìàçî÷íîìó ñëîþ, g∂ ì = V t −
K∇t · ν + ωα∂ t.
Óñëîâèÿ (30) (32), äëÿ êðàòêîñòè, ïðåäñòàâèì â âèäå
K∂ ∇T∂ · ν∂ + α∂3 T∂ = α∂3 Ta ,
x ∈ Γ∂3 ,
(59)
ãäå Γ∂3 ãðàíèöà äèñêà íå ñîïðèêàñàþùàÿñÿ ñî ñìàçî÷íûì ñëîåì,
α∂3
αT∂ R1 , r = R1
=
αT∂ R2 , r = R2 .
αT∂ 0 , y∂ = 0
(60)
Ïðèâåä¼ì óðàâíåíèå ýíåðãèè â äèñêå (26) ê áåçðàçìåðíîìó âèäó. Äëÿ
ýòîãî óìíîæèì åãî íà r è ïðîáíóþ ôóíêöèþ v , çàòåì ïðîèíòåãðèðóåì
ïî îáëàñòè Ω = L4
Z
Ω
Z
∂T∂
∂T∂
c ∂ ρ∂
vrdx + c∂ ρ∂ ω
vrdx−
∂τ
∂ϕ
Z Ω
∂T∂
∂T∂
∂
∂ λ∂ ∂T∂
∂
−
rλ∂
+
r+
λ∂
r vdx = 0
∂r
∂r
∂ϕ r2 ∂ϕ
∂y
∂y
Ω
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì
Z
Z
∂v
∂T∂
vrdx − c∂ ρ∂ ωT∂ rdx+
c ∂ ρ∂
∂τ
∂ϕ
Ω
Ω
Z
Z
∂T∂ ∂v λ∂ ∂T∂ ∂v
∂T∂ ∂v
+
λ∂
+ 2
+ λ∂
rdx+ c∂ ρ∂ ωT∂ cos(ν, ϕ)vrdx−
∂r ∂r
r ∂ϕ ∂ϕ
∂y ∂y
Ω
Γ
Z
∂T∂
λ∂ ∂T∂
∂T∂
λ∂
−
cos(r, ν) + 2
cos(ϕ, ν) + λ∂
cos(y, ν) vrdx = 0
∂r
r ∂ϕ
∂y
Γ
31
Çà ñ÷¼ò ðàâåíñòâà òåìïåðàòóð è òåïëîâûõ ïîòîêîâ ïî íàïðàâëåíèþ ϕ,
èíòåãðàëû íà ãðàíèöàõ ïî ϕ âçàèìîóíè÷òîæàòñÿ.
Îáîçíà÷èì
0
ωr
V∂ = c∂ ρ∂
r .
0
(61)
Ïðè ýòèõ îáîçíà÷åíèÿõ óðàâíåíèå ïðèìåò âèä
Z
∂T∂
c∂ ρ ∂
vrdx −
∂τ
Ω
Z
Z
(V∂ T∂ − K∂ ∇T∂ ) · ∇vrdx −
Ω
(K∂ ∇T∂ · ν)vrdx = 0
Γ
Âîñïîëüçóåìñÿ ãðàíè÷íûìè óñëîâèÿìè
Z
Ω
Z
∂T∂
c ∂ ρ∂
vrdx − (V∂ T∂ − K∂ ∇T∂ ) · ∇vrdx−
∂τ
ZΩ
Z
− α∂3 (Ta − T∂ )vrdx − (g∂ − ωα∂ T∂ )vrdx = 0. (62)
ì
Γ∂3
Γ∂ ì
Ïðîèçâåä¼ì çàìåíó ïåðåìåííûõ ñîãëàñíî (2.1). Ïîñêîëüêó t∗ êîíñòàíòà, òî ïðîèçâîäíûå îò íå¼ áóäóò îáðàùàòüñÿ â íîëü. Ñëåäîâàòåëüíî,
â ñëàãàåìûõ, ãäå òåìïåðàòóðà íàõîäèòñÿ ïîä çíàêîì ïðîèçâîäíîé îñòàíåòñÿ êîýôôèöèåíò ïðè T¯∂ .
Ó÷ò¼ì, ÷òî
Z
Z
V∂ t∗ · ∇vrdx = −
Ω
Z
V∂ t∗ · νvrdx = 0.
div(V∂ t∗ )vrdx +
Ω
Γ
Óìíîæèì îáå ÷àñòè ðàâåíñòâà (62) ïîñëå ïðåîáðàçîâàíèé íà
1
4 θ
Ct c0 ρ0 ω∗ σRcp
è îáúåäèíèì êîýôôèöèåíòû.
Z
Ω∂
∂ T¯∂
b∂
vdx −
∂ τ̄
Z
¯ T¯∂ ) · ∇vdx−
¯
(Υ∂ T¯∂ − κ∂ ∇
Ω∂
Z
−
(T̄a − σ∂3 T¯∂ )vdx −
Γ∂3
Z
Γ∂ ì
32
(ḡ∂ − σ ∂ T¯∂ )vdx = 0, (63)
ì
ì
ãäå
ψ∂
c¯∂ ρ¯∂ (σr̄ + 1)
Rcp
σψ∂ λ
H∂
Υ∂ =
J∂ V̄∂ (σr̄ + 1), κ∂ = σψ∂ λ
J∂ K̄∂ J∂T (σr̄ + 1)
Rcp
P e∂
b∂ = Sh
g∂ − ωα∂ t∗
ωα∂
(σr̄
+
1),
ḡ
=
(σr̄ + 1)
∂
2
2
c0 ρ0 ω∗ Rcp
Ct c0 ρ0 ω∗ Rcp
Ta − t∗
σ∂3 = C∂3 (σr̄ + 1)
T̄a =
(σr̄ + 1)
Ct
N u∂R1 ψ∂2 λ
, r̄ = −1
P
e
R
∂
cp
N u∂R2 ψ∂2 λ
C∂3 =
, r̄ = +1 .
P
e
∂ Rcp
N u∂0 ψ∂
, ȳ∂ = 0
P e∂ Rcp
Îáðàòíûìè ïðåîáðàçîâàíèÿìè ïîëó÷èì óðàâíåíèå â äèâåðãåíòíîì âèσ
äå
∂
ì
ì
=
ì
∂ T¯∂
¯ T¯∂ ) = 0
+ div(Υ∂ T¯∂ − κ∂ ∇
∂ τ̄
ñ ãðàíè÷íûìè óñëîâèÿìè
(64)
b∂
¯ T¯∂ ) · ν + σ∂3 T¯∂ = T̄a , x ∈ Γ∂3
−(Υ∂ T¯∂ − κ∂ ∇
¯ T¯∂ ) · ν + σ ∂ T¯∂ = ḡ∂ , x ∈ Γ∂
−(Υ∂ T¯∂ − κ∂ ∇
ì
2.2.6
ì
ì
(65)
(66)
Óðàâíåíèå ýíåðãèè â ïîäóøêå
Ðàññìîòðèì óñëîâèå ðàâåíñòâà òåìïåðàòóð è òåïëîâûõ ïîòîêîâ (37).
Âûïîëíåíî
K ∇T · ν = V t − K∇t · ν,
ï
ï
ï
ãäå
λ
ï
λ
r2
K =
ï
(67)
,
ï
λ
ï
Âûïîëíÿÿ äåéñòâèÿ àíàëîãè÷íûå ïóíêòó (2.2.4) ïîëó÷èì ãðàíè÷íîå
óñëîâèå äëÿ óðàâíåíèÿ (34)
K ∇T · ν + ωα T = g ,
ï
ï
ï
ï
ï
33
ïì
x∈Γ
,
ï ì
,
(68)
ãäå gïì = V t − K∇t · ν + ωαï t, Γï,ì ãðàíèöà ïîäóøêè, ïðèëåãàþùàÿ
ê ñìàçî÷íîìó ñëîþ.
Óñëîâèÿ (38) (42), äëÿ êðàòêîñòè, ïðåäñòàâèì â âèäå
K ∇T · ν + α 3 T = α 3 T 3 ,
ï
ï
ï
ï
ï
ï
(69)
x ∈ Γ 3,
ï
ï
ãäå Γï3 ãðàíèöà ïîäóøêè íå ñîïðèêàñàþùàÿñÿ ñî ñìàçî÷íûì ñëîåì,
α
ï
3
αTï R1 ,
αTï R2 ,
=
αTï 0 ,
αTï θï ,
αTï Hï ,
r = R1
r = R2
ϕ=0
,
T
ï
3
ϕ=θ
y =H
ï
ï
Ta2 ,
T ,
a3
=
Ta1 ,
T ,
a4
r = R1
r = R2
ϕ = 0, θ
y =H
(70)
ï
ï
ï
ï
Ïðèâåä¼ì óðàâíåíèå ýíåðãèè â ïîäóøêå (34) ê áåçðàçìåðíîìó âèäó.
Äëÿ ýòîãî óìíîæèì åãî íà r è ïðîáíóþ ôóíêöèþ v , çàòåì ïðîèíòåãðèðóåì ïî îáëàñòè Ω = L3
Z
∂T
vrdx−
∂τ
Z
∂T
∂T
∂ λ ∂T
∂
∂
rλ
+
r+
λ
r vdx = 0
−
∂r
∂r
∂ϕ r2 ∂ϕ
∂y
∂y
c ρ
ï
Ω
ï
ï
ï
ï
ï
ï
ï
ï
Ω
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì
Z
∂T
∂T ∂v λ ∂T ∂v
∂T ∂v
c ρ
vrdx +
λ
+
+λ
rdx−
∂τ
∂r ∂r r2 ∂ϕ ∂ϕ
∂y ∂y
Ω
Ω
Z
∂T
λ ∂T
∂T
−
λ
cos(r, ν) + 2
cos(ϕ, ν) + λ
cos(y, ν) vrdx = 0
∂r
r ∂ϕ
∂y
Z
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
Γ
 îáîçíà÷åíèÿõ (67)(70) óðàâíåíèå ïðèìåò âèä
Z
∂T
vrdx +
c ρ
∂τ
ï
ï
Z
Z
(K ∇T · ∇v)rdx −
ï
ï
Ω
Ω
(K ∇T · ν)vrdx = 0
ï
ï
ï
Γ
Âîñïîëüçóåìñÿ ãðàíè÷íûìè óñëîâèÿìè
Z
Z
∂T
c ρ
vrdx + (K ∇T · ∇v)rdx−
∂τ
Ω
Ω
Z
Z
− (g − ωα T )vrdx − α 3 (T 3 − T )vrdx = 0
ï
ï
ï
ï
ï
ïì
ï
ï
Γïì
ï
Γï3
34
ï
ï
Ïðîèçâåä¼ì çàìåíó ïåðåìåííûõ ñîãëàñíî (2.1). Ïîñêîëüêó t∗ êîíñòàíòà, òî ïðîèçâîäíûå îò íå¼ áóäóò îáðàùàòüñÿ â íîëü. Ñëåäîâàòåëüíî,
â ñëàãàåìûõ, ãäå òåìïåðàòóðà íàõîäèòñÿ ïîä çíàêîì ïðîèçâîäíîé îñòàíåòñÿ êîýôôèöèåíò ïðè T¯ï .
4
Óìíîæèì îáå ÷àñòè ðàâåíñòâà íà 1/(Ct c0 ρ0 ω∗ σRcp
θ) è îáúåäèíèì êî-
ýôôèöèåíòû.
Z
∂ T¯
b
vdx +
∂ τ̄
ï
Z
ï
Ωï
¯ T¯ · ∇vdx−
¯
κ ∇
ï
ï
Ωï
Z
−
(ḡ
ïì
− σ T¯ )vdx −
ìï
b = Sh
ï
ï
ï
Γï3
ψ
c¯ ρ¯ (σr̄ + 1),
Rcp
ï
ï
(T̄ 3 − σ 3 T¯ )vdx = 0, (71)
ï
ï
Γïì
ãäå
Z
κ = σψ λ
ï
ï
ï
H
J K̄ J −1 (σr̄ + 1),
Pe
ï
ï
ï
ï
ï
(g − ωα t∗ )
(σr̄ + 1)
2
Ct c0 ρ0 ω∗ Rcp
(T 3 − t∗ )
σ 3 = C 3 (σr̄ + 1) T̄ 3 =
C 3 (σr̄ + 1)
Ct
N u R1 ψ 2 λ
, r̄ = −1
P
e
R
cp
N u R2 ψ 2 λ
, r̄ = +1
P
e
R
cp
N u ϕ0 ψ 2
C3=
(72)
, ϕ̄ = 0 .
P
e
N u θï ψ 2
, ϕ̄ = θ¯
P
e
N u Hï ψ
, ȳ = 1
P e Rcp
Îáðàòíûìè ïðåîáðàçîâàíèÿìè ïîëó÷èì óðàâíåíèå â äèâåðãåíòíîì âèäå
∂ T¯
¯ T¯ ) = 0,
b
− div(κ ∇
(73)
∂ τ̄
ñ ãðàíè÷íûìè óñëîâèÿìè
σ
ìï
=
ωα
(σr̄ + 1) ḡ
2
c0 ρ0 ω∗ Rcp
ï
ïì
ïì
=
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
¯ T¯ · ν + σ T¯ = ḡ , x ∈ Γ ,
κ ∇
¯ T¯ · ν + σ 3 T¯ = T̄ 3 , x ∈ Γ 3 .
κ ∇
ï
ï
ï
ï
ï
ï
ìï
ï
ïì
ï
ï
ï
35
ïì
(74)
ï
(75)
3
Ïîñòðîåíèå ñåòî÷íûõ àïïðîêñèìàöèé óðàâíåíèé è
ìåòîäû èõ ðåøåíèÿ
3.1
Ïîñòðîåíèå ðàñ÷¼òíûõ îáëàñòåé
Äëÿ ðåøåíèÿ äëÿ óðàâíåíèé (44), (54), (71), (63), òðåáóåòñÿ ââåñòè ðàçáèåíèÿ â ïîäóøêå, äèñêå è ñìàçî÷íîì ñëîå.
Íà îòðåçêå [0, θ̄] ïîñòðîèì êóñî÷íî-ðàâíîìåðíóþ ñåòêó ωϕ ñ øàãàìè
hϕ = hϕ, íà [0, θ̄ ], hϕ = hϕ, íà [θ̄ , θ̄ ] è hϕ = hϕ,
êàíàëå [θ̄ , θ̄].
ê
ê
ï
ê
ï
ìïê
â ìåæïîäóøå÷íîì
ï
Íà îòðåçêå [−1, 1] ïîñòðîèì ðàâíîìåðíóþ ñåòêó ωr ñ øàãîì hr .
 îáëàñòè ΩRe ïîñòðîèì ïðÿìîóãîëüíîå ðàçáèåíèå Th,Re . Äëÿ ýòîãî
ðàçîáü¼ì îáëàñòü å¼ ïðÿìûìè, ïàðàëëåëüíûìè îñÿì r è ϕ, èñõîäÿùèõ
èç óêàçàííûõ âûøå òî÷åê îäíîìåðíûõ ñåòîê, ëåæàùèõ â ΩRe . Âåðøèíû
ýòîãî ðàçáèåíèÿ îáîçíà÷èì ÷åðåç ωRe .
 îáëàñòè Ωï ââåä¼ì ïðÿìîóãîëüíîå ðàçáèåíèå Th,ï ñ âåðøèíàìè â
òî÷êàõ ñåòêè ωr × ωϕ × ωyï , ãäå ωyï ðàâíîìåðíàÿ ñåòêà ñ øàãîì hy,ï íà
îòðåçêå [0, 1].
Àíàëîãè÷íî ðàçîáü¼ì îáëàñòü Ω∂ , ââåäÿ ïðÿìîóãîëüíîå ðàçáèåíèå Th,∂
ñ âåðøèíàìè â òî÷êàõ ñåòêè ωr × ωϕ × ωy∂ , ãäå ωy∂ ðàâíîìåðíàÿ ñåòêà ñ
øàãîì hy,∂ íà îòðåçêå [0, 1].
Òàêæå, ðàçîáü¼ì îáëàñòü Ωì , ââåäÿ ïðÿìîóãîëüíîå ðàçáèåíèå Th,ì ñ
âåðøèíàìè â òî÷êàõ ñåòêè ωr × ωϕ × ωyì , ãäå ωyì ðàâíîìåðíàÿ ñåòêà ñ
øàãîì hy,ì íà îòðåçêå [0, 1].
Îáîçíà÷èì Nr , NrRe , Nϕ , Ny , Nyï , Ny∂ êîëè÷åñòâî òî÷åê ðàçáèåíèÿ ωr ,
ωRe , ωϕ , ωyì , ωyï è ωy∂ , ñîîòâåòñâåííî.
3.2
Ïîñòðîåíèå ðàçíîñòíîé ñõåìû ìåòîäîì ñóììàòîðíûõ òîæäåñòâ äëÿ óðàâíåíèÿ Ðåéíîëüäñà
Äëÿ ðåøåíèÿ óðàâíåíèÿ (44) ñ êðàåâûìè óñëîâèÿìè (4), âîñïîëüçóåìñÿ
ìåòîäîì ñóììàòîðíûõ òîæäåñòâ (ñì. [7]).
Óìíîæèì îáå ÷àñòè ðàâåíñòâà (44) íà ïðîáíóþ ôóíêöèþ v ∈ V0,Re =
{η = η(x), x = (r, ϕ) ∈ ΩRe : η = 0, ïðè r = −1, r = +1} è ïðîèíòåãðè36
ðóåì ïî îáëàñòè ΩRe :
− λ2
Z
ΩRe
Z
3
∂
h̄
∂
∂
p̄
∂
p̄
(σr̄ + 1)h̄3 f¯0
vdx −
f¯0
vdx =
∂r
∂r̄
∂ϕ (σr̄ + 1) ∂ ϕ̄
ΩRe
Z
∂(h̄3 f¯1 )
µ0
vdx+
= −Reψσλ
µ∗
∂r̄
ΩRe
Z
Z
µ0
µ0
∂(h̄f¯2 )
+ ω̄
vdx + Sh
(σr̄ + 1)
(σr̄ + 1)Āvdx. (76)
µ∗
∂ ϕ̄
µ∗
ΩRe
ΩRe
Âîñïîëüçóåìñÿ ôîðìóëîé èíòåãðèðîâàíèÿ ïî ÷àñòÿì, ïîëó÷èì
Z
∂v
∂ p̄
∂
p̄
dx − (σr̄ + 1)h̄3 f¯0 v cos(ν, r̄)dx+
λ
(σr̄ + 1)h̄ f¯0
∂r̄ ∂r̄
∂r̄
ΓRe
ΩRe
Z
Z
∂ p̄ ∂v
∂ p̄
h̄3
h̄3
¯
f0
dx −
f¯0 v cos(ν, ϕ̄)dx =
+
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
(σr̄ + 1) ∂ ϕ̄
ΓRe
ΩRe
Z
µ0
∂(h̄3 f¯1 )
= −Reψσλ
vdx+
µ∗
∂r̄
ΩRe
Z
Z
µ0
∂(h̄f¯2 )
µ0
+ ω̄
(σr̄ + 1)
vdx + Sh
(σr̄ + 1)Āvdx (77)
µ∗
∂ ϕ̄
µ∗
2
Z
3
Ω
ΩRe
Ïîñêîëüêó, ïðîáíàÿ ôóíêöèÿ v íà ãðàíèöå ïðè r̄ = −1 è r̄ = +1
ðàâíà íóëþ, ðàâíà íóëþ è íîðìàëüíàÿ ïðîèçâîäíàÿ äàâëåíèÿ ïðè ϕ̄ = 0
è ϕ̄ = θ̄ï , òî òîæäåñòâî (77) ïðèîáðåòàåò âèä
2
Z
λ
ΩRe
h̄3
∂ p̄ ∂v
f¯0
dx =
(σr̄ + 1) ∂ ϕ̄ ∂ ϕ̄
ΩRe
Z
µ0
∂(h̄3 f¯1 )
= −Reψσλ
vdx+
µ∗
∂r̄
ΩRe
Z
Z
µ0
∂(h̄f¯2 )
µ0
+ ω̄
(σr̄ + 1)
vdx + Sh
(σr̄ + 1)Āvdx (78)
µ∗
∂ ϕ̄
µ∗
∂ p̄ ∂v
dx +
(σr̄ + 1)h̄ f¯0
∂r̄ ∂r̄
3
Z
ΩRe
ΩRe
37
Ïóñòü ω̄h = ω̄Re . Ïóñòü γR1 , γR2 , γϕ0 , γθï îáîçíà÷àþò ìíîæåñòâà ãðàíè÷íûõ òî÷åê, âûõîäÿùèõ íà ÷àñòè ãðàíèö r̄ = −1, r̄ = +1, ϕ̄ = 0 è
ϕ̄ = θ̄ è ωh = ω̄h \ (γR1 ∪ γR2 ∪ γϕ0 ∪ γϕθï ).
Îáîçíà÷èì ÷åðåç Nr +1, Nϕ +1 êîëè÷åñòâà òî÷åê ïî ñîîòâåòñòâóþùèì
íàïðàâëåíèÿì íà ñåòêå ω̄h , fk,i,j = f¯k (xi,j ), k = 1, 2, 3, hi,j = h̄(xi,j ),
Ai,j = Ā(xi,j ), pi,j = p̄(xi,j ), vi,j = v(xi,j ), äëÿ ∀i, j : xi,j = (ri , ϕj ) ∈ ω̄h .
ï
Øàãè ñåòîê îáîçíà÷èì hr,k = rk+1 − rk , hϕ,l = ϕl+1 − ϕl è
~r,k
, k = 0;
hr,0 /2
=
(hr,k − hr,k−1 )/2 , k = 1, ..Nr − 1;
hr,Nr −1
, k = Nr .
Ââåä¼ì ñåòî÷íûå ñêàëÿðíûå ïðîèçâåäåíèÿ â ñîîòâåòñòâèè ñ [7].
Ïîëîæèì
yr,k,l = (yk+1,l − yk,l )/hr,k ,
yr̄,k,l = (yk,l − yk−1,l )/hr,k−1 ,
yr̂,k,l = (yk+1,l − yk,l )/~r,k ,
yr̃,k,l = (yk+1,l − yk−1,l )/~r,k .
38
Àïïðîêñèìèðóåì èíòåãðàëû (78) êâàäðàòóðíîé ôîðìóëîé òðàïåöèé
NX
Nr −1
ϕ −1
1 X
hr,i
hϕ,j λ2 (σri + 1)h3i,j f0,i,j pr,i,j vr,i,j +
4 i=0
j=0
h3i,j
f0,i,j pϕ,i,j vϕ,i,j +
+
(σri + 1)
Nϕ
3
X
h
i,j
+
hϕ,j−1 λ2 (σri + 1)h3i,j f0,i,j pr,i,j vr,i,j +
f0,i,j pϕ̄,i,j vϕ̄,i,j +
(σr
+
1)
i
j=1
N
r
1X
+
hr,i−1
4 i=1
NX
ϕ −1
hϕ,j λ2 (σri + 1)h3i,j f0,i,j pr̄,i,j vr̄,i,j +
j=0
h3i,j
f0,i,j pϕ,i,j vϕ,i,j +
+
(σri + 1)
+
Nϕ
X
2
hϕ,j−1 λ (σri +
1)h3i,j f0,i,j pr̄,i,j vr̄,i,j
j=1
h3i,j
f0,i,j pϕ̄,i,j vϕ̄,i,j
+
(σri + 1)
+
NX
Nr −1
ϕ −1
1 X
µ0
≈
ω̄(σri + 1)(hf2 )ϕ,i,j −
hr,i
hϕ,j
4 i=0
µ
∗
j=0
3
− Reψσλ(h f1 )r,i,j + Sh(σri + 1)Ai,j vi,j +
Nϕ
X
µ0
+
hϕ,j−1
ω̄(σri + 1)(hf2 )ϕ̄,i,j −
µ
∗
j=1
− Reψσλ(h3 f1 )r,i,j + Sh(σri + 1)Ai,j vi,j +
N
r
1X
+
hr,i−1
4 i=1
NX
ϕ −1
µ0
ω̄(σri + 1)(hf2 )ϕ,i,j −
hϕ,j
µ
∗
j=0
− Reψσλ(h3 f1 )r̄,i,j + Sh(σri + 1)Ai,j vi,j +
Nϕ
X
µ0
+
hϕ,j−1
ω̄(σri + 1)(hf2 )ϕ̄,i,j −
µ
∗
j=1
3
− Reψσλ(h f1 )r̄,i,j + Sh(σri + 1)Ai,j vi,j
(79)
 êà÷åñòâå ôóíêöèè v âûáåðåì ñåòî÷íûé àíàëîã δ ôóíêöèè, ñîñðåäî39
òî÷åííîé â òî÷êå xk,l = (rk , ϕl )
(
v(x) =
Îáîçíà÷èâ δk,l =
öèè v
1
~rk ~ϕl ,
x 6= xk,l ;
1
~r,k ~ϕ,l , x = xk,l .
0,
âûïèøåì íàïðàâëåííûå ðàçíîñòè äëÿ ôóíê-
δ
k,l
δk,l , x = xk,l ;
−
, x = xk,l ;
hr,k
hr,k−1
v
(x)
=
vr (x) =
r̄
δ
δ
− k,l , x = xk+1,l .
k,l , x = xk−1,l .
hr,k−1
hr,k
− δk,l , x = xk,l ;
δk,l , x = xk,l ;
hϕ,k
hϕ,k−1
vϕ (x) =
vϕ̄ (x) =
δ
δ
k,l , x = xk,l−1 .
− k,l , x = xk,l+1 .
hϕ,k−1
hϕ,k
Òàêèì îáðàçîì, äëÿ âûáðàííîé ôóíêöèè v , âûðàæåíèå (79) â òî÷êå
x = xk,l ∈ ωh ïðèìåò âèä
− (apr̄ )r̂,k,l − (bpϕ̄ )ϕ̂,k,l ≈
µ0
3
ω̄(σrk + 1)(hf2 )ϕ̃,k,l − Reψσλ(h f1 )r̃,k,l + Sh(σrk + 1)Ak,l , (80)
≈
µ∗
ãäå
(hf2 )k,l+1 − (hf2 )k,l−1
(hf1 )k+1,l − (hf1 )k−1,l
(hf2 )ϕ̃,k,l =
, (hf1 )r̃,k,l =
,
~ϕ,l
~r,k
(σrk−1 + 1)(hf0 )k−1,l + (σrk + 1)(hf0 )k,l
,
2
(h3 f0 )k,l−1 + (h3 f0 )k,l
,
bk,l =
2(σrk + 1)
Ïîäîáíûì îáðàçîì äëÿ x ∈ γϕ0 ïîëó÷èì
ak,l = λ2
1
− (apr̄ )r̂,k,0 − bk,1 pϕ,k,0
≈
~ϕ,0
µ0
≈
2ω̄(σrk + 1)(hf2 )ϕ,k,0 − Reψσλ(h3 f1 )r̃,k,0 + Sh(σrk + 1)Ak,0 (81)
µ∗
è äëÿ x ∈ γθï
1
− (apr̄ )r̂,k,Np − bk,Np pϕ,k,Np
≈
~ϕ,Np
µ0
3
≈
2ω̄(σrk + 1)(hf2 )ϕ,k,Np − Reψσλ(h f1 )r̃,k,Np + Sh(σrk + 1)Ak,Np .
µ∗
(82)
40
Ñåòî÷íûé àíàëîã ôóíêöèè äàâëåíèÿ p îáîçíà÷èì ÷åðåç ph , f0 f0h ,
f1 f1h , f2 f2h , h hh , A Ah . Òîãäà, (80), (81), (82) ïðèìóò âèä äëÿ
x = xk,l ∈ ωh :
− (aphr̄ )r̂,k,l − (bphϕ̄ )ϕ̂,k,l =
µ0
h h
h3 h
h
=
ω̄(σrk + 1)(h f2 )ϕ̃,k,l − Reψσλ(h f1 )r̃,k,l + Sh(σrk + 1)Ak,l ,
µ∗
(83)
äëÿ x ∈ γϕ0 :
1
− (aphr̄ )r̂,k,0 − bk,1 phϕ,k,0
=
~ϕ,0
µ0
=
2ω̄(σrk + 1)(hh f2h )ϕ,k,0 − Reψσλ(hh 3 f1h )r̃,k,0 + Sh(σrk + 1)Ahk,0
µ∗
(84)
è äëÿ x ∈ γθï
1
− (aphr̄ )r̂,k,Np − bk,Np phϕ,k,Np
=
~ϕ,Np
µ0
h h
h3 h
h
=
2ω̄(σrk +1)(h f2 )ϕ,k,Np −Reψσλ(h f1 )r̃,k,Np +Sh(σrk +1)Ak,Np .
µ∗
(85)
Äëÿ óäîáñòâà, ëåâóþ ÷àñòü ðàâåíñòâà (83) çàïèøåì â âèäå
3
pk,l − pk−1,l
pk+1,l − pk,l
pk,l − pk,l−1
pk,l+1 − pk,l
+ ak+1,l
+ bk,l
+ bk,l+1
=
hr,k−1 ~r,k
hr,k ~r,k
hϕ,l−1 ~ϕ,l
hϕ,l ~ϕ,l
µ0
3
=
ω̄(σrk + 1)(hf2 )ϕ̃,k,l − Reψσλ(h f1 )r̃,k,l + Sh(σrk + 1)Ak,l , (86)
µ∗
ak,l
ak,l
ak+1,l
bk,l
bk,l+1
+
+
+
pk,l =
hr,k−1 ~r,k hr,k ~r,k hϕ,l−1 ~ϕ,l hϕ,l ~ϕ,l
µ0
3
=
ω̄(σrk + 1)(hf2 )ϕ̃,k,l − Reψσλ(h f1 )r̃,k,l + Sh(σrk + 1)Ak,l +
µ∗
ak,l
ak+1,l
bk,l
bk,l+1
+
pk−1,l +
pk+1,l +
pk,l−1 +
pk,l+1 . (87)
hr,k−1 ~r,k
hr,k ~r,k
hϕ,l−1 ~ϕ,l
hϕ,l ~ϕ,k
3 Âñþäó
äàëåå, òàì, ãäå ýòî íå âûçûâàåò íåäîðàçóìåíèé, áóäåì èñïîëüçîâàòü áåçûíäåêñíûå îáî-
çíà÷åíèÿ äëÿ ñåòî÷íûõ ôóíêöèé, îïóñêàÿ èíäåêñ
h
41
Àíàëîãè÷íî, äëÿ (84), áóäåì èìåòü
ak+1,0
bk,1
ak,0
+
+
pk,0 =
hr,k−1 ~r,k hr,k ~r,k hϕ,0 ~ϕ,0
µ0
=
2ω̄(σrk + 1)(hf2 )ϕ,k,0 − Reψσλ(h3 f1 )r̃,k,0 + Sh(σrk + 1)Ak,0 +
µ∗
ak+1,0
bk,1
ak,0
pk−1,0 +
pk+1,0 +
pk,1 (88)
+
hr,k−1 ~r,k
hr,k ~r,k
hϕ,0 ~ϕ,k
è äëÿ (85):
ak,Nϕ
ak+1,Nϕ
bk,Nϕ
+
+
pk,Nϕ =
hr,k−1 ~r,k hr,k ~r,k hϕ,Nϕ −1 ~ϕ,Nϕ
µ0
2ω̄(σrk + 1)(hf2 )ϕ,k,Np − Reψσλ(h3 f1 )r̃,k,Np + Sh(σrk + 1)Ak,Np +
=
µ∗
ak,Nϕ
ak+1,Nϕ
bk,Nϕ
+
pk−1,Nϕ +
pk+1,Nϕ +
pk,Nϕ −1 . (89)
hr,k−1 ~r,k
hr,k ~r,k
hϕ,Nϕ −1 ~ϕ,Nϕ
Äëÿ ðåøåíèÿ (87), (88), (89) âîñïîëüçóåìñÿ ìåòîäîì ðåëàêñàöèè ñ ïà0
ðàìåòðîì w ∈ (0, 2) (ñì. Ïðèëîæåíèå À). Ïóñòü p çàäàííîå íà÷àëüíîå
k
ïðèáëèæåíèå. Ïðèáëèæåíèÿ p äëÿ k = 0, 1, . . . îïðåäåëÿåì ïî ðåêóðk
k+1
ðåíòíîé ôîðìóëå (p =p, p̂ = p ) äëÿ x ∈ ωh :
µ0
p̂k,l = (1 − w)pk,l + w
ω̄(σrk + 1)(hf2 )ϕ̃,k,l − Reψσλ(h3 f1 )r̃,k,l +
µ∗
+ Sh(σrk + 1)Ak,l +
ak,l
ak+1,l
bk,l
bk,l+1
+
pk−1,l +
pk+1,l +
pk,l−1 +
pk,l+1 . /
hr,k−1 ~r,k
hr,k ~r,k
hϕ,l−1 ~ϕ,l
hϕ,l ~ϕ,k
ak,l
ak+1,l
bk,l
bk,l+1
/
, (90)
+
+
+
hr,k−1 ~r,k hr,k ~r,k hϕ,l−1 ~ϕ,l hϕ,l ~ϕ,l
42
äëÿ x ∈ γϕ0 :
µ0
2ω̄(σrk + 1)(hf2 )ϕ,k,0 − Reψσλ(h3 f1 )r̃,k,0 +
= (1 − w)pk,0 + w
µ∗
+ Sh(σrk + 1)Ak,0 +
ak,0
ak+1,0
bk,1
+
pk−1,0 +
pk+1,0 +
pk,1 /
hr,k−1 ~r,k
hr,k ~r,k
hϕ,0 ~ϕ,k
ak+1,0
bk,1
ak,0
+
+
(91)
/
hr,k−1 ~r,k hr,k ~r,k hϕ,0 ~ϕ,0
p̂k,0
è äëÿ x ∈ γθï :
p̂k,Nϕ = (1 − w)pk,Nϕ +
µ0
3
2ω̄(σrk + 1)(hf2 )ϕ,k,Np − Reψσλ(h f1 )r̃,k,Np + Sh(σrk + 1)Ak,Np +
+w
µ∗
ak+1,Nϕ
bk,Nϕ
ak,Nϕ
pk−1,Nϕ +
pk+1,Nϕ +
pk,Nϕ −1 /
+
hr,k−1 ~r,k
hr,k ~r,k
hϕ,Nϕ −1 ~ϕ,Nϕ
ak,Nϕ
ak+1,Nϕ
bk,Nϕ
/
+
+
. (92)
hr,k−1 ~r,k hr,k ~r,k hϕ,Nϕ −1 ~ϕ,Nϕ
Ïîñòðîåíèå ñåòî÷íîé ñõåìû ñ ãðàíè÷íûìè óñëîâèÿìè (6), ÷àñòè÷íî,
ïîâòîðÿåò âûâîä âûøå. Îòëè÷èåì ÿâëÿåòñÿ òî, ÷òî íà ãðàíèöàõ γϕ0 è γθï
äàâëåíèå p̂i,j çàäà¼òñÿ.
3.3
3.3.1
Óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå
Âñïîìîãàòåëüíûå îáîçíà÷åíèÿ
 ïóíêòå 3.1 áûëî ââåäåíî ïðÿìîóãîëüíîå ðàçáèåíèå Th,ì . Ïóñòü ir , iϕ ,
iy èíäåêñû ñîîòâåòñòâóþùèå íàïðàâëåíèÿì r, ϕ, y . Ýëåìåíòû K =
Kir ,iϕ ,iy ∈ Th, óïîðÿäî÷èì òàêèì îáðàçîì, ÷òî èíäåêñ ir , ñîîòâåòñòâóþì
ùèé íàïðàâëåíèþ r èçìåíÿåòñÿ áûñòðåé ϕ, à ϕ áûñòðåé y .
Òîãäà ãëîáàëüíûé èíäåêñ K -òîãî ýëåìåíòà îïðåäåëèì ïî ôîðìóëå
igl = iy Nr Nϕ + Nr iϕ + ir
(93)
Öåíòðàëüíóþ òî÷êó íà ýëåìåíòå K îáîçíà÷èì ÷åðåç xc . Äëÿ îáîçíà÷åíèÿ îñòàëüíûõ òî÷åê îïðåäåëèì ïðàâèëî. Åñëè òî÷êà íàõîäèòñÿ ñëåâà
43
îò òî÷êè xc ïî íàïðàâëåíèþ r, òî â îáîçíà÷åíèè ïîÿâëÿåòñÿ èíäåêñ rl,
åñëè ñïðàâà rr, íàïðèìåð: xrl öåíòðàëüíàÿ òî÷êà ýëåìåíòà, ðàñïîëîæåííîãî ñëåâà ïî r îòíîñèòåëüíî K -òîãî ýëåìåíòà. Äëÿ íàïðàâëåíèé ϕ,
y , àíàëîãè÷íî, áóäåì èñïîëüçîâàòü èíäåêñû xϕl , xϕr , xyl , xyr . Âîçìîæíî
èñïîëüçîâàíèå íåñêîëüêèõ èíäåêñîâ.  òàêîì ñëó÷àå, èíäåêñû ïðîïèñûâàþòñÿ â ñîîòâåñòâèè ñ ñêîðîñòüþ èçìåíåíèÿ â ãëîáàëüíîé èíäåêñàöèè.
Ïðèìåð: xϕr,yl òî÷êà, íàõîäÿùàÿñÿ â ýëåìåíòå ñïðàâà ïî ϕ è ñëåâà ïî
y , îòñèòåëüíî K -òîãî ýëåìåíòà. Àíàëîãè÷íàÿ èíäåêñàöèÿ ââîäèòñÿ äëÿ
ñòîðîí ýëåìåíòà ðàçáèåíèÿ. Ïðèìåð: erl ëåâàÿ ãðàíèöà â íàïðàâëåíèè
r, íà ýëåìåíòå K , xerl òî÷êà, íàõîäÿùàÿñÿ â öåíòðå ãðàíèöû erl ýëåìåíòà K . Äëÿ ýëåìåíòîâ K , ïðèìûêàþùèõ ê ãðàíèöå ïî y , òî÷êè xeyl è
xeyr îáîçíà÷àþòñÿ zl , zr , ñîîòâåòñâåííî.
3.3.2
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé
Ââåä¼ì P1,α (Ω) ïðîñòðàíñòâî ôóíêöèé ëèíåéíûõ íà Ω ïî íàïðàâëåíèþ
α è ïîñòîÿííûõ â îñòàëüíûõ íàïðàâëåíèÿõ.
Ïðèáëèæåííîå ðåøåíèå th çàäà÷è áóäåì èñêàòü â ïðîñòðàíñòâå êóñî÷íî-ïîñòîÿííûõ ôóíêöèé âíóòðè îáëàñòè Ω è êóñî÷íî-ëèíåéíûõ ïî íàïðàâëåíèþ y ôóíêöèé íà ýëåìåíòàõ, ïðèëåãàþùèõ ê ãðàíèöå ΓN 3
ì
◦
V h, = {ηh ∈ Vh, , ηh = 0 âíå Ω },
ì
ì
ì
ãäå Vh,ì = {ηh ∈ L∞ (Ωì ) : ηh |K ∈ P0 (K), K ∈ Th,ì : K
T
ΓN 3 = ∅;
ηh |K ∈ P1,y (K), K ∈ Th, : K
ΓN 3 }, P0 (K) ïðîñòðàíñòâî ïîëèíîìîâ íóëåâîé ñòåïåíè íà ýëåìåíòå K , Vh3 = Vh, × Vh, × Vh, .
ì
T
ì
3.3.3
ì
ì
Ïîñòðîåíèå ñåòî÷íîé ñõåìû ðàçðûâíîãî ìåòîäà Ãàë¼ðêèíà
Äëÿ çàäà÷è (54) ïîñòðîèì ñõåìó ðàçðûâíîãî ìåòîäà Ãàë¼ðêèíà, ñëåäóÿ
[12].
Äëÿ ýòîãî ïîñòðîèì íà îòðåçêå [0, Tmax ] ñåòêó
ω̄τ = {τj = 0, hτ , 2hτ , . . . },
44
ωτ = ω̄τ \{T }
è îïðåäåëèì ïðîñòðàíñòâî ñåòî÷íûõ ôóíêöèé
Xh,τ = {w(τ ) ∈ Vh , τ ∈ ω̄τ }.
Ïóñòü Γh,N 3 ðàçáèåíèå ÷àñòè ãðàíèöû ΓN 3 , ñîãëàñîâàííîå ñ ðàçáèåíèåì Th,ì . Íà êàæäîé ñòîðîíå ýëåìåíòà âûáåðåì âåêòîð p êàê åäèíè÷íóþ
íîðìàëü ê ãðàíèöå ýëåìåíòà K , îðèåíòèðîâàííóþ òàê ÷òîáû ñêàëÿðíîå
ïðîèçâåäåíèå (1, 1, 1) · p áûëî ïîëîæèòåëüíûì.
Òîãäà äëÿ âñåõ uh ∈ Xh,τ , ïðè âñåõ τ ∈ ωτ ìîæíî çàïèñàòü
X Z
Z
b(ρuh )τ̄ wh dx +
(qh − uh,−p Υ ) · ∇wh dx+
ì
K∈Th,ì K
Ωì
+
X Z
[uh,+p (Υ · p)− − uh,−p (Υ · p)+ ](wn,+p − wn,−p )dx+
ì
ì
γh \Γh,N 3 γh
+
X Z
(wh,+p − wh,−p )qh,+p · pdx +
γh \Γh,N 3 γh
=
Z
dh · wu,h dx+
◦
ì
ì
ì
ΓN 3
X Z
uh div wu,h dx+
K K
Ωì
ì
ḡ wh dx ∀wh ∈V h, , (94)
f wh dx +
Ωì
XZ
σ uh wh dx =
ΓN 3
Z
Z
Z
γh \ΓN 3
Z
−
uh,−p (wu,h,+p − wu,h,−p )· pdx−
γh
uh wu,h · νdx = 0 ∀wu,h ∈ Vh3 , (95)
Γ
Z
(qh − κ (x, uh , dh )) · wq,h = 0,
wq,h ∈ Vh3 ,
(uh (x, 0) − u0 (x))w0,h dx = 0,
w0,h ∈V h,
ì
(96)
Ωì
Z
◦
ì
(97)
Ωì
çäåñü (ρuh )τ̄ = (ρuh − ρ̌ǔh )/hτ .
Ïðåîáðàçóåì óðàâíåíèÿ (94) (97). Îäíîâðåìåííî âîñïîëüçóåìñÿ ôîðìóëàìè òðàïåöèé â íàïðàâëåíèè y âáëèçè ãðàíèöû ΓN 3 è öåíòðàëüíûõ
ïðÿìîóãîëüíèêîâ â îñòàëüíûõ äëÿ âû÷èñëåíèÿ èíòåãðàëîâ ïî ýëåìåíòàì
ðàçáèåíèé.  ïîëó÷åííûõ ñîîòíîøåíèÿõ áóäåì èñïîëüçîâàòü ðàâåíñòâà
45
è ñîõðàíèì îáîçíà÷åíèÿ íåèçâåñòíûõ. Ýòè ñîîòíîøåíèÿ áóäåì ðàññìàòðèâàòü êàê óðàâíåíèÿ äëÿ îïðåäåëåíèÿ ïðèáëèæ¼ííîãî ðåøåíèÿ.
Ïóñòü wu,h = (wh,r , wh,ϕ , wh,y ) ïðîèçâîëüíûé âåêòîð èç Vh3 .
Äëÿ j ∈ {r, ϕ, y} ïîëîæèì â (95) wh,j (x) ðàâíûì åäèíèöå, êîãäà x ∈
K, K ∩ Γh,N 3 = ∅ è ðàâíûì íóëþ â ïðîòèâíîì ñëó÷àå, wh,j (x) = 0.
Ïîëó÷èì
µ(K)dh,j = µ(γil )(uh (xc ) − uh (xil )),
ãäå xjl òî÷êà â öåíòðå ýëåìåíòà íàõîäÿùåãîñÿ ñëåâà îò ýëåìåíòà K â
íàïðàâëåíèè j , µ(K) ìåðà ýëåìåíòà K , γjl ëåâàÿ ãðàíèöà ýëåìåíòà
K â íàïðàâëåíèè j .
Îòñþäà èìååì
dh,j (x) = uh,j̄ (x) = (uh (xc ) − uh (xjl ))/hi,ij ,
(98)
ãäå ij = {1, 2, . . . , j = r èíà÷å: 0, 1, . . . }. Çíà÷åíèÿ dh,j (x) ïðè ij = 0 è,
ñîîòâåòñòâåííî, uh,j̄ äîîïðåäåëèì íóë¼ì ïðè ir = 0 (÷àñòè ýëåìåíòîâ,
ïðèìûêàþùèõ ê ãðàíèöå â íàïðàâëåíèè r).
Îòäåëüíî äëÿ K ∩ Γh,N 3 îïðåäåëèì dh,y , çíà÷åíèÿ dh,r , dh,ϕ áóäåì âû÷èñëÿòü êàê â (98). Ïóñòü K ∩ Γh,N 3 .
Ïîëîæèì wh,r = wh,ϕ = 0, wh,y =
y1 − y
. Ïîëó÷èì
y1 − y0
µ(K)
µ(K)
dh,y (zl ) −
(uh (zl ) + uh (zr )) + µ(γyl )uh (zl ) = 0,
2
2hy,0
çäåñü zl è zr îïðåäåëÿþòñÿ â ñîîòâåòñâèè ñ (3.3.1).
Îòñþäà
dh,y (zl ) =
uh (zr ) − uh (zl )
.
hy,0
Àíàëîãè÷íî
uh (zr ) − uh (zl )
y − y0
,
wh,y =
;
hy,0
y1 − y0
yNy −1 − y
uh (zr ) + uh (zl ) − 2uh (xyl )
dh,y (zl ) =
, wh,y =
;
hy,Ny −2
yNy −1 − yNy −2
y − yNy −2
uh (zr ) − uh (zl )
dh,y (zr ) =
,
wh,y =
.
hy,Ny −2
yNy −1 − yNy −2
dh,y (zr ) =
46
Ïðåîáðàçóåì (96), ó÷¼òåì, ïðè ýòîì, ÷òî
κi (x, uh , dh ) =
X
ki,j (x, uh (x))dh,j ,
i ∈ {r, ϕ, y}.
j∈{r,ϕ,y}
è âû÷èñëèì èíòåãðàëû ïî ýëåìåíòàì K , ïîëüçóÿñü ôîðìóëàìè òðàïåöèé
ïðè
K ∩ Γh,N 3 è öåíòðàëüíûõ ïðÿìîóãîëüíèêîâ, èíà÷å.
Óðàâíåíèå ïðåîáðàçóåòñÿ ê âèäó
X
qh,i =
ki,j (xc , uh )dh,j , x ∈ K.
j∈{r,ϕ,y}
Çàïèøåì ñåòî÷íóþ ñõåìó (94) â îïåðàòîðíîì âèäå.
(99)
B(ρuh )τ̄ + (Av + Aq + Ag )uh = F + Fg ,
ãäå îïåðàòîðû îïðåäåëÿþòñÿ ñëåäóþùèìè ñîîòíîøåíèÿìè
Bu · wh =
XZ
b uwh dx
ì
K∈Th K
Av u · wh =
XZ
(−uΥ · ∇wh )dx+
ì
K∈Th K
X Z
+
[uh,+p (Υ · p)− − uh,−p (Υ · p)+ ](wn,+p − wn,−p )dx,
ì
ì
γh \Γh,N 3 γh
A q u · wh =
XZ
q · ∇wh dx +
K∈Th K
X Z
γh \Γh,N 3 γh
X Z
Ag u · wh =
XZ
f wh dx,
ì
σ uwh dx,
ì
γh ∈Γh,N 3 γ
F · wh =
(wh,+p − wh,−p )qh,+p · pdx,
h
Fg · wh =
X Z
ì
γh ∈Γh,N 3 γ
K∈Th K
◦
äëÿ ∀u, wh ∈V h .
47
ḡ wh dx,
h
Âàðüèðóÿ wh è âû÷èñëÿÿ èíòåãðàëû, ïîëó÷èì âèä îïåðàòîðîâ â òåðìèíàõ q è d.
Äëÿ îïåðàòîðà Aq ïðè ∀ir , iϕ âûïîëíåíî
(Aq u)0 =
qϕ (zl ) − qϕ (xϕr ) qy (zr ) + qy (zl )
,
−
hϕ,iϕ
hy,0
(Aq u)1 =
qϕ (zr ) − qϕ (xϕr ) qy (zr ) + qy (zl ) − 2qy (xyr )
, iy = 1,
+
hϕ,iϕ
hy,0
(Aq u)iy =
qϕ (xc ) − qϕ (xϕr ) qy (xc ) − qy (xyr )
,
+
hϕ,iϕ
hy,iy −1
iy = 0,
iy = 2, Ny − 3,
(Aq u)Ny −2 =
qϕ (xc ) − qϕ (xϕr ) qy (xc ) − qy (zl )
+
,
hϕ,iϕ
hy,Ny −3
iy = Ny − 2,
(Aq u)Ny −1 =
qϕ (zl ) − qϕ (xϕr ) qy (zl ) − qy (zr )
+
,
hϕ,iϕ
hy,Ny −2
iy = Ny − 1,
(Aq u)Ny =
qϕ (zl ) − qϕ (xϕr ) qy (zr ) + qy (zl )
+
,
hϕ,iϕ
hy,Ny −2
i y = Ny .
Äëÿ îïåðàòîðà Av ïðè ∀ir , iϕ âûïîëíåíî
u(zl )vy (xeyl ) + u(zr )vy (xeyr )
+
(Av u)0 =
hy,0
1
+
u(zl )(vr− (xerl ) + vr+ (xerr )) − u(xrl )vr+ (xerl ) − u(xrr )vr− (xerr ) +
hr,ir
1
+
u(zl )(vϕ− (xepl ) + vϕ+ (xepr )) − u(xϕl )vϕ+ (xepl ) − u(xϕr )vϕ− (xepr ) ,
hϕ,iϕ
iy = 0,
48
u(zl )vy (xeyl ) + u(zr )vy (xeyr )
+
(Av u)1 = −
hy,0
1
+
u(zr )(vr− (xerl ) + vr+ (xerr )) − u(xrl )vr+ (xerl ) − u(xrr )vr− (xerr ) +
hr,ir
1
+
u(zr )(vϕ− (xepl ) + vϕ+ (xepr )) − u(xϕl )vϕ+ (xepl ) − u(xϕr )vϕ− (xepr ) +
hϕ,iϕ
2
u(zr )(
+vy+ (xeyr )) −
+
−u(xyr )vy− (xeyr ) ,
hy,0
iy = 1,
(Av u)iy =
1
u(zr )(vr− (xerl ) + vr+ (xerr )) − u(xrl )vr+ (xerl ) − u(xrr )vr− (xerr ) +
= +
hr,ir
1
u(zr )(vϕ− (xepl ) + vϕ+ (xepr )) − u(xϕl )vϕ+ (xepl ) − u(xϕr )vϕ− (xepr ) +
+
hϕ,iϕ
1
+
u(zr )(vy− (xeyl ) + vy+ (xeyr )) − u(xyl )vy+ (xeyl ) − u(xyr )vy− (xeyr ) ,
hy,iy
iy = {2, . . . , Ny − 2},
(Av u)Ny −1 = +
u(zl )vy (xeyl ) + u(zr )vy (xeyr )
+
hy,Ny −2
1
u(zr )(vr− (xerl ) + vr+ (xerr )) − u(xrl )vr+ (xerl ) − u(xrr )vr− (xerr ) +
hr,ir
1
+
u(zr )(vϕ− (xepl ) + vϕ+ (xepr )) − u(xϕl )vϕ+ (xepl ) − u(xϕr )vϕ− (xepr ) +
hϕ,iϕ
2
+
u(zr )(vy− (xeyl )+
) − u(xyl )vy+ (xeyl )−
,
hy,Ny −2
iy = Ny − 1,
+
(Av u)Ny = −
u(zl )vy (xeyl ) + u(zr )vy (xeyr )
+
hy,Ny −2
1
u(zr )(vr− (xerl ) + vr+ (xerr )) − u(xrl )vr+ (xerl ) − u(xrr )vr− (xerr ) +
hr,ir
1
+
u(zr )(vϕ− (xepl ) + vϕ+ (xepr )) − u(xϕl )vϕ+ (xepl ) − u(xϕr )vϕ− (xepr ) ,
hϕ,iϕ
i y = Ny .
+
çäåñü vr , vϕ , vy îáîçíà÷åíû êîìïîíåíòû âåêòîðà ñêîðîñòè Υì .
49
Äëÿ îïåðàòîðà Ag ïðè ∀ir , iϕ âûïîëíåíî
2
σ u (zl ),
hy,0
(Ag u)0 =
iy = 0,
ì
iy = {1, . . . , Ny − 1},
(Ag u)iy = 0,
(Ag u)Ny =
2
hy,Ny −2
σ u (zr ), iy = Ny .
ì
Äëÿ îïåðàòîðà B è âåêòîðà F ïðè ∀ir , iϕ âûïîëíåíî
(Bu)iy = b u (xc ),
ì
Fiy = f (xc ),
ì
iy = {0, . . . , Ny },
ïîä òî÷êîé xc ïðè iy = 0, 1, Ny −2, Ny −1 ïîíèìàåòñÿ zl , zr , ñîîòâåñòâåííî.
Äëÿ âåêòîðà Fg ïðè ∀ir , iϕ âûïîëíåíî
(Fg u)0 =
2
ḡ u (zl ),
hy,0
ì
iy = {1, . . . , Ny − 1},
(Fg u)iy = 0,
(Fg u)Ny =
iy = 0,
2
hy,Ny −2
ḡ u (zr ), iy = Ny ,
ì
ϕ̄iϕ ≤ θ¯ .
ï
Äëÿ ðåøåíèÿ çàäà÷è (99) ïîñòðîèì èòåðàöèîííûé ìåòîä
k
k+1
k+1
B(ρ uh )τ̄ + (Av + Aq + Ag ) uh = F + Fg ,
k = 0, 1, . . . ,
(100)
0
ãäå â êà÷åñòâå uh áåð¼òñÿ íà÷àëüíîå çíà÷åíèå äëÿ óðàâíåíèÿ ýíåðãèè â
ñìàçî÷íîì ñëîå.
Äëÿ ðåøåíèÿ, ïîëó÷åííîé ñèñòåìû óðàâíåíèé, âîñïîëüçóåìñÿ LU ðàçëîæåíèåì [8]. Ôðàãìåíò ïðîãðàììû ñáîðêè ÷àñòåé ìàòðèöû ïðèâåäåí â
ïðèëîæåíèè Á.
3.4
3.4.1
Óðàâíåíèå ýíåðãèè â óïîðíîì äèñêå
Òðèàíãóëÿöèÿ óïîðíîãî äèñêà
Âîñïîëüçóåìñÿ ðàçáèåíèåì Th,∂ , îïèñàííûì â ïàðàãðàôå 3.1 ×åðåç K
óñëîâèìñÿ îáîçíà÷àòü ýëåìåíòû Th,∂ , ÷åðåç eK ãðàíèöû ýëåìåíòîâ.
Îïðåäåëèì äëÿ êàæäîãî ýëåìåíòà K åãî âåðøèíû xα,K , α = 0 . . . 7.
50
Äëÿ êàæäîãî ýëåìåíòà K ∈ Th,∂ ñäåëàåì çàìåíó ïåðåìåííûõ
x = x0,K + JK t,
hr
0
0
JK = 0 hϕ 0 ,
0 0 hy
ïåðåâîäÿùóþ áàçèñíûé êóá ∆ = [0 ≤ t1 , t2 , t3 ≤ 1] â ýëåìåíò K .
Íà ýëåìåíòå òðèàíãóëÿöèè K ∈ Th,∂ îïðåäåëèì óçëû êâàäðàòóðíîé
ôîðìóëû òðàïåöèé, ñîâïàäàþùåé ñ âåðøèíàìè ýëåìåíòà è óçëîâûì ïàK
ðàìåòðîì ðàâíûì αkv
= meas K/8.
Ýëåìåíòû òðèàíãóëÿöèè íà ãðàíèöàõ îáëàñòè Γ∂3 , Γ∂ ì , ñîãëàñîâàííûå
ñ ðàçáèåíèåì Th,∂ , áóäåì îáîçíà÷àòü
3.4.2
4
Γh∂3 , Γh∂ , ñîîòâåòñòâåííî.
ì
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé
Ïðèáëèæåííîå ðåøåíèå T∂h çàäà÷è áóäåì èñêàòü â ïðîñòðàíñòâå êóñî÷íîëèíåéíûõ ôóíêöèé Vh,∂ ≡ {ηh ∈ C(∂) : ηh |K ∈ Q1 (K), K ∈ Th,∂ },
Q1 (K) =
1
P
aijl xi1 xj2 xl3 ïðîñòðàíñòâî ïîëèíîìîâ ïåðâîé ñòåïåíè ïî
i,j,l=0
êàæäîìó íàïðàâëåíèþ íà ýëåìåíòå K .
3.4.3
Ïîñòðîåíèå ñõåìû ÌÊÝ äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè â äèñêå
Äëÿ ðåøåíèÿ óðàâíåíèÿ (63) âîñïîëüçóåìñÿ ìåòîäîì êîíå÷íûõ ýëåìåíòîâ [9]. Àëãîðèòì ñáîðêè îïèñàí â [10], [11].
Àïïðîêñèìèðóåì (63) íåÿâíîé ñõåìîé. Äëÿ ýòîãî ïðîèçâîäíóþ ïî âðåìåíè àïïðîêñèìèðóåì ðàçíîñòüþ âïåð¼ä ∂T∂ /∂τ = (T̂∂ − T∂ )/hτ , ãäå
T̂∂ (τ ) = T∂ (τ + hτ ). Ïîëó÷èì:
Z
Z
Z
Z
Tˆ∂
ˆ
ˆ
ˆ
b∂ vdx − (Υ∂ T∂ − κ∂ ∇T∂ ) · ∇vdx + σ∂3 T∂ vdx +
σ ∂ Tˆ∂ vdx =
τ̄
Ω∂
Ω∂
Γ∂3
Z
Z
ZΓ∂ì
T∂
= b∂ vdx + T̄a vdx +
ḡ∂ vdx (101)
τ̄
ì
ì
Ω∂
Γ∂3
Γ∂ ì
Ââåä¼ì áèëèíåéíóþ ôîðìó A(u, v) = AΩ∂ (u, v) + A∂3 (u, v) + A∂ ì (u, v),
è ëèíåéíóþ ôîðìó F (v) = FΩ∂ (v) + F∂3 (v) + F∂ ì (v),
4 Ñèìâîë
h
ó ñåòî÷íûõ ôóíêöèé è ãðàíèö ñîãëàñîâàííûõ ñ ðàçáèåíèåì, äëÿ êðàòêîñòè, áóäåì
îïóñêàòü
51
AΩ (u, v) =
XZ
u
aΩ (u, v) = b∂ v − (Υ∂ u − κ∂ ∇u) · ∇v,
τ
aΩ (u, v)dx,
K K
A∂3 (u, v) =
X Z
a∂3 (u, v)dx,
a∂3 (u, v) = σ∂3 uvdx,
(102)
K∈Γ∂3 K
X Z
A∂ (u, v) =
a∂ (u, v)dx,
a∂ (u, v) = σ ∂ uv,
ì
ì
ì
ì
K∈Γ∂ ì K
FΩ (v) =
XZ
u
fΩ (u, v) = b∂ v,
τ
fΩ (v)dx,
K K
X Z
F∂3 (v) =
f∂3 (v)dx,
f∂3 (v) = T̄a v
(103)
K∈Γ∂3 K
F∂ (v) =
X Z
ì
f∂ (v)dx, f∂ (v) = ḡ∂ v.
ì
ì
ì
K∈Γ∂ ì K
Òàêèì îáðàçîì, áóäåì èìåòü:
(104)
A(u, v) ≈ F (v)
Àïïðîêñèìèðóåì èíòåãðàëû â (102), (103) êâàäðàòóðàìè òðàïåöèé. Â
êà÷åñòâå âåñîâîãî êîýôôèöèåíòà âûáåðåì αkv = meas(K)/8, meas(K) =
hr hϕ hy , xkv óçëû êâàäðàòóðû.
Ïîä ïðèáëèæ¼ííûì ðåøåíèåì çàäà÷è äëÿ óðàâíåíèÿ (63) áóäåì ïîíèìàòü ñåòî÷íóþ ôóíêöèþ T∂h = T∂h (τ, r, ϕ, y), óäîâëåòâîðÿþùóþ òîæäåñòâó
X X
h
αkv (aΩ (Tˆ∂ , v h ))(xkv ) +
K∈Th,∂ xkv ∈K
+
X X
h
αkv (a∂3 (Tˆ∂ , v h ))(xkv )+
K∈Γ∂3 xkv ∈K
h
αkv (a∂ (Tˆ∂ , v h ))(xkv ) =
X X
X X
ì
K∈Γ∂ ì xkv ∈K
+
X X
αkv (fΩ (T∂h , v h ))(xkv )+
K∈Th,∂ xkv ∈K
h
αkv (f∂3 (v ))(xkv ) +
K∈Γ∂3 xkv ∈K
X X
ì
K∈Γ∂ ì xkv ∈K
52
αkv (f∂ (v h ))(xkv )
äëÿ ëþáîé ôóíêöèè v h ∈ Vh,∂ .
Ýòî òîæäåñòâî ýêâèâàëåíòíî ñèñòåìå ëèíåéíûõ óðàâíåíèé. Îïèøåì
ñïîñîá ôîðìèðîâàíèÿ ìàòðèöû ñèñòåìû è å¼ ïðàâîé ÷àñòè.
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå AΩ , âû÷èñëÿþòñÿ ñëåäóþùèì îáðàçîì:
X
al,k =
K∈Th,∂
αkv
X δkl
b∂
− (Υ∂ ϕk − κ∂ ∇ϕk ) · ∇ϕl (xkv ).
τ
xkv ∈K
ãäå δkl = 1, åñëè k = l, è 0 èíà÷å.
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå A∂3 ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
al,k =
X
αkv
X
σ∂3 δkl (xkv ).
xkv ∈K
K∈Γ∂3
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå A∂ ì ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
al,k =
X
αkv
X
σ ∂ δkl (xkv ).
ì
xkv ∈K
K∈Γ∂ ì
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå FΩ ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
X
fl =
αkv
X δkl
(xkv ).
b∂
τ
xkv ∈K
K∈Th,∂
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå F∂3 ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
fl =
X
αkv
X
T̄a δkl (xkv ).
xkv ∈K
K∈Γ∂3
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå F∂ ì ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
fl =
X
K∈Γ∂ ì
αkv
X
ḡ∂ δkl (xkv ).
ì
xkv ∈K
Ôðàãìåíò ïðîãðàììû ñáîðêè ÷àñòåé ìàòðèöû ïðèâåäåí â ïðèëîæåíèè
Â.
Äëÿ ðåøåíèÿ, ïîëó÷åííîé ñèñòåìû óðàâíåíèé, âîñïîëüçóåìñÿ LU ðàçëîæåíèåì [8].
53
3.5
3.5.1
Óðàâíåíèå ýíåðãèè â ïîäóøêå
Òðèàíãóëÿöèÿ ïîäóøêè
Âîñïîëüçóåìñÿ ðàçáèåíèåì Th,ï , îïèñàííûì â ïàðàãðàôå 3.1 ×åðåç K
óñëîâèìñÿ îáîçíà÷àòü ýëåìåíòû Th,ï , ÷åðåç eK ãðàíèöû ýëåìåíòîâ.
Îïðåäåëèì äëÿ êàæäîãî ýëåìåíòà K åãî âåðøèíû xα,K , α = 0 . . . 7.
Äëÿ êàæäîãî ýëåìåíòà K ∈ Th,ï ñäåëàåì çàìåíó ïåðåìåííûõ
x = x0,K + JK t,
hr 0 0
J K = 0 hϕ 0 ,
0 0 hy
ïåðåâîäÿùóþ áàçèñíûé êóá ∆ = [0 ≤ t1 , t2 , t3 ≤ 1] â ýëåìåíò K .
Íà ýëåìåíòå òðèàíãóëÿöèè K ∈ Th,ï îïðåäåëèì óçëû êâàäðàòóðíîé
ôîðìóëû òðàïåöèé, ñîâïàäàþùåé ñ âåðøèíàìè ýëåìåíòà è óçëîâûì ïàK
ðàìåòðîì ðàâíûì αkv
= meas K/8.
Ýëåìåíòû òðèàíãóëÿöèè íà ãðàíèöàõ îáëàñòè Γïì , Γï3 , ñîãëàñîâàííûå
ñ ðàçáèåíèåì Th,ï , áóäåì îáîçíà÷àòü Γhïì , Γhï3 , ñîîòâåòñòâåííî.
3.5.2
Ïðîñòðàíñòâà êîíå÷íî-ýëåìåíòíûõ ôóíêöèé
Ïðèáëèæåííîå ðåøåíèå Tïh çàäà÷è áóäåì èñêàòü â ïðîñòðàíñòâå êóñî÷íîëèíåéíûõ ôóíêöèé Vh,ï ≡ {ηh ∈ C(Ωï ) : ηh |K ∈ Q1 (K), K ∈ Th,ï },
Q1 (K) =
1
P
aijl xi1 xj2 xl3 ïðîñòðàíñòâî ïîëèíîìîâ ïåðâîé ñòåïåíè ïî
i,j,l=0
êàæäîìó íàïðàâëåíèþ íà ýëåìåíòå K .
3.5.3
Ïîñòðîåíèå ñõåìû ÌÊÝ äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè â ïîäóøêå
Äëÿ ðåøåíèÿ óðàâíåíèÿ (71) âîñïîëüçóåìñÿ ìåòîäîì êîíå÷íûõ ýëåìåíòîâ [9]. Àëãîðèòì ñáîðêè îïèñàí â [10], [11].
Àïïðîêñèìèðóåì (71) íåÿâíîé ñõåìîé. Äëÿ ýòîãî ïðîèçâîäíóþ ïî âðåìåíè àïïðîêñèìèðóåì ðàçíîñòüþ âïåð¼ä (Tˆï − Tï )/hτ , ãäå Tˆï (τ ) = Tï (τ +
hτ ).
54
Ïîëó÷èì:
Z
Z
Z
Z
Tˆ
b
vdx + κ ∇Tˆ · ∇vdx +
σ Tˆ vdx + σ 3 Tˆ vdx =
τ̄
Ωï
Γï3
Z
Z
Z Γïì
T
vdx +
ḡ vdx + T̄ 3 vdx (105)
= b
τ̄
ï
ï
Ωï
ï
ï
ìï
ï
ï
ï
ï
ïì
ï
ï
Γïì
Ωï
Γï3
Ââåä¼ì áèëèíåéíóþ ôîðìó A(u, v) = AΩï (u, v) + Aï3 (u, v) + Aïì (u, v),
è ëèíåéíóþ ôîðìó F (v) = FΩï (v) + Fï3 (v) + Fïì (v),
AΩ (u, v) =
XZ
aΩ (u, v)dx,
aΩ (u, v) = b
K K
A (u, v) =
X Z
ï
u
v + κ ∇u · ∇v,
τ
ï
ayHï (u, v)dx, a (u, v) = σ uv,
ïì
ïì
(106)
ìï
K∈Γïì K
A 3 (u, v) =
X Z
ï
a 3 (u, v)dx,
ï
a 3 (u, v) = σ 3 uvdx,
ï
ï
K∈Γï3 K
FΩ (v) =
XZ
fΩ (v)dx,
fΩ (u, v) = b
ï
K K
F (v) =
X Z
ïì
u
v,
τ
fyHï (v)dx, f (v) = ḡ v.
ïì
ïì
(107)
K∈Γïì K
F 3 (v) =
X Z
f 3 (v)dx,
ï
ï
f 3 (v) = T̄ 3 v
ï
ï
K∈Γï3 K
Òàêèì îáðàçîì, áóäåì èìåòü:
A(u, v) ≈ F (v)
(108)
Àïïðîêñèìèðóåì èíòåãðàëû â (106), (107) êâàäðàòóðàìè òðàïåöèé. Â
êà÷åñòâå âåñîâîãî êîýôôèöèåíòà âûáåðåì αkv = meas(K)/8, meas(K) =
hr hϕ hy , xkv óçëû êâàäðàòóðû.
55
Ïîä ïðèáëèæ¼ííûì ðåøåíèåì çàäà÷è äëÿ óðàâíåíèÿ (71) áóäåì ïîíèìàòü ñåòî÷íóþ ôóíêöèþ Tïh = Tïh (τ, r, ϕ, y), óäîâëåòâîðÿþùóþ òîæäåñòâó
h
αkv (aΩ (Tˆ , v h ))(xkv ) +
X X
X X
ï
ï
K∈Th,ï xkv ∈K
+
X X
ï
K∈Γï3 xkv ∈K
h
X X
αkv (a (Tˆ , v h ))(xkv ) =
ïì
αkv (fΩ (T h , v h ))(xkv )+
ï
K∈Γïì xkv ∈K
+
h
αkv (a 3 (Tˆ , v h ))(xkv )+
ï
K∈Th,ï xkv ∈K
X X
X X
h
αkv (f 3 (v ))(xkv ) +
ï
K∈Γï3 xkv ∈K
αkv (f (v h ))(xkv ) (109)
ïì
K∈Γïì xkv ∈K
äëÿ ëþáîé ôóíêöèè v ∈ Vh,ï .
Ýòî òîæäåñòâî ýêâèâàëåíòíî ñèñòåìå ëèíåéíûõ óðàâíåíèé. Îïèøåì
ñïîñîá ôîðìèðîâàíèÿ ìàòðèöû ñèñòåìû è å¼ ïðàâîé ÷àñòè.
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå AΩ , âû÷èñëÿþòñÿ ñëåäóþùèì îáðàçîì:
al,k =
X
αkv
X δkl
+ κ ∇ϕk · ∇ϕl (xkv ).
b
τ
ï
ï
xkv ∈K
K∈Th,ï
ãäå δkl = 1, åñëè k = l, è 0 èíà÷å.
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå Aï3 ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
al,k =
X
αkv
X
σ 3 δkl (xkv ).
ï
xkv ∈K
K∈Γï3
Êîìïîíåíòû ìàòðèöû, ñîîòâåòñòâóþùèå Aïì ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
al,k =
X
αkv
K∈Γïì
X
σ δkl (xkv ).
ìï
xkv ∈K
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå FΩ ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
fl =
X
K∈Th,ï
αkv
X δkl
b
(xkv ).
τ
ï
xkv ∈K
56
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå Fï3 ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
fl =
X
X
αkv
T̄ 3 δkl (xkv ).
ì
xkv ∈K
K∈Γï3
Êîìïîíåíòû âåêòîðà, ñîîòâåòñòâóþùèå Fïì ,
îïðåäåëÿþòñÿ ðàâåíñòâàìè:
fl =
X
X
αkv
ḡ δkl (xkv ).
ïì
xkv ∈K
K∈Γïì
Ôðàãìåíò ïðîãðàììû ñáîðêà ÷àñòåé ìàòðèöû ïðèâåäåí â ïðèëîæåíèè
Ã.
Äëÿ ðåøåíèÿ, ïîëó÷åííîé ñèñòåìû óðàâíåíèé, âîñïîëüçóåìñÿ LLT
ðàçëîæåíèåì [8].
3.6
Ìåòîä äåêîìïîçèöèè
Ðàññìîòðèì ðàçäåëåíèå äèñê-ñìàçêà. Äëÿ ñìàçî÷íîãî ñëîÿ ñïðàâåäëèâî
(55) (57), àíàëîãè÷íî, äëÿ äèñêà (64) (66).
Ïîñòðîèì èòåðàöèîííûé ìåòîä, ðåàëèçóþùèé òåïëîîáìåí ìåæäó îáëàñòÿìè ïîäøèïíèêà.
n+1
∂(ρ̄ t̄ )
+ div Υ
b
∂ τ̄
ì
ì
− Υ
ì
¯ t̄
t̄ −κ ∇
ì
n+1
n+1
¯ t̄
t̄ −κ ∇
ì
n+1
n+1
=f ,
ì
n+1
·ν+σ
∂
ì
n
t̄ =ḡ ∂ ,
ì
x∈Ω ,
ì
(110)
ȳ = 0,
n+1
n+1
n+1
∂ T¯∂
¯
¯
b∂
+ div(Υ∂ T∂ −κ∂ ∇ T¯∂ ) = 0, x ∈ Ω∂ ,
∂ τ̄
n+1
n+1
n+1
n
¯ T¯∂ · ν∂ + σ ∂ T¯∂ =ḡ∂ , x ∈ Γ∂ .
− Υ∂ T¯∂ −κ∂ ∇
ì
ì
n+1 n+1
(111)
ì
Ïîëó÷èì âûðàæåíèÿ äëÿ ḡì∂ , ḡ∂ ì . Ïî îïðåäåëåíèþ ḡ∂ ì = ḡì∂ íà ãðàíèöå ðàçäåëà, ñëåäîâàòåëüíî
n
n
n
¯
¯
¯
¯
ḡ ∂ = Υ∂ T∂ −κ∂ ∇ T∂ · ν∂ + σ ∂ T∂ ,
n
n
n
n
¯ t̄ · ν + σ ∂ t̄ .
ḡ∂ = Υ t̄ −κ ∇
n
ì
ì
ì
ì
ì
ì
57
Ïîëüçóÿñü ýòèì, ïîëó÷èì
n+1
¯
¯
Υ∂ T∂ −κ∂ ∇ T¯∂ · ν∂ + σ
n+1
n+1
¯ T¯∂ · ν∂ + σ
= − − Υ∂ T¯∂ −κ∂ ∇
n+1
ḡì∂ =
n+1
n+1
ì
∂
∂
ì
n+1
T¯∂ ±σ ∂ T¯∂ =
n+1
n+1
n
T¯∂ + 2σ ∂ T¯∂ = − ḡ∂ +2σ
ì
ì
ì
n+1
∂
ì
T¯∂
n+1
Ïðîäåëûâàÿ àíàëîãè÷íûå îïåðàöèè äëÿ ḡ∂ ì , ïîëó÷èì
n+1
ḡì∂ =
−
n
ḡ∂ ì
Ïîëîæèì
+2σ
∂
ì
T¯∂ ,
n+1
n+1
n
ì
ì
ḡ∂ = − ḡ
n+1
∂
+2σ
0
∂
ì
0
ḡ ∂ = 0,
t̄ .
ḡ∂ = 0.
ì
ì
(112)
(113)
(114)
Òàêèì îáðàçîì, (110) (114) îïèñûâàþò èòåðàöèîííûé ìåòîä òåïëîîáìåíà ìåæäó äèñêîì è ñìàçî÷íûì ñëîåì [13]. Äëÿ ïîäóøêè àíàëîãè÷íî.
58
4
×èñëåííûå ýêñïåðèìåíòû
Äëÿ ðåøåíèÿ ïîñòðîåííûõ ñåòî÷íûõ ñõåì áûë ñîçäàí êîìïëåêñ ïðîãðàìì
[20], [14], ñ ïîìîùüþ êîòîðûõ ïðîâåäåíû ÷èñëåííûå èññëåäîâàíèÿ (ñì
Ïðèëîæåíèå Ä).
Ïðîâåäåíî èññëåäîâàíèå òî÷íîñòè ñåòî÷íîé ñõåìû íà ïîñëåäîâàòåëüíîñòè ñãóùàþùèõñÿ ñåòîê äëÿ óðàâíåíèå òåïëîïðîâîäíîñòè â ñìàçî÷íîì
ñëîå.  êà÷åñòâå ìîäåëüíîé çàäà÷è áåð¼òñÿ óðàâíåíèå ýíåðãèè â ñìàçî÷íîì ñëîå ïîñòîÿííîé òîëùèíû ñ èçâåñòíûì òî÷íûì ðåøåíèåì ïðè
çàäàííûõ ïàðàìåòðàõ äèôôåðåíöèàëüíîé çàäà÷è
t = sin(τ )
r̄ − Rcp
cos(ϕ̄) sin(ȳ),
lr
ãäå lr = R2 − R1 .
Ïðè ïðîâåäåíèè ÷èñëåííûõ ýêñïåðèìåíòîâ ïðèáëèæ¼ííîå ðåøåíèå th
ñðàâíèâàëîñü ñ òî÷íûì ðåøåíèåì t ìîäåëüíîé çàäà÷è. Êðèòåðèåì òî÷íîñòè âûáèðàëàñü ðàâíîìåðíàÿ íîðìà ïîãðåøíîñòè max |t − th |. Äëÿ
(r̄,ϕ̄,ȳ)
ðåøåíèÿ ðàçðåæåííûõ ñèñòåì óðàâíåíèé èñïîëüçîâàëñÿ ìåòîä LU ðàçëîæåíèÿ ìàòðèöû.
Íèæå ïðåäñòàâëåíû ãðàôèêè ïîãðåøíîñòè è ïðèáëèæåííîãî ðåøåíèÿ.
Íà ðèñóíêå 3 ïðåäñòàâëåí ãðàôèê çàâèñèìîñòè ïîãðåøíîñòè ðåøåíèÿ îò
÷èñëà òî÷åê ðàçáèåíèÿ n ïî íàïðàâëåíèÿ r, ϕ, y . Ðèñóíîê ïîêàçûâàåò,
÷òî èìååò ìåñòî ñõîäèìîñòè ïîñòðîåííîãî ìåòîäà ñî ñêîðîñòüþ âûøå
ëèíåéíîé ñ ðîñòîì n.
59
Ðèñóíîê 3 - Ãðàôèê çàâèñèìîñòè ïîãðåøíîñòè îò ÷èñëà òî÷åê
ðàçáèåíèÿ n
Íà ðèñóíêàõ 4-6 ïðåäñòàâëåíû ãðàôèêè ïðèáëèæåííîãî è òî÷íîãî ðåøåíèÿ ïðè ôèêñèðîâàííûõ ϕ è y â öåíòðå ðàñ÷¼òíîé îáëàñòè. Íà ðèñóíêàõ 7-12 ïðåäñòàâëåíû àíàëîãè÷íûå ãðàôèêè ïðèáëèæ¼ííîãî è òî÷íîãî
ðåøåíèÿ ïðè ôèêñèðîâàííûõ r, y è r, ϕ ñîîòâåòñòâåííî.
Ðèñóíîê 4 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ r ïðè n = 5
60
Ðèñóíîê 5 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ r ïðè n = 25
Ðèñóíîê 6 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ r ïðè n = 50
61
Ðèñóíîê 7 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ ϕ ïðè n = 5
Ðèñóíîê 8 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ ϕ ïðè n = 25
62
Ðèñóíîê 9 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ ϕ ïðè n = 50
Ðèñóíîê 10 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ y ïðè n = 5
63
Ðèñóíîê 11 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ y ïðè n = 25
Ðèñóíîê 12 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
â ñå÷åíèè ïî íàïðàâëåíèþ y ïðè n = 50
Íà ðèñóíêàõ 13 15 ïðåäñòàâëåíû ãðàôèêè òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ âî âðåìåíè ïðè ðàçëè÷íîì êîëè÷åñòâå òî÷åê ðàçáèåíèÿ Nτ
îòðåçêà [0, Tmax ].
64
Ðèñóíîê 13 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
âî âðåìåíè ïðè Nτ = 5
Ðèñóíîê 14 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
âî âðåìåíè ïðè Nτ = 10
65
Ðèñóíîê 15 - Ãðàôèê òî÷íîãî è ïðèáëèæåííîãî ðåøåíèÿ
âî âðåìåíè ïðè Nτ = 20
Äëÿ ðåøåíèÿ óðàâíåíèÿ Ðåéíîëüäñà áûëà ïîñòðîåíà ñõåìà ìåòîäîì
ñóììàòîðíûõ òîæäåñòâ. Íà ðèñóíêàõ 16 è 17 ïðèâåä¼í ãðàôèê äàâëåíèÿ
â ñå÷åíèè ïðè ôèêñèðîâàííûõ r èëè ϕ â öåíòðå ðàñ÷¼òíîé îáëàñòè.
Ðèñóíîê 16 - Ãðàôèê äàâëåíèÿ â ñå÷åíèè ïðè ôèêñèðîâàííîì ϕ
66
Ðèñóíîê 17 - Ãðàôèê äàâëåíèÿ â ñå÷åíèè ïðè ôèêñèðîâàííîì r
Íà ðèñóíêå 18 ïðåäñòàâëåí ãðàôèê èçîáðàð. Íàèáîëøåå çíà÷åíèå äàâëåíèÿ âáëèçè âõîäà íà ïëîñêóþ ÷àñòü ïîäóøêè. Çàçîð òàì ìèíèìàëåí è
ïðîòåêàíèå ñìàçêè çàòðóäíåíî. Íàèìåíüøåå çíà÷åíèå äàâëåíèÿ ïðèõîäèòñÿ íà íà÷àëî êëèíîâîãî ñêîñà, à òàê æå íà âíåøíèõ è âíóòðåííèõ
ðàäèóñàõ îáëàñòè. Ýòî îáóñëîâëåíî òåì, ÷òî â íà÷àëå êëèíîâîãî ñêîñà
çàçîð ìàêñèìàëåí, à íà âíóòðåííèõ è âíåøíèõ ðàäèóñàõ îáëàñòè ñìàçêà
ïîêèäàåò ïîäøèïíèê.
Ðèñóíîê 18 - Ãðàôèê èçîáàð
Ïðè ðåøåíèè çàäà÷è èñïîëüçîâàëñÿ èòåðàöèîííûé ìåòîä äåêîìïîçèöèè îáëàñòåé. Ïîèñê ðåøåíèÿ ïðîèçâîäèëñÿ ñ çàäàííîé òî÷íîñòüþ. Íà
67
ðèñóíêå 19 ïðåäñòàâëåíû ãðàôèê ïðèáëèæ¼ííîãî ðåøåíèÿ óðàâíåíèÿ
ýíåðãèè â ýëåìåíòå ïåðèîäè÷íîñòè â öåíòðå ðàñ÷¼òíîé îáëàñòè ïðè ôèêñèðîâàííûõ r è ϕ.
Ðèñóíîê 19 - Ãðàôèê ïðèáëèæ¼ííîãî ðåøåíèÿ óðàâíåíèÿ ýíåðãèè â
ýëåìåíòå ïåðèîäè÷íîñòè
Íà ðèñóíêàõ 20 22 ïðåäñòàâëåíû ãðàôèêè ñêîðîñòè â ñå÷åíèÿõ. ×èñëåííûé ýêñïåðèìåíò ïîäòåðæäàþò ïðåäïîëîæåíèå î òîì, ÷òî êîìïîíåíòà
ñêîðîñòè Vr òå÷åíèÿ ñìàçêè ðàâíà íóëþ âáëèçè ñðåäíåé ëèíèè è ìåíÿåò
ñâîé çíàê ñ îòðèöàòåëüíîãî íà ëèíèè r = R1 à ïîëîæèòåëüíûé íà ëèíèè r = R2 . Ñêîðîñòü Vϕ óìåíüøàåòñÿ âáëèçè è óâåëè÷èâàåòñÿ íà óðîâíå
ïëîñêîé ÷àñòè ïîäóøêè. Ýòî îáúÿñíÿåòñÿ òåì, ÷òî çàçîð òàì ìèíèìàëåí
è ïðèòîê ñìàçêè îãðàíè÷åí.
Ðèñóíîê 20 - Ãðàôèê ñêîðîñòè Vr
68
Ðèñóíîê 21 - Ãðàôèê ñêîðîñòè Vϕ
Ðèñóíîê 22 - Ãðàôèê ñêîðîñòè Vy
Íà ðèñóíêàõ 23 25 ïðåäñòàâëåíû ãðàôèêè èçîòåðì â îáëàñòè ïîäóøêè, äèñêà è ñìàçî÷íîãî ñëîÿ. Ñòîèò îáðàòèòü âíèìàíèå, èç-çà íàëè÷èå
ñêîðîñòè Vϕ â äèñêå, òåìïåðàòóðà â íàïðàâëåíèè ϕ íå èçìåíÿåòñÿ.
69
Ðèñóíîê 23 - Ãðàôèê èçîòåðì â îáëàñòè ïîäóøêè
Ðèñóíîê 24 - Ãðàôèê èçîòåðì â îáëàñòè äèñêà
70
Ðèñóíîê 25 - Ãðàôèê èçîòåðì â îáëàñòè ñìàçî÷íîãî ñëîÿ
 õîäå ðàáîòû ïîäøèïíèêà äèñê ñîâåðøàåò ïåðåìåùåíèå ïî çàäàííîé òðàåêòîðèè. Íà ðèñóíêå 26 ïðåäñòàâëåí ãðàôèê èçìåíåíèÿ òîëùèíû çàçîðà h â çàâèñèìîñòè îò âðåìåíè ïðè ñèíóñîèäàëüíîé òðàåêòîðèè
äâèæåíèÿ äèñêà. Òóò è äàëåå, òî÷êàìè îòìå÷àåòñÿ ðàññìàòðèâàåìàÿ õàðàêòåðèñòèêà, à ëèíèåé ïîâåäåíèå äèñêà. Ïðè ïðèáëèæåíèè äèñêà ê
ïîäóøêå çíà÷åíèÿ ôóíêöèè îòìå÷åííîé ëèíèåé óâåëè÷èâàþòñÿ, ïðè îòäàëåíèè óìåíüøàþòñÿ.
Ðèñóíîê 26 - Ãðàôèê òîëùèíû çàçîðà h
Òàêîå ïîâåäåíèå äèñêà âëèÿåò íà õàðàêòåðèñòèêè ïîäøèïíèêà. Íà ðèñóíêå 27 ïðåäñòàâëåí ãðàôèê äàâëåíèÿ â çàâèñèìîñòè îò âðåìåíè ïðè
71
äâèæåíèè äèñêà. Íà ðèñóíêàõ 2830 ïðåäñòàâëåíû ãðàôèêè èçìåíåíèÿ
ñêîðîñòè òå÷åíèÿ ñìàçêè.
Ðèñóíîê 27 - Ãðàôèê èçìåíåíèÿ äàâëåíèÿ âî âðåìåíè ïðè äâèæåíèè
äèñêà
Ðèñóíîê 28 - Ãðàôèê èçìåíåíèÿ ñêîðîñòè Vr òå÷åíèÿ ñìàçêè
72
Ðèñóíîê 29 - Ãðàôèê èçìåíåíèÿ ñêîðîñòè Vϕ òå÷åíèÿ ñìàçêè
Ðèñóíîê 30 - Ãðàôèê èçìåíåíèÿ ñêîðîñòè Vy òå÷åíèÿ ñìàçêè
Ïî èçâåñòíîìó äàâëåíèþ, òåìïåðàòóðàì è ñêîðîñòÿì ìîæíî óçíàòü î
ðàñõîäàõ ñìàçêè, íåñóùåé ñïîñîáíîñòè ïîäøèïíèêà è ïîòåðÿõ ìîùíîñòè
íà òðåíèå. Íà ãðàôèêàõ 3133 ïðåäñòàâëåíû ñîîòâåòñâóþùèå õàðàêòåðèñòèêè ïîäøèïíèêà.
73
Ðèñóíîê 31 - Ãðàôèê ïîòåðü ñìàçêè ïîäøèïíèêà
Ðèñóíîê 32 - Ãðàôèê íåñóùåé ñïîñîáíîñòè ïîäøèïíèêà
Ðèñóíîê 33 - Ãðàôèê ïîòåðü ìîùíîñòè íà òðåíèå
74
ÇÀÊËÞ×ÅÍÈÅ
 ðàáîòå ïðîâåäåíî ïîñòðîåíèå ñåòî÷íûõ àëãîðèòìîâ ðåøåíèÿ íåñòàöèîíàðíûõ óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ âòîðîãî ïîðÿäêà, êîòîðûå
âîçíèêàþò ïðè ìîäåëèðîâàíèè çàäà÷ ãèäðîäèíàìè÷åñêîé òåîðèè ñìàçêè óïîðíûõ ïîäøèïíèêîâ. Äëÿ óðàâíåíèÿ Ðåéíîëüäñà áûëà ïîñòðîåíà
ñåòî÷íàÿ ñõåìà ìåòîäîì ñóììàòîðíûõ òîæäåñòâ. Îïèñûâàþùåå òåïëîïåðåäà÷ó â ïîäóøêå è äèñêå óðàâíåíèå ýíåðãèè, áûëî ñâåäåíî ê ðåøåíèþ
ñèñòåì ëèíåéíûõ óðàâíåíèé ìåòîäîì êîíå÷íûõ ýëåìåíòîâ.  ñìàçî÷íîì
ñëîå áûëà ïîñòðîåíà ñåòî÷íàÿ ñõåìà ñõåìà ðàçðûâíûì ìåòîäîì Ãàë¼ðêèíà, âû÷èñëèòåëüíàÿ ñîñòîÿòåëüíîñòü êîòîðîé áûëà ïîäòâåðæäåíà ÷èñëåííûìè ýêñïåðèìåíòàìè. Äëÿ ïîñòðîåíèÿ åäèíîãî ðåøåíèÿ â ðàñ÷¼òíîé îáëàñòè áûë ïîñòðîåí ìåòîä äåêîìïîçèöèè îáëàñòåé, îáåñïå÷åâøèé
íåïðåðûâíîñòü è ãëàäêîñòü ðåøåíèÿ íà ðàçäåëàõ òâåðäûõ îáëàñòåé è
ñìàçî÷íîãî ñëîÿ ïîäøèïíèêà. Ïðè ïîñòðîåíèè ìàòðèö èñïîëüçîâàëèñü
ðàçðåæåííûå ìàòðèöû áèáëèîòåêè êëàññîâ Eigen. Äëÿ ðåøåíèÿ ñèñòåì
óðàâíåíèé èñïîëüçîâàëèñü ïîñòðîåííûå â ðàáîòå ìåòîäû, à òàê æå ìåòîä âåðõíåé ðåëàêñàöèè, LU è LLT . ×èñëåííûå ýêñïåðèìåíòû ïîêàçàëè, ÷òî ïîñòðîåííûé êîìïëåêñ ïðîãðàìì ìîæåò áûòü èñïîëüçîâàí äëÿ
èññëåäîâàíèÿ ïîâåäåíèÿ ïîäøèïíèêà ïðè åãî ðàçëè÷íûõ ôèçè÷åñêèõ è
ãåîìåòðè÷åñêèõ ïàðàìåòðàõ.
75
ÑÏÈÑÎÊ ÈÑÏÎËÜÇÓÅÌÛÕ ÈÑÒÎ×ÍÈÊÎÂ
1. Sokolov N.V., Khadiev M.B., Maksimov T.V., Fedotov E.M., Fedotov
P.E. Mathematical modeling of dynamic processes of lubricating layers
thrust bearing turbocharger / Journal of Physics: Conference Series,
2019. Vol. 1158 No. 4. P.1 - 9.
2. Ñîêîëîâ Í.Â., Õàäèåâ Ì.Á., Ôåäîòîâ Å.Ì., Ôåäîòîâ Ï.Å. Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå äèíàìè÷åñêè íàãðóæåííîãî óïîðíîãî ïîäøèïíèêà ñêîëüæåíèÿ öåíòðîáåæíîãî êîìïðåññîðà / Àêòóàëüíûå
ïðîáëåìû ìîðñêîé ýíåðãåòèêè: ìàòåðèàëû âîñüìîé ìåæäóíàðîäíîé
íàó÷íî-òåõíè÷åñêîé êîíôåðåíöèè. ÑÏá.: Èçä-âî ÑÏáÃÌÒÓ, 2019.
Ñ. 307-311
3. Ìàêñèìîâ Â.À., Ôåäîòîâ Å.Ì., Õàäèåâ Ì.Á. Ãèäðîäèíàìè÷åñêè è äåôîðìàöèîííûå õàðàêòåðèñòèêè ñìàçî÷íûõ ñëîåâ óïîðíûõ ïîäøèïíèêîâ. ×àñòü I. Âëèÿíèå óïîðíîãî äèñêà è ìåæïîäóøå÷íîãî êàíàëà
// Ãèäðîäèíàìè÷åñêàÿ òåîðèÿ ñìàçêè : Òðóäû ìåæäóíàðîäíîãî íàó÷íîãî ñèìïîçèóìà. Îðåë, 2006. Ò.1. Ñ. 233-239
4. Ìàêñèìîâ Â.À., Ôåäîòîâ Å.Ì., Õàäèåâ Ì.Á. Ãèäðîäèíàìè÷åñêèå è
äåôîðìàöèîííûå õàðàêòåðèñòèêè ñìàçî÷íûõ ñëîåâ óïîðíûõ ïîäøèïíèêîâ. ×àñòü II. Èññëåäîâàíèå ïëîñêîïàðàëëåëüíûõ íåïîäâèæíûõ è ðåâåðñèâíûõ ñàìîóñòàíàâëèâàþùèõñÿ ïîäóøåê // Ãèäðîäèíàìè÷åñêàÿ òåîðèÿ ñìàçêè : Òðóäû ìåæäóíàðîäíîãî íàó÷íîãî ñèìïîçèóìà. Îðåë, 2006. Ò.1. Ñ. 240-249
5. Äàóòîâ Ð.Ç., Êàð÷åâñêèé Ì.Ì., Ôåäîòîâ Å.Ì., Ïàðàíèí Þ.À., Êàð÷åâñêèé À.Ì. ×èñëåííîå ìîäåëèðîâàíèå òåïëîâûõ ïîëåé îõëàæäàåìîãî ñïèðàëüíîãî êîìïåññîðà ñóõîãî ñæàòèÿ // Ñá. íàó÷. òðóäîâ
ïîä ðåä. È.Ã. Õèñàìååâà: "Ïðîåêòèðîâàíèå è èññëåäîâàíèå êîìïðåññîðíûõ ìàøèí Âûï. 6. Èçä-âî ÇÀÎ "ÍÈÈòóðáîêîïðîññîð èì. Â.Á.
Øíåïïà Êàçàíü 2009
6. Õàäèåâ Ì.Á., Ñîêîëîâ Í.Â., Ôåäîòîâ Å.Ì. Ãèäðîäèíàìè÷åñêèå, òåïëîâûå è äåôîðìàöèîííûå õàðàêòåðèñòèêè ñìàçî÷íûõ ñëîåâ óïîðíûõ
76
ïîäøèïíèêîâ ñî ñêîñîì, ïàðàëëåëüíûì ðàäèàëüíîìó ìåæïîäóøå÷íîìó êàíàëó // Âåñòíèê ìàøèíîñòðîåíèÿ. Ìîñêâà: èçä-âî Ìàøèíîñòðîåíèå, 2014, 5, Ñ. 54 -58 // Ãèäðîäèíàìè÷åñêàÿ òåîðèÿ ñìàçêè
: Òðóäû ìåæäóíàðîäíîãî íàó÷íîãî ñèìïîçèóìà. Îðåë, 2006. Ò.1.
Ñ. 233-239
7. Êàð÷åâñêèé Ì.Ì., Ëÿøêî À.Ä. Ðàçíîñòíûå ñõåìû äëÿ íåëèíåéíûõ
çàäà÷ ìàòåìàòè÷åñêîé ôèçèêè ÊÃÓ: Êàçàíü, 1976, 158 ñ.
8. Àíäðååâ Â.Á. ×èñëåííûå ìåòîäû Ìîñêâà, 2013, 324 ñ.
9. Ñüÿðëå Ô. Ìåòîä êîíå÷íûõ ýëåìåíòîâ äëÿ ýëëèïòè÷åñêèõ çàäà÷. Ì.:
Ìèð, 1980, 512 ñ.
10. Êàð÷åâñêèé Ì.Ì., Ëàïèí À.Â. Íåêîòîðûå âîïðîñû òåîðèè ìåòîäà
êîíå÷íûõ ýëåìåíòîâ Êàçàíü, 1981, 110 ñ.
11. Äàóòîâ Ð.Ç., Êàð÷åâñêèé Ì.Ì. Ââåäåíèå â òåîðèþ ìåòîäà êîíå÷íûõ
ýëåìåíòîâ ÊÃÓ.: Êàçàíü, 2004, 234 ñ.
12. Ôåäîòîâ Å.Ì. Ïðåäåëüíûå ñõåìû Ãàë¼ðêèíà-Ïåòðîâà äëÿ íåëèíåéíîãî óðàâíåíèÿ êîíâåêöèè-äèôôóçèè // Äèôôåðåíö. óðàâíåíèÿ. Ò.
46, 2010, 7, Ñ.1033-1043
13. Dolean V., Jolivet P., Nataf F. An Introduction to Domain Decomposition Methods: algorithms, theory and parallel implementation,
France: Master, 2015.
14. Ôåäîòîâ
Ï.Å.,
Ôåäîòîâ
Å.Ì.,
Ñîêîëîâ
Í.Â.,
Õàäèåâ
Ì.Á.
"Sm2P x3T xτ Äèíàìè÷åñêè íàãðóæåííûé óïîðíûé ïîäøèïíèê
ñêîëüæåíèÿ ïðè ïîñòàíîâêå îáðàòíîé çàäà÷è" Ñâèäåòåëüñòâî î ãîñóäàðñòâåííîé ðåøèñòðàöèè ïðîãðàììû äëÿ ÝÂÌ 2020615227, 19 Ìàé
2020.
15. Ôåäîòîâ Ï.Å. Ðåøåíèå ñòàöèîíàðíîãî óðàâíåíèÿ òåïëîïðîâîäíîñòè â ñìàçî÷íîì ñëîå óïîðíîãî ïîäøèïíèêà / Èòîãîâàÿ íàó÷íîîáðàçîâàòåëüíàÿ êîíôåðåíöèÿ ñòóäåíòîâ Êàçàíñêîãî ôåäåðàëüíîãî
77
óíèâåðñèòåòà 2019 ãîäà: ñáîðíèê ñòàòåé.-Êàçàíü: Èçäàòåëüñòâî êàçàíñêîãî óíèâåðñèòåòà, 2019. ñ.1475-1477
16. Ôåäîòîâ Ï.Å. ×èñëåííîå èññëåäîâàíèå ñåòî÷íîé ñõåìû äëÿ óðàâíåíèÿ ýíåðãèè â ñìàçî÷íîì ñëîå óïîðíîãî ïîäøèïíèêà / XXIV Òóïîëåâñêèå ÷òåíèÿ (øêîëà ìîëîäûõ ó÷åíûõ): Ìåæäóíàðîäíàÿ ìîëîä¼æíàÿ íàó÷íàÿ êîíôåðåíöèÿ, 7-8 íîÿáðÿ 2019 ãîäà: Ìàòåðèàëû êîíôåðåíöèè. Ñáîðíèê äîêëàäîâ.  6ò.; Ò.4 Êàçàíü: èçä-âî ÈÏ Ñàãèåâà
À.Ð., 2019. ñ. 148-151
17. Ôåäîòîâ Ï.Å. Ðåøåíèå óðàâíåíèÿ ýíåðãèè â ñìàçî÷íîì ñëîå óïîðíîãî ïîäøèïíèêà / Ëîáà÷åâñêèå ÷òåíèÿ 2019 // Ìàòåðèàëû Âîñåìíàäöàòîé ìîëîäåæíîé íàó÷íîé øêîëû-êîíôåðåíöèè. Êàçàíü:
Èçäàòåëüñòâî Àêàäåìèè íàóê Ðåñïóáëèêè Òàòàðñòàí, 2019. Ò.58.
Ñ.194-197
18. Ôåäîòîâ Ï.Å. ×èñëåííîå ìîäåëèðîâàíèå íåñòàöèîíàðíûõ ïîëåé òåìïåðàòóðû â óïîðíîì ïîäøèïíèêå ñêîëüæåíèÿ / Èòîãîâàÿ íàó÷íîîáðàçîâàòåëüíàÿ êîíôåðåíöèÿ ñòóäåíòîâ Êàçàíñêîãî ôåäåðàëüíîãî
óíèâåðñèòåòà 2020 ãîäà
19. Ôåäîòîâ Ï.Å. ×èñëåííîå ìîäåëèðîâàíèå íåñòàöèîíàðíûõ ïîëåé òåìïåðàòóðû â óïîðíîì ïîäøèïíèêå ñêîëüæåíèÿ // Ìàòåðèàëû êîíôåðåíöèè Âñåðîññèéñêàÿ íàó÷íî-òåõíè÷åñêàÿ êîíôåðåíöèÿ ñ ìåæäóíàðîäíûì ó÷àñòèåì èìåíè ïðîôåññîðà Î.Í. Ïüÿâ÷åíêî ¾ÊîìÒåõ2020¿
20. Sparse
linear
algebra.
Eigen.
-
http://eigen.tuxfamilty.org/dox/group__Sparse__chapter.html
(äàòà îáðàùåíèÿ 01-May-2020)
78
URL:
ÏÐÈËÎÆÅÍÈß
ÏÐÈËÎÆÅÍÈÅ À
bool OSDProblemState::Reynolds()
{
// Ðàçìåðíîñòè
const int64_t &Nr
= m_mesh->config.NrR;
const int64_t &Np
= m_mesh->config.Np_n;
const int64_t &NrNp = m_mesh->Fast.Reyn.NrNp;
const double &lambda2 = m_taskVars->Fast.lambda2;
const bool diricletMode =
static_cast<bool>(m_taskVars->comData.dirichletReyn);
// Øàãè
double hr
double hrLast
double hrbar
double
double
double
double
= 0;
= 0;
= 0;
hp
=
hpLast
=
hpbar
=
hphpbar =
0;
0;
0;
0; // hp * hpbar
// Çíà÷åíèå phi è r â òî÷êå
double srp1
= 0;
double srp1Next = 0;
// Ìàêñèìàëüíîå êîëè÷åñòâî èòåðàöèé
79
const int64_t &maxIterReyn =
m_methVars->data.maxIterReyn;
// Äîïóñòèìàÿ ïîãðåøíîñòü
const double &tol = m_methVars->data.tolReyn;
// Ïîãðåøíîñòü
double maxErr = 0;
// Ìàêñèìàëüíûé ýëåìåíò íà èíòåðàöèè
double pMax = 0;
// Èòåðàöèîííûé ïàðàìåòð
const double &w = m_methVars->data.wReyn;
double w1 = (1 - w);
// Èíäåêñû
int64_t idxc
int64_t idxl
int64_t idxr
int64_t idxu
int64_t idxd
=
=
=
=
=
0;
0;
0;
0;
0;
//
//
//
//
//
Èíäåêñ
Èíäåêñ
Èíäåêñ
Èíäåêñ
Èíäåêñ
// Ïåðâàÿ òî÷êà îáëàñòè
const int64_t idxcFirst
// Èíäåêñ ýëåìåíòà kl
const int64_t idxlFirst
// Èíäåêñ ýëåìåíòà kl-1
const int64_t idxrFirst
// Èíäåêñ ýëåìåíòà kl+1
const int64_t idxuFirst
// Èíäåêñ ýëåìåíòà k+1l
const int64_t idxdFirst
// Èíäåêñ ýëåìåíòà k-1l
ýëåìåíòà
ýëåìåíòà
ýëåìåíòà
ýëåìåíòà
ýëåìåíòà
= Nr + 1
kl
kl-1
kl+1
k+1l
k-1l
;
= idxcFirst - Nr;
= idxcFirst + Nr;
= idxcFirst + 1 ;
= idxcFirst - 1 ;
80
// Óêàçàòåëè íà ýëåìåíòû
arrxd::Scalar *pkl = 0; //
arrxd::Scalar *pl = 0; //
arrxd::Scalar *pr = 0; //
arrxd::Scalar *pu = 0; //
arrxd::Scalar *pd = 0; //
// Ñòàðîå çíà÷åíèå â kl
double pklOld = 0;
ýëåìåíò
ýëåìåíò
ýëåìåíò
ýëåìåíò
ýëåìåíò
â
â
â
â
â
ìàññèâå
ìàññèâå
ìàññèâå
ìàññèâå
ìàññèâå
p
p
p
p
p
// Óêàçàòåëè íà çíà÷åíèÿ òîëùèíû çàçîðà
arrxd::Scalar *h3c = 0; // kl
ýëåìåíò
arrxd::Scalar *h3l = 0; // kl-1 ýëåìåíò
arrxd::Scalar *h3r = 0; // kl+1 ýëåìåíò
arrxd::Scalar *h3u = 0; // k+1l ýëåìåíò
arrxd::Scalar *h3d = 0; // k-1l ýëåìåíò
â
â
â
â
â
ìàññèâå
ìàññèâå
ìàññèâå
ìàññèâå
ìàññèâå
hReyn3
hReyn3
hReyn3
hReyn3
hReyn3
// Çíà÷åíèÿ ôóíêöèé
//arrxd f0, f1, f2;
arrxd::Scalar *f0c =
arrxd::Scalar *f0l =
arrxd::Scalar *f0r =
arrxd::Scalar *f0u =
arrxd::Scalar *f0d =
0;
0;
0;
0;
0;
kl
kl-1
kl+1
k+1l
k-1l
//
//
//
//
//
kl
kl-1
kl+1
k+1l
k-1l
// Êîýôôèöèåíòû
double aPart
= 0;
double aPartNext= 0;
//double bPart
= 0;
//double bPartNext= 0;
double a
double aNext
= 0;
= 0;
// äåë¼ííûå íà h è hbar
// äåë¼ííûå íà h è hbar
81
double b
double bNext
= 0;
= 0;
// äåë¼ííûå íà h è hbar
// äåë¼ííûå íà h è hbar
double aSum
double bSum
double Sum
= 0;
= 0;
= 0;
// ñóììà a è aNext äëÿ çíàìåíàòåëÿ
// Äëÿ ïðîâåðêè çíàêîâ
//arrxd dh_dtau = specData.dh_dtau;
arrxd fReynkl;
arrxd fReynk0;
arrxd fReynkNp;
// Ïðàâàÿ ÷àñòü
{
const double &mu0_muAst = m_taskVars->Fast.mu0_muAst;
const double &RePsiSigmaLambda2 =
m_taskVars->Fast.RePsiSigmaLambda2;
const double &Sh = m_taskVars->data.Sh;
arrxd &A = (*specData.AReyn);
A.setZero();
if(!executionStage.inStationary)
{
arrxd rhoH(m_mesh->Fast.Reyn.NrNp);
arrxd rhoV(m_mesh->Fast.Reyn.NrNp);
arrxd interpTemp0(m_mesh->Fast.Oil.NrNp);
arrxd interpTempn(m_mesh->Fast.Oil.NrNp);
m_mesh->P0ToD(
specData.rho->segment(m_mesh->Fast.Center.lastLvl,
m_mesh->Fast.Center.NrNp),
82
interpTempn);
m_mesh->dataStd2Reyn(interpTemp0, rhoV);
m_mesh->dataStd2Reyn(interpTempn, rhoH);
A = ((*specData.hReyn) * (*specData.rhoReyn)
- (*specData.hReynOld) * (*specData.rhoReynOld))
/ m_mesh->config.tau
- rhoH * (*specData.dh_dtau);
}
fReynkl = mu0_muAst *
(
- RePsiSigmaLambda2 *
(*specData.f1ReynCentr_hrbar) +
m_mesh->Fast.Reyn.gsRP1 *
(
(*specData.f2ReynCentr_hpbar) +
Sh * A)
);
fReynk0 = mu0_muAst *
(
- RePsiSigmaLambda2 *
specData.f1ReynCentr_hrbar->segment(0, Nr) +
m_mesh->Fast.Reyn.sigmaRP1 *
(
(*specData.f2ReynVper_hatk0) +
Sh * A.segment(0, Nr))
);
const size_t NrNpmNr = NrNp - Nr;
fReynkNp = mu0_muAst *
83
(
- RePsiSigmaLambda2 *
specData.f1ReynCentr_hrbar->segment(NrNpmNr, Nr) +
m_mesh->Fast.Reyn.sigmaRP1 *
(
(*specData.f2ReynVper_hatkNp_1) +
Sh * A.segment(NrNpmNr, Nr))
);
}
int64_t iter = 0;
for(iter = 0; iter < maxIterReyn; ++iter)
{
maxErr = 0;
pMax
= 0;
//
// Phi 0
//
if(diricletMode == false)
{
// Âîçâðàùàåì èíäåêñû â èñõîäíîå ñîñòîÿíèå
idxc = 1;
idxl = 0; // Ñëåâà íè÷åãî íåò
idxr = idxc + Nr;
idxu = idxc + 1;
idxd = idxc - 1;
// Âñòà¼ì íà óçåë (1, 1)
pkl = &pReyn->coeffRef(idxc);
84
pl
pr
pu
pd
=
=
=
=
&pReyn->coeffRef(idxl);
&pReyn->coeffRef(idxr);
&pReyn->coeffRef(idxu);
&pReyn->coeffRef(idxd);
// Òîëùèíà çàçîðà ^3
h3c = &specData.hReyn3->coeffRef(idxc);
h3l = &specData.hReyn3->coeffRef(idxl);
h3r = &specData.hReyn3->coeffRef(idxr);
h3u = &specData.hReyn3->coeffRef(idxu);
h3d = &specData.hReyn3->coeffRef(idxd);
// Êîýôôèöèåíòû
f0c = &specData.f0Reyn->coeffRef(idxc);
f0l = &specData.f0Reyn->coeffRef(idxl);
f0r = &specData.f0Reyn->coeffRef(idxr);
f0u = &specData.f0Reyn->coeffRef(idxu);
f0d = &specData.f0Reyn->coeffRef(idxd);
// Øàã ïî íàïðàâëåíèþ phi
hp = m_mesh->mesh.hp[0];
//hp_1 = 1/hp;
hpbar = m_mesh->mesh.hpbarP[0];
hphpbar = hp * hpbar;
srp1Next = m_mesh->Fast.Reyn.sigmaRP1(1);
// 1 òê ïî âíóòðåííèì
hr = m_mesh->mesh.hrR[0]; // äëÿ hrLast
aPart =
m_mesh->Fast.Reyn.sigmaRP1(0) * (*f0d) * (*h3d);
85
aPartNext = srp1Next * (*f0c) * (*h3c);
for(int64_t ir = 1; ir < Nr-1; ++ir)
{
// Øàã ïî íàïðàâëåíèþ r
hrLast = hr;
hr = m_mesh->mesh.hrR[ir];
//hr_1 = 1/hr;
hrbar = m_mesh->mesh.hrbarR[ir];
// Êîîðäèíàòà r
srp1 = srp1Next;
srp1Next = m_mesh->Fast.Reyn.sigmaRP1(ir + 1);
a = lambda2 * (aPart + aPartNext)
/ (2 * hrLast * hrbar);
aPart = aPartNext;
aPartNext = srp1Next * (*f0u) * (*h3u);
//a = aNext;
aNext = lambda2 * (aPart + aPartNext)
/ (2 * hr * hrbar);
bNext = ((*f0c) * (*h3c) + (*f0r) * (*h3r))
/ (2 * srp1 * hphpbar);
aSum = a + aNext;
bSum = bNext;
pklOld = (*pkl);
// çàïîìèíàåì ñòàðîå çíà÷åíèå â kl äëÿ ñðàâíåíèÿ
// if kl
(*pkl) = (fReynk0[ir] +\
a * (*pd) +\
86
aNext * (*pu) +\
bNext * (*pr)) / (aSum + bSum);
(*pkl) = w1 * pklOld + w * (*pkl);
maxErr =
MathSupp::max(maxErr, qAbs<double>((*pkl) - pklOld));
pMax = MathSupp::max(pMax, qAbs<double>(*pkl));
// Ñäâèãàåìñÿ íà ñëåäóþùóþ òî÷êó
++f0c; ++f0l; ++f0r; ++f0u; ++f0d;
++pkl; ++pl; ++pr; ++pu; ++pd;
++h3c; ++h3l; ++h3r; ++h3u; ++h3d;
++idxc; ++idxl; ++idxr; ++idxu; ++idxd;
}// for ir
}
//
// KL
//
{
// Âîçâðàùàåì èíäåêñû â èñõîäíîå ñîñòîÿíèå
87
idxc
idxl
idxr
idxu
idxd
=
=
=
=
=
idxcFirst;
idxlFirst;
idxrFirst;
idxuFirst;
idxdFirst;
// Âñòà¼ì íà óçåë (1, 1)
pkl = &pReyn->coeffRef(idxc);
pl = &pReyn->coeffRef(idxl);
pr = &pReyn->coeffRef(idxr);
pu = &pReyn->coeffRef(idxu);
pd = &pReyn->coeffRef(idxd);
// Òîëùèíà çàçîðà ^3
h3c = &specData.hReyn3->coeffRef(idxc);
h3l = &specData.hReyn3->coeffRef(idxl);
h3r = &specData.hReyn3->coeffRef(idxr);
h3u = &specData.hReyn3->coeffRef(idxu);
h3d = &specData.hReyn3->coeffRef(idxd);
// Êîýôôèöèåíòû
f0c = &specData.f0Reyn->coeffRef(idxc);
f0l = &specData.f0Reyn->coeffRef(idxl);
f0r = &specData.f0Reyn->coeffRef(idxr);
f0u = &specData.f0Reyn->coeffRef(idxu);
f0d = &specData.f0Reyn->coeffRef(idxd);
hp = m_mesh->mesh.hp[0]; // äëÿ hpLast
for(int64_t ip = 1; ip < Np-1; ++ip)
{
// Øàã ïî íàïðàâëåíèþ phi
88
hpLast = hp;
hp = m_mesh->mesh.hp[ip];
hpbar = m_mesh->mesh.hpbarP[ip];
hphpbar = hp * hpbar;
srp1Next =
m_mesh->Fast.Reyn.sigmaRP1(1);
// 1 òê ïî âíóòðåííèì
hr = m_mesh->mesh.hrR[0]; // äëÿ hrLast
aPart =
m_mesh->Fast.Reyn.sigmaRP1(0) * (*f0d) * (*h3d);
aPartNext = srp1Next * (*f0c) * (*h3c);
for(int64_t ir = 1; ir < Nr-1; ++ir)
{
// Øàã ïî íàïðàâëåíèþ r
hrLast = hr;
hr = m_mesh->mesh.hrR[ir];
//hr_1 = 1/hr;
hrbar = m_mesh->mesh.hrbarR[ir];
// Êîîðäèíàòà r
srp1 = srp1Next;
srp1Next = m_mesh->Fast.Reyn.sigmaRP1(ir + 1);
a = lambda2 * (aPart + aPartNext)
/ (2 * hrLast * hrbar);
aPart = aPartNext;
aPartNext = srp1Next * (*f0u) * (*h3u);
//a = ;//aNext;
aNext = lambda2 * (aPart + aPartNext)
/ (2 * hr * hrbar);
89
b = ((*f0l) * (*h3l) + (*f0c) * (*h3c)) /
(2 * srp1 * hpLast * hpbar);//bNext;
bNext = ((*f0c) + (*f0r))
/ (2 * srp1 * hphpbar);
aSum = a + aNext;
bSum = b + bNext;
Sum = aSum + bSum;
pklOld = (*pkl);
// çàïîìèíàåì ñòàðîå çíà÷åíèå â kl äëÿ ñðàâíåíèÿ
// if kl
(*pkl) = (fReynkl[idxc] +\
a * (*pd)
+\
aNext * (*pu)+\
b * (*pl)
+\
bNext * (*pr)) / (Sum);
(*pkl) = w1 * pklOld + w * (*pkl);
maxErr =
MathSupp::max(maxErr, qAbs<double>((*pkl) - pklOld));
pMax = MathSupp::max(pMax, qAbs<double>(*pkl));
// Ñäâèãàåìñÿ íà ñëåäóþùóþ òî÷êó
++f0c; ++f0l; ++f0r; ++f0u; ++f0d;
++pkl; ++pl; ++pr; ++pu; ++pd;
++h3c; ++h3l; ++h3r; ++h3u; ++h3d;
90
++idxc; ++idxl; ++idxr; ++idxu; ++idxd;
}// for ir
// Ñäâèãàåìñÿ íà ñëåäóþùóþ òî÷êó
f0c+=2; f0l+=2; f0r+=2; f0u+=2; f0d+=2;
pkl+=2; pl+=2; pr+=2; pu+=2; pd+=2;
h3c+=2; h3l+=2; h3r+=2; h3u+=2; h3d+=2;
idxc+=2; idxl+=2; idxr+=2; idxu+=2; idxd+=2;
}// for ip
}
//
// Theta_n
//
if(diricletMode == false)
{
// Âîçâðàùàåì èíäåêñû â èñõîäíîå ñîñòîÿíèå
idxc = NrNp - Nr + 1;
idxl = idxc - Nr;
idxr = idxc; // ñïðàâà íè÷åãî íåò
idxu = idxc + 1;
91
idxd = idxc - 1;
// Âñòà¼ì íà óçåë (1, 1)
pkl = &pReyn->coeffRef(idxc);
pl = &pReyn->coeffRef(idxl);
pr = &pReyn->coeffRef(idxr);
pu = &pReyn->coeffRef(idxu);
pd = &pReyn->coeffRef(idxd);
// Òîëùèíà çàçîðà ^3
h3c = &specData.hReyn3->coeffRef(idxc);
h3l = &specData.hReyn3->coeffRef(idxl);
h3r = &specData.hReyn3->coeffRef(idxr);
h3u = &specData.hReyn3->coeffRef(idxu);
h3d = &specData.hReyn3->coeffRef(idxd);
// Êîýôôèöèåíòû
f0c = &specData.f0Reyn->coeffRef(idxc);
f0l = &specData.f0Reyn->coeffRef(idxl);
f0r = &specData.f0Reyn->coeffRef(idxr);
f0u = &specData.f0Reyn->coeffRef(idxu);
f0d = &specData.f0Reyn->coeffRef(idxd);
// Øàã ïî íàïðàâëåíèþ phi
hpLast = m_mesh->mesh.hp[Np-2];
hp = m_mesh->mesh.hp[Np-1];
hpbar = m_mesh->mesh.hpbarP[Np-1];
hphpbar = hp * hpbar;
srp1Next = m_mesh->Fast.Reyn.sigmaRP1(1);
// 1 òê ïî âíóòðåííèì
92
hr = m_mesh->mesh.hrR[0]; // äëÿ hrLast
aPart = m_mesh->Fast.Reyn.sigmaRP1(0) * (*f0d) * (*h3d);
aPartNext = srp1Next * (*f0c) * (*h3c);
for(int64_t ir = 1; ir < Nr-1; ++ir)
{
// Øàã ïî íàïðàâëåíèþ r
hrLast = hr;
hr = m_mesh->mesh.hrR[ir];
hrbar = m_mesh->mesh.hrbarR[ir];
// Êîîðäèíàòà r
srp1 = srp1Next;
srp1Next = m_mesh->Fast.Reyn.sigmaRP1(ir + 1);
a = lambda2 * (aPart + aPartNext)
/ (2 * hrLast * hrbar);
aPart = aPartNext;
aPartNext = srp1Next * (*f0u) * (*h3u);
//a = aNext;
aNext = lambda2 * (aPart + aPartNext)
/ (2 * hr * hrbar);
b = ((*f0l) * (*h3l) + (*f0c) * (*h3c))
/ (2 * srp1 * hpLast * hpbar);
aSum = a + aNext;
bSum = b;
pklOld = (*pkl);
// çàïîìèíàåì ñòàðîå çíà÷åíèå â kl äëÿ ñðàâíåíèÿ
93
// if kl
(*pkl) = (fReynkNp[ir] +\
a * (*pd) +\
aNext * (*pu) +\
b * (*pl)) / (aSum + bSum);
(*pkl) = w1 * pklOld + w * (*pkl);
maxErr =
MathSupp::max(maxErr, qAbs<double>((*pkl) - pklOld));
pMax = MathSupp::max(pMax, qAbs<double>(*pkl));
// Ñäâèãàåìñÿ íà ñëåäóþùóþ òî÷êó
++f0c; ++f0l; ++f0r; ++f0u; ++f0d;
++pkl; ++pl; ++pr; ++pu; ++pd;
++h3c; ++h3l; ++h3r; ++h3u; ++h3d;
++idxc; ++idxl; ++idxr; ++idxu; ++idxd;
}// for ir
}
if(iter%5 == 0)
emit outputReynErr(maxErr);
if(maxErr <= tol * pMax)
break;
}// for iter
if(pReyn->minCoeff() < 0)
94
{
errorType = ProblemStateErrorType::LowReyn;
return false;
}
return true;
}
95
ÏÐÈËÎÆÅÍÈÅ Á
void OSDProblemState::buildAqvFull
(SpMatRow & A, arrxd &Kpp, arrxd &Kpy,
arrxd &Kyp, arrxd &Kyy)
{
const int64_t &Nr = m_mesh->config.Nr;
const int64_t &Np = m_mesh->config.Np;
const int64_t &Ny = m_mesh->config.NyO;
const int64_t &Nrc = m_mesh->config.Nrc;
const int64_t &Nyu = m_mesh->config.Nyu;
const int64_t &NrcNp = m_mesh->Fast.Center.NrNp;
const int64_t &Nu
= m_mesh->Fast.Center.N
;
const arrxd &Vr = *specData.Vre;
const arrxd &Vp = *specData.Vpe;
const arrxd &Vy = *specData.Vye;
const
const
const
const
const
const
arrxd
arrxd
arrxd
arrxd
arrxd
arrxd
Vr_p
Vr_m
Vp_p
Vp_m
Vy_p
Vy_m
=
=
=
=
=
=
(Vr.abs()
(Vr.abs()
(Vp.abs()
(Vp.abs()
(Vy.abs()
(Vy.abs()
+
+
+
-
Vr)/2;
Vr)/2;
Vp)/2;
Vp)/2;
Vy)/2;
Vy)/2;
const arrxd &hr_1 = m_mesh->mesh.hr_1;
const arrxd &hp_1 = m_mesh->mesh.hp_1;
const arrxd &hy_1 = m_mesh->mesh.hyO_1;
if(!patternComplete)
96
{
A.resize(Nu, Nu);
A.reserve(Eigen::VectorXi::Constant(Nu, 10));
patternComplete = true;
}
#pragma omp parallel for
for(int64_t iy = 0; iy < Nyu; ++iy)
{
// Èíäåêñû
int64_t xc
= m_mesh->Fast.Center.lvls(iy);
int64_t xrl
= xc - 1;
int64_t xrr
= xc + 1;
int64_t xpl
=
m_mesh->Fast.Center.lvlsPreTheta(iy);
// Ïåðèîäè÷íîñòü
int64_t xpr
= xc + Nrc;
int64_t xyl
= xc - NrcNp;
int64_t xyr
= xc + NrcNp;
int64_t xplyl = xpl - NrcNp;
int64_t xpryl = xpr - NrcNp;
int64_t xplyr = xpl + NrcNp;
int64_t xpryr = xpr + NrcNp;
// Èíäåêñû óðîâíÿ ïî r äëÿ ñêîðîñòè
int64_t idxVr = m_mesh->Fast.Edge.Erlvls(iy);
// Èíäåêñû ñòîðîí ýëåìåíòà
int64_t xerl = idxVr;
int64_t xerr = xerl + 1;
97
int64_t xepl =
m_mesh->Fast.Edge.Eplvls(iy);
int64_t xepr = xepl + Nrc;
int64_t xeyl = 0;
int64_t xeyr = 0;
if (iy == 0 || iy == 1)
// Òê ey ñòîëüêî æå, ñêîëüêî Ny
{
xeyl = m_mesh->Fast.Edge.Eylvls(0);
xeyr = m_mesh->Fast.Edge.Eylvls(1);
}
else
{
if (iy == Nyu - 2 || iy == Nyu - 1)
// Òê ey ñòîëüêî æå, ñêîëüêî Ny
{
xeyl = m_mesh->Fast.Edge.Eylvls(Ny - 2);
xeyr = m_mesh->Fast.Edge.Eylvls(Ny - 1);
}
else
{
xeyl = m_mesh->Fast.Edge.Eylvls(iy-1);
xeyr = xeyl + NrcNp;
}
}
for (int64_t ip = 0; ip < Np; ++ip)
{
int64_t ipP1 = ip + 1;
98
if (ip == 1) // Ïåðèîäè÷íîñòü.
{
// Òðåáóåòñÿ âåðíóòü èíäåêñ ñ ïðàâîé ïîçèöèè â ëåâóþ
xpl = m_mesh->Fast.Center.lvls(iy);
xplyl = xpl - NrcNp;
xplyr = xpl + NrcNp;
}
if (ip == Np-1) // Ïåðèîäè÷íîñòü
{
ipP1 = 0;
xpr = m_mesh->Fast.Center.lvls(iy);
xpryl = xpr - NrcNp;
xpryr = xpr + NrcNp;
xepr = m_mesh->Fast.Edge.Eplvls(iy);
}
for (int64_t ir = 0; ir < Nrc; ++ir)
{
// Ïåðâàÿ ÷àñòü ìåðû
double mess =
m_mesh->mesh.hr(ir) * m_mesh->mesh.hp(ip);
double &srp1 = m_mesh->Fast.Center.sigmaRP1(ir);
if (iy == 0)
{
mess = mess * m_mesh->mesh.hyO(0) / 2;
const
const
const
const
int64_t
int64_t
int64_t
int64_t
&zl =
&zr =
&zrpl
&zrpr
xc;
xyr;
= xplyr;
= xpryr;
99
double dA_xpl =
hp_1(ip) * (-Kpp(zl) * hp_1(ip) + Kyp(zl) * hy_1(0));
double dA_zl =
(
+ hp_1(ip) * (Kpp(zl) * hp_1(ip)
- Kpy(zl) * hy_1(0) + Kpp(xpr) * hp_1(ipP1))
+ hy_1(0) * (-Kyp(zl) * hp_1(ip)
+ Kyy(zl) * hy_1(0) + Kyy(zr) * hy_1(0))
);
double dA_xpr = hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
+ Kpy(xpr) * hy_1(0));
double dA_zrpl = hy_1(0) * (+Kyp(zr) * hp_1(ip));
double dA_zr = hy_1(0) * (
+Kpy(zl) * hp_1(ip) - Kyy(zl) * hy_1(0)
- Kyp(zr) * hp_1(ip) - Kyy(zr) * hy_1(0));
double dA_zrpr = hy_1(0) * (-Kpy(xpr) * hp_1(ip));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
dA_xpl += hp_1(ip) * (-1 * Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-1 * Vr_p(xerl));
dA_zl +=
+ 1 * hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ 1 * hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(0) * (Vy(xeyl));
if (ir != Nrc - 1)
dA_xrr += hr_1(ir) * (-1 * Vr_m(xerr));
100
dA_xpr += hp_1(ip) * (-1 * Vp_m(xepr));
dA_zr += hy_1(0) * (Vy(xeyr));
// Ãðàíèöà
dA_zl += hy_1(0) * 2 * sigmaSwT_d * srp1;
#pragma omp critical
{
A.coeffRef(zl, xpl ) =
if(ir != 0)
A.coeffRef(zl, xrl
A.coeffRef(zl, zl ) =
if(ir != Nrc-1)
A.coeffRef(zl, xrr
A.coeffRef(zl, xpr ) =
A.coeffRef(zl, zrpl) =
A.coeffRef(zl, zr ) =
A.coeffRef(zl, zrpr) =
}
mess * dA_xpl ;
) = mess * dA_xrl ;
mess * dA_zl ;
) = mess * dA_xrr ;
mess * dA_xpr ;
mess * dA_zrpl;
mess * dA_zr ;
mess * dA_zrpr;
}
else if (iy == 1)
{
mess = mess * m_mesh->mesh.hyO(0) / 2;
const
const
const
const
int64_t
int64_t
int64_t
int64_t
&zl =
&zr =
&zlpl
&zlpr
xyl;
xc;
= xplyl;
= xpryl;
101
double dA_zlpl = hy_1(0) * (-Kyp(zl) * hp_1(ip));
double dA_zl = hy_1(0) * (-Kpy(zr) * hp_1(ip)
- Kyy(zr) * hy_1(0)
+ Kyp(zl) * hp_1(ip) - Kyy(zl) * hy_1(0));
double dA_zlpr = hp_1(ip) * Kpy(xpr) * hy_1(0);
double dA_xpl = hp_1(ip) * (-Kpp(zr) * hp_1(ip)
- Kyp(zr) * hy_1(0));
double dA_zr =
(
+ hp_1(ip) * (Kpp(zr) * hp_1(ip) + Kpy(zr) * hy_1(0)
+ Kpp(xpr) * hp_1(ipP1))
+ hy_1(0) * (Kyp(zr) * hp_1(ip) + Kyy(zr) * hy_1(0)
+ Kyy(zl) * hy_1(0) + 2 * Kyy(xyr) * hy_1(1))
);
double dA_xpr =
hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
- Kpy(xpr) * hy_1(0));
double dA_xplyr = hy_1(0) * (2 * Kyp(xyr) * hp_1(ip));
double dA_xyr =
hy_1(0) * (-2 * Kyp(xyr) * hp_1(ip)
- 2 * Kyy(xyr) * hy_1(1));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
dA_zl
+= hy_1(0) * (-Vy(xeyl));
dA_xpl += hp_1(ip) * (-1 * Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-1 * Vr_p(xerl));
dA_zr +=
+ 1 * hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ 1 * hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(0) * (-Vy(xeyr) + 2 * Vy_p(xeyr));
102
if (ir != Nrc-1)
dA_xrr += hr_1(ir) * (-1 * Vr_m(xerr));
dA_xpr += hp_1(ip) * (-1 * Vp_m(xepr));
dA_xyr += hy_1(0) * (-2 * Vy_m(xeyr));
#pragma omp critical
{
A.coeffRef(zr, zlpl ) =
A.coeffRef(zr, zl
) =
A.coeffRef(zr, zlpr ) =
A.coeffRef(zr, xpl ) =
if(ir != 0)
A.coeffRef(zr, xrl
A.coeffRef(zr, zr
) =
if(ir != Nrc-1)
A.coeffRef(zr, xrr
A.coeffRef(zr, xpr ) =
A.coeffRef(zr, xplyr) =
A.coeffRef(zr, xyr ) =
}
mess
mess
mess
mess
*
*
*
*
dA_zlpl
dA_zl
dA_zlpr
dA_xpl
;
;
;
;
) = mess * dA_xrl ;
mess * dA_zr ;
) = mess * dA_xrr ;
mess * dA_xpr ;
mess * dA_xplyr;
mess * dA_xyr ;
}
else if (iy == Nyu - 3)
{
mess = mess * m_mesh->mesh.hyO(Ny - 3);
const int64_t &zl = xyr;
const int64_t &zr = zl + NrcNp;
const int64_t &zlpl = xplyr;
double dA_xyl = hy_1(iy - 1) * (-Kpy(xc) * hp_1(ip)
103
- Kyy(xc) * hy_1(iy - 1));
double dA_xpryl= hy_1(iy - 1) * (+Kpy(xpr) * hp_1(ip));
double dA_xpl = hp_1(ip) * (-Kpp(xc) * hp_1(ip)
- Kyp(xc) * hy_1(iy - 1));
double dA_xc
=
(
+ hp_1(ip)
* (Kpp(xc) * hp_1(ip)
+ Kpy(xc) * hy_1(iy - 1)
+ Kpp(xpr) * hp_1(ipP1))
+ hy_1(iy - 1) * (Kyp(xc) * hp_1(ip)
+ Kyy(xc) * hy_1(iy - 1)
+ 2 * Kyy(zl) * hy_1(iy))
);
double dA_xpr = hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
- Kpy(xpr) * hy_1(iy - 1));
double dA_zlpl = hy_1(iy - 1) * (Kyp(zl) * hp_1(ip));
double dA_zl
= hy_1(iy - 1) * (-Kyp(zl) * hp_1(ip)
- Kyy(zl) * hy_1(iy));
double dA_zr
= (-Kyy(zl) * hy_1(iy - 1) * hy_1(iy));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
dA_xyl += hy_1(iy - 1) * (-Vy_p(xeyl));
dA_xpl += hp_1(ip) * (-Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-Vr_p(xerl));
dA_xc +=
+ hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(iy - 1) * (Vy_m(xeyl) + Vy_p(xeyr));
104
if (ir != Nrc-1)
dA_xrr += hr_1(ir) * (-Vr_m(xerr));
dA_xpr += hp_1(ip) * (-Vp_m(xepr));
dA_zl += hy_1(iy - 1) * (-Vy_m(xeyr));
#pragma omp critical
{
A.coeffRef(xc, xyl ) =
A.coeffRef(xc, xpryl) =
A.coeffRef(xc, xpl ) =
if(ir != 0)
A.coeffRef(xc, xrl
A.coeffRef(xc, xc
) =
if(ir != Nrc-1)
A.coeffRef(xc, xrr
A.coeffRef(xc, xpr ) =
A.coeffRef(xc, zlpl ) =
A.coeffRef(xc, zl
) =
A.coeffRef(xc, zr
) =
}
mess * dA_xyl ;
mess * dA_xpryl;
mess * dA_xpl ;
) = mess * dA_xrl ;
mess * dA_xc ;
) = mess * dA_xrr ;
mess * dA_xpr ;
mess * dA_zlpl ;
mess * dA_zl ;
mess * dA_zr ;
}
else if (iy == Nyu - 2)
{
mess = mess * m_mesh->mesh.hyO(Ny - 2) / 2;
const
const
const
const
int64_t
int64_t
int64_t
int64_t
double dA_xyl
&zl =
&zr =
&zrpl
&zrpr
xc;
xyr;
= xplyr;
= xpryr;
= hy_1(Ny - 2) * (-2 * Kpy(zl) * hp_1(ip)
105
- 2 * Kyy(zl) * hy_1(Ny - 2));
double dA_xpryl = hy_1(Ny - 2) *
(2 * Kpy(xpr) * hp_1(ip));
double dA_xpl
= hp_1(ip) * (-Kpp(zl) * hp_1(ip)
- Kyp(zl) * hy_1(Ny - 2));
double dA_zl
=
(
+ hp_1(ip)
* (Kpp(zl) * hp_1(ip)
+ Kpy(zl) * hy_1(Ny - 2)
+ Kpp(xpr) * hp_1(ipP1))
+ hy_1(Ny - 2) * (Kyp(zl) * hp_1(ip)
+ Kyy(zl) * hy_1(Ny - 2)
+ Kyy(zr) * hy_1(Ny - 2))
);
double dA_xpr
= hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
- Kpy(xpr) * hy_1(Ny - 2));
double dA_zrpl = hy_1(Ny - 2) * (Kyp(zr) * hp_1(ip));
double dA_zr
= hy_1(Ny - 2) * (
+Kpy(zl) * hp_1(ip) + Kyy(zl) * hy_1(Ny - 2)
- Kyp(zr) * hp_1(ip)
- Kyy(zr) * hy_1(Ny - 2));
double dA_zrpr = (-hp_1(ip) * Kpy(xpr) * hy_1(Ny - 2));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
dA_xyl += hy_1(Ny - 2) * (-2 * Vy_p(xeyl));
dA_xpl += hp_1(ip) * (-1 * Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-Vr_p(xerl));
dA_zl +=
106
+ 1 * hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ 1 * hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(Ny - 2) * (Vy(xeyl) + 2 * Vy_m(xeyl));
if (ir != Nrc-1)
dA_xrr += hr_1(ir) * (-Vr_m(xerr));
dA_xpr += hp_1(ip) * (-1 * Vp_m(xepr));
dA_zr += hy_1(Ny - 2) * (Vy(xeyr));
#pragma omp critical
{
A.coeffRef(zl, xyl ) =
A.coeffRef(zl, xpryl) =
A.coeffRef(zl, xpl ) =
if(ir != 0)
A.coeffRef(zl, xrl
A.coeffRef(zl, zl
) =
if(ir != Nrc-1)
A.coeffRef(zl, xrr
A.coeffRef(zl, xpr ) =
A.coeffRef(zl, zrpl ) =
A.coeffRef(zl, zr
) =
A.coeffRef(zl, zrpr ) =
}
mess * dA_xyl ;
mess * dA_xpryl;
mess * dA_xpl ;
) = mess * dA_xrl ;
mess * dA_zl ;
) = mess * dA_xrr ;
mess * dA_xpr ;
mess * dA_zrpl ;
mess * dA_zr ;
mess * dA_zrpr ;
}
else if (iy == Nyu - 1)
{
if ( (m_taskVars->comData.bondCondMPK == 0)
&& (ip >= m_mesh->Fast.Center.Np_nC) )
{
const int64_t &zr = xc;
#pragma omp critical
107
{
A.coeffRef(zr, zr) = 1.0;
}
}
else
{
mess =
mess * m_mesh->mesh.hyO(Ny - 2) / 2;
const
const
const
const
const
int64_t
int64_t
int64_t
int64_t
int64_t
&zl =
&xylt
&zr =
&zlpl
&zlpr
xyl;
= xyl - NrcNp;
xc;
= xplyl;
= xpryl;
double dA_xylt = hy_1(Ny - 2) * (-2 * Kyy(zl)
* hy_1(Ny - 2));
double dA_zlpl = hy_1(Ny - 2) * (-Kyp(zl)
* hp_1(ip));
double dA_zl
= hy_1(Ny - 2) * (
-Kpy(zr) * hp_1(ip) + Kyp(zl) * hp_1(ip)
+Kyy(zl) * hy_1(Ny - 2)
- Kyy(zr) * hy_1(Ny - 2));
double dA_zlpr =
hp_1(ip) * Kpy(xpr) * hy_1(Ny - 2);
double dA_xpl = hp_1(ip) * (-Kpp(zr) * hp_1(ip)
- Kyp(zr) * hy_1(Ny - 2));
double dA_zr
=
(
hp_1(ip) * (
+Kpp(zr) * hp_1(ip) + Kpp(xpr) * hp_1(ipP1)
+ Kpy(zr) * hy_1(Ny - 2))
108
+ hy_1(Ny - 2) * (
+Kyy(zl) * hy_1(Ny - 2) + Kyp(zr) * hp_1(ip)
+ Kyy(zr) * hy_1(Ny - 2))
);
double dA_xpr = hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
- Kpy(xpr) * hy_1(Ny - 2));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
dA_zl += hy_1(Ny - 2) * (-Vy(xeyl));
dA_xpl += hp_1(ip) * (-1 * Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-1 * Vr_p(xerl));
dA_zr +=
+1 * hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ 1 * hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(Ny - 2) * (-Vy(xeyr));
if (ir != Nrc-1)
dA_xrr += hr_1(ir) * (-1 * Vr_m(xerr));
dA_xpr += hp_1(ip) * (-1 * Vp_m(xepr));
// Ãðàíèöà
if(ip < m_mesh->Fast.Center.Np_nC)
dA_zr += hy_1(Ny - 2) * (2 * sigmaSwT_n * srp1);
#pragma omp critical
{
A.coeffRef(zr, xylt) = mess * dA_xylt;
109
A.coeffRef(zr, zlpl) =
A.coeffRef(zr, zl ) =
A.coeffRef(zr, zlpr) =
A.coeffRef(zr, xpl ) =
if(ir != 0)
A.coeffRef(zr, xrl
A.coeffRef(zr, zr ) =
if(ir != Nrc-1)
A.coeffRef(zr, xrr
A.coeffRef(zr, xpr ) =
}
mess
mess
mess
mess
*
*
*
*
dA_zlpl;
dA_zl ;
dA_zlpr;
dA_xpl ;
) = mess * dA_xrl ;
mess * dA_zr ;
) = mess * dA_xrr ;
mess * dA_xpr ;
}
}
else
{
mess = mess * m_mesh->mesh.hyO(iy - 1);
double dA_xyl
= hy_1(iy - 1) * (-Kpy(xc) * hp_1(ip)
- Kyy(xc) * hy_1(iy - 1));
double dA_xpryl = hy_1(iy - 1) * (Kpy(xpr) * hp_1(ip));
double dA_xpl
= hp_1(ip) * (-Kpp(xc) * hp_1(ip)
- Kyp(xc) * hy_1(iy - 1));
double dA_xc
=
(
hp_1(ip) * (
+ Kpp(xc) * hp_1(ip) + Kpy(xc) * hy_1(iy - 1)
+ Kpp(xpr) * hp_1(ipP1))
+ hy_1(iy - 1) * (
+ Kyp(xc) * hp_1(ip) + Kyy(xc) * hy_1(iy - 1)
+ Kyy(xyr) * hy_1(iy))
);
double dA_xpr
= hp_1(ip) * (-Kpp(xpr) * hp_1(ipP1)
110
- Kpy(xpr) * hy_1(iy - 1));
double dA_xplyr = hy_1(iy - 1) * (Kyp(xyr) * hp_1(ip));
double dA_xyr
= hy_1(iy - 1) * (-Kyp(xyr) * hp_1(ip)
- Kyy(xyr) * hy_1(iy));
// Ñêîðîñòè
double dA_xrl = 0;
double dA_xrr = 0;
double test = dA_xyl + dA_xpryl + dA_xpl + dA_xrl
+ dA_xc + dA_xrr + dA_xpr + dA_xplyr + dA_xyr;
assert(abs(test) <= 1e-10 * dA_xc);
// Òóò åù¼ íåò ñêîðîñòåé
dA_xyl += hy_1(iy - 1) * (-Vy_p(xeyl));
dA_xpl += hp_1(ip) * (-Vp_p(xepl));
if (ir != 0)
dA_xrl += hr_1(ir) * (-Vr_p(xerl));
dA_xc +=
+hr_1(ir) * (Vr_m(xerl) + Vr_p(xerr))
+ hp_1(ip) * (Vp_m(xepl) + Vp_p(xepr))
+ hy_1(iy - 1) * (Vy_m(xeyl) + Vy_p(xeyr));
if (ir != Nrc-1)
dA_xrr += hr_1(ir) * (-Vr_m(xerr));
dA_xpr += hp_1(ip) * (-Vp_m(xepr));
dA_xyr += hy_1(iy - 1) * (-Vy_m(xeyr));
#pragma omp critical
{
111
A.coeffRef(xc, xyl ) =
A.coeffRef(xc, xpryl) =
A.coeffRef(xc, xpl ) =
if(ir != 0)
A.coeffRef(xc, xrl
A.coeffRef(xc, xc
) =
if(ir != Nrc-1)
A.coeffRef(xc, xrr
A.coeffRef(xc, xpr ) =
A.coeffRef(xc, xplyr) =
A.coeffRef(xc, xyr ) =
}
mess * dA_xyl ;
mess * dA_xpryl;
mess * dA_xpl ;
) = mess * dA_xrl ;
mess * dA_xc ;
) = mess * dA_xrr ;
mess * dA_xpr ;
mess * dA_xplyr;
mess * dA_xyr ;
}
// Èíäåêñû ñòîðîí ýëåìåíòà
xerl = xerl + 1;
xerr = xerr + 1;
xepl = xepl + 1;
xepr = xepr + 1;
xeyl = xeyl + 1;
xeyr = xeyr + 1;
// Èíäåêñû íåèçâåñòíûõ
xc = xc + 1;
xrl = xrl + 1;
xrr = xrr + 1;
xpl = xpl + 1;
xpr = xpr + 1;
xyl = xyl + 1;
xyr = xyr + 1;
xplyl = xplyl + 1;
112
xpryl = xpryl + 1;
xplyr = xplyr + 1;
xpryr = xpryr + 1;
}// for ir
idxVr = idxVr + Nr;
xerl = idxVr;
xerr = xerl + 1;
}// for ip
} // for iy
} // buildAqvFull
113
ÏÐÈËÎÆÅÍÈÅ Â
void OSDProblemState::disc_Matrix_omega
(vTriplet &coef, vTriplet &coefUnstat)
{
// Ìàññèâ ñäâèãîâ 01, îïðåäåëÿþùèé rpy óçëà
int8_t const* rp = m_mesh->rp;
int8_t const* pp = m_mesh->pp;
int8_t const* yp = m_mesh->yp;
// Øàã ïî íàïðàâëåíèÿì
const double &tau = m_mesh->config.tau;
const double &tauAst = m_taskVars->data.tauAst;
double hr,
hp,
hy;
double hphy; // äëÿ áûñòðîòû
double hr_1,
hp_1,
hy_1; // 1/hr, 1/hp, 1/hy
double srp1, srp1Next;
const
const
const
const
const
int64_t
int64_t
int64_t
int64_t
int64_t
&Nr = m_mesh->config.Nr;
&Np = m_mesh->config.Np;
&Ny = m_mesh->config.NyD;
&NrNp = m_mesh->Fast.Disc.NrNp;
&N = m_mesh->Fast.Disc.N;
if(coef.size() != (size_t)N)
coef.clear();
coef.reserve(N);
if(coefUnstat.size() != (size_t)N)
114
coefUnstat.clear();
coefUnstat.reserve(N);
// Ãëîáàëüíûé èíäåêñ ýëåìåíòà
int64_t iglEl = 0;
// Êîìïîíåíòû ñäâèãà ïðè
ôîðìèðîâàíèè ãëîáàëüíîãî èíäåêñà
int64_t iglMk = 0;
int64_t iglMl = 0;
// Ãëîáàëüíûå èíäåêñû óçëîâ íà ýëåìåíòå,
îáúÿâëåíèå
int64_t iglK, iglL;
int64_t U; // Çíà÷åíèå áàçèñíîé ôóíêöèè
â óçëå êâàäðàòóðû
int64_t V; // -||// Ïðîèâîäíûå áàçèñíîé ôóíêöèè â óçëàõ êâàäðàòóðû
double DrU, DrV, DpU, DpV, DyU, DyV;
// Çíà÷åíèÿ ïðîèçâîäíûõ
// ëîêàëüíûõ áàçèñíûõ ôóêíöèé â óçëàõ êâàäðàòóðû
int8_t const
*dudr, *dudp, *dudy,
*dvdr, *dvdp, *dvdy;
// Ìåðû ýëåìåíòîâ 3d
double mK;
// Êîýôôèöèåíòû êâàäðàòóðû 3d
double alphaKV;
// Çíà÷åíèÿ ïîäèíò âûðàæåíèé
double a_Omega
= 0;
double a_OmegaUnstat
= 0;
115
// Ïàðàìåòðû
const double
const double
const double
const double
const double
â âûðàæåíèè
&sigma2Rcp2
&Rcp2theta2
&H2
&b_dCoef
&Kcoef
=
=
=
=
=
m_taskVars->Fast.sigma2Rcp2;
m_taskVars->Fast.Rcp2theta2;
m_taskVars->Fast.Hd2
;
m_taskVars->Fast.b_dCoef
;
m_taskVars->Fast.KdCoef
;
for(int64_t iy = 0; iy < Ny-1; ++iy)
{
// Øàã ïî íàïðàâëåíèþ y
hy = m_mesh->mesh.hyD[iy];
hy_1 = 1/hy;
for(int64_t ip = 0; ip < Np; ++ip)
{
// Øàã ïî íàïðàâëåíèþ phi
hp = m_mesh->mesh.hp[ip];
hp_1 = 1/hp;
hphy = hp * hy;
srp1Next = m_mesh->Fast.Oil.sigmaRP1(0);
for(int64_t ir = 0; ir < Nr-1; ++ir)
{
// Øàã ïî íàïðàâëåíèþ r
hr = m_mesh->mesh.hr[ir];
hr_1 = 1/hr;
// Êîîðäèíàòà r
srp1 = srp1Next;
srp1Next = m_mesh->Fast.Oil.sigmaRP1(ir + 1);
// Ìåðà ýëåìåíòà
mK = hphy * hr;
// Âû÷èñëåíèå ãëîáàëüíîãî èíäåêñà ýëåìåíòà
116
// Êîýôôèöèåíò êâàäðàòóðû
alphaKV = mK/8;
//
// Âû÷èñëÿåì çíà÷åíèÿ ïîäèíò ôóíêöèé
//
dudr = m_mesh->dudr;
dudp = m_mesh->dudp;
dudy = m_mesh->dudy;
for(int8_t k = 0; k < 8; ++k)
// Öèêë ïî áàçèñíûì ôóíêöèÿì íà ýëåìåíòå
{
// Êîìïîíåíòà ñäâèãà ãëîáàëüíîãî èíäåêñà
iglMk = ((pp[k])? Nr :0) + ((yp[k])? NrNp :0) + rp[k];
iglK = iglEl + iglMk;
if((ip == Np-1) && (pp[k]))
iglK -= NrNp;
dvdr = m_mesh->dudr;
dvdp = m_mesh->dudp;
dvdy = m_mesh->dudy;
for(int8_t l = 0; l < 8; ++l)
{
// Ïðîèçâîäíûå äëÿ v
//m_mesh->getDrDpDy(l, dvdr, dvdp, dvdy);
// Êîìïîíåíòà ñäâèãà ãëîáàëüíîãî èíäåêñà
iglMl = ((pp[l])? Nr :0) + ((yp[l])? NrNp :0)
+ rp[l];
117
iglL = iglEl + iglMl;
if((ip == Np-1) && (pp[l]))
iglL -= NrNp;
a_Omega
= 0;
a_OmegaUnstat = 0;
// Áåæèì ïî óçëàì êâàäðàòóðû
for(int8_t kv = 0; kv < 8; ++kv)
{
const double srp1loc =
(rp[kv]) ? srp1Next : srp1;
// ñäâèã ïî r
U
V
= kv == k;
= kv == l;
DrU = dudr[kv] * hr_1;
DrV = dvdr[kv] * hr_1;
DpU = dudp[kv] * hp_1;
DpV = dvdp[kv] * hp_1;
DyU = dudy[kv] * hy_1;
DyV = dvdy[kv] * hy_1;
a_Omega += Kcoef * srp1loc * (
DrU * DrV / (sigma2Rcp2)+
DpU * DpV / (srp1loc * srp1loc * Rcp2theta2) +
DyU * DyV / H2);// Íàáëà â êîíöå
a_OmegaUnstat += b_dCoef * (U * V) * srp1loc / tau;
}
// A(iglK, iglL) += alphaKV * a_Omega;
118
coef.emplace_back(iglL, iglK, alphaKV * a_Omega);
coefUnstat.emplace_back(
iglL, iglK, alphaKV * a_OmegaUnstat);
dvdr
dvdp
dvdy
} // for
+= 8;
+= 8;
+= 8;
l
dudr += 8;
dudp += 8;
dudy += 8;
} // for k
iglEl++;
} // for ir
iglEl++;
} // for ip
//iglEl += Nr; // òê 'y' äî Ny-1,
} // for iy
}
119
ÏÐÈËÎÆÅÍÈÅ Ã
void OSDProblemState::pillow_Matrix_omega
(vTriplet &coef, vTriplet &coefUnstat)
{
// Ìàññèâ ñäâèãîâ
int8_t const* rp
int8_t const* pp
int8_t const* yp
01, îïðåäåëÿþùèé rpy óçëà
= m_mesh->rp;
= m_mesh->pp;
= m_mesh->yp;
// Øàã ïî íàïðàâëåíèÿì
const double &tau = m_mesh->config.tau;
const double &tauAst = m_taskVars->data.tauAst;
double hr,
hp,
hy;
double hphy;
double hr_1,
hp_1,
hy_1;
double srp1, srp1Next;
const
const
const
const
const
int64_t
int64_t
int64_t
int64_t
int64_t
&Nr = m_mesh->config.Nr;
&Np = m_mesh->config.Np_n;
&Ny = m_mesh->config.NyP;
&NrNp = m_mesh->Fast.Pillow.NrNp;
&N = m_mesh->Fast.Pillow.N;
if(coef.size() != (size_t)N)
coef.clear();
coef.reserve(N);
120
if(coefUnstat.size() != (size_t)N)
coefUnstat.clear();
coefUnstat.reserve(N);
// Ãëîáàëüíûé èíäåêñ ýëåìåíòà
int64_t iglEl = 0;
// Êîìïîíåíòû ñäâèãà ïðè
ôîðìèðîâàíèè ãëîáàëüíîãî èíäåêñà
int64_t iglMk = 0;
int64_t iglMl = 0;
// Ãëîáàëüíûå èíäåêñû óçëîâ
íà ýëåìåíòå, îáúÿâëåíèå
int64_t iglK, iglL;
int64_t U; // Çíà÷åíèå áàçèñíîé
ôóíêöèè â óçëå êâàäðàòóðû
int64_t V; // -||// Ïðîèâîäíûå áàçèñíîé ôóíêöèè â
óçëàõ êâàäðàòóðû
double DrU, DrV, DpU, DpV, DyU, DyV;
// Çíà÷åíèÿ ïðîèçâîäíûõ
// ëîêàëüíûõ áàçèñíûõ ôóêíöèé â
óçëàõ êâàäðàòóðû
int8_t const
*dudr, *dudp, *dudy,
*dvdr, *dvdp, *dvdy;
// Ìåðû ýëåìåíòîâ 3d
double mK;
// Êîýôôèöèåíòû êâàäðàòóðû 3d
double alphaKV;
121
// Çíà÷åíèÿ ïîäèíò âûðàæåíèé
double a_Omega
= 0;
double a_OmegaUnstat
= 0;
// Ïàðàìåòðû
const double
const double
const double
const double
const double
â âûðàæåíèè
&sigma2Rcp2
&Rcp2theta2
&H2
&b_nCoef
&Kcoef
=
=
=
=
=
m_taskVars->Fast.sigma2Rcp2;
m_taskVars->Fast.Rcp2theta2;
m_taskVars->Fast.Hn2
;
m_taskVars->Fast.b_nCoef
;
m_taskVars->Fast.KnCoef
;
//yNext = m_mesh->mesh.YP[0];
for(int64_t iy = 0; iy < Ny-1; ++iy)
{
// Øàã ïî íàïðàâëåíèþ y
hy = m_mesh->mesh.hyP[iy];
hy_1 = 1/hy;
for(int64_t ip = 0; ip < Np-1; ++ip)
{
// Øàã ïî íàïðàâëåíèþ phi
hp = m_mesh->mesh.hp[ip];
hp_1 = 1/hp;
// Ìåðà ýëåìåíòà
hphy = hp * hy;
srp1Next = m_mesh->Fast.Oil.sigmaRP1(0);
for(int64_t ir = 0; ir < Nr-1; ++ir)
{
// Øàã ïî íàïðàâëåíèþ r
hr = m_mesh->mesh.hr[ir];
hr_1 = 1/hr;
122
// Êîîðäèíàòà r
srp1 = srp1Next;
srp1Next = m_mesh->Fast.Oil.sigmaRP1(ir + 1);
// Ìåðà ýëåìåíòà
mK = hphy * hr;
// Âû÷èñëåíèå ãëîáàëüíîãî èíäåêñà ýëåìåíòà
// Êîýôôèöèåíò êâàäðàòóðû
alphaKV = mK/8;
//
// Âû÷èñëÿåì çíà÷åíèÿ ïîäèíò ôóíêöèé
//
dudr = m_mesh->dudr;
dudp = m_mesh->dudp;
dudy = m_mesh->dudy;
for(int8_t k = 0; k < 8; ++k)
// Öèêë ïî áàçèñíûì ôóíêöèÿì íà ýëåìåíòå
{
// Ïðîèçâîäíûå äëÿ u
//m_mesh->getDrDpDy(k, dudr, dudp, dudy);
// Êîìïîíåíòà ñäâèãà ãëîáàëüíîãî èíäåêñà
iglMk = ((pp[k])? Nr :0) + ((yp[k])? NrNp :0)
+ rp[k];
iglK = iglEl + iglMk;
dvdr = m_mesh->dudr;
dvdp = m_mesh->dudp;
dvdy = m_mesh->dudy;
123
for(int8_t l = 0; l < 8; ++l)
{
// Ïðîèçâîäíûå äëÿ v
//m_mesh->getDrDpDy(l, dvdr, dvdp, dvdy);
// Êîìïîíåíòà ñäâèãà ãëîáàëüíîãî èíäåêñà
iglMl =
((pp[l])? Nr :0) + ((yp[l])? NrNp :0)
+ rp[l];
iglL = iglEl + iglMl;
a_Omega
= 0;
a_OmegaUnstat = 0;
// Áåæèì ïî óçëàì êâàäðàòóðû
for(int8_t kv = 0; kv < 8; ++kv)
{
const double srp1loc =
(rp[kv]) ? srp1Next : srp1;
// ñäâèã ïî r
U
V
= kv == k;
= kv == l;
DrU = dudr[kv] * hr_1;
DrV = dvdr[kv] * hr_1;
DpU = dudp[kv] * hp_1;
DpV = dvdp[kv] * hp_1;
DyU = dudy[kv] * hy_1;
DyV = dvdy[kv] * hy_1;
a_Omega += Kcoef * srp1loc * (
DrU * DrV / (sigma2Rcp2)+
124
DpU * DpV / (srp1loc * srp1loc * Rcp2theta2) +
DyU * DyV / H2);// Íàáëà â êîíöå
a_OmegaUnstat +=
b_nCoef * (U * V)* srp1loc / tau;
}
// A(iglK, iglL) += alphaKV * a_Omega;
coef.emplace_back(iglL, iglK, alphaKV * a_Omega);
coefUnstat.emplace_back(
iglL, iglK, alphaKV * a_OmegaUnstat);
dvdr
dvdp
dvdy
} //
+= 8;
+= 8;
+= 8;
for l
dudr += 8;
dudp += 8;
dudy += 8;
} // for k
iglEl++;
} // for ir
iglEl++;
} // for ip
iglEl += Nr; // òê 'y' äî Ny-1,
} // for iy
}
125
Отзывы:
Авторизуйтесь, чтобы оставить отзыви хорошего настроения
удачи
успехов в конкурсе
Наверное было затрачено много времени и труда на работу
Продолжай свое исследование
Админам респект
Красиво написанная работа
Так держать
Молодец
Интересная работа!